Expected topology of random real algebraic submanifolds

Damien Gayet, Jean-Yves Welschinger

To cite this version:

Damien Gayet, Jean-Yves Welschinger. Expected topology of random real algebraic submanifolds. Journal of the Institute of Mathematics of Jussieu, 2014, 14 (4), pp.673-702. 10.1017/S1474748014000115 . hal-00846761v1

HAL Id: hal-00846761 https://hal.science/hal-00846761v1

Submitted on 19 Jul 2013 (v1), last revised 14 Apr 2014 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Expected topology of random real algebraic submanifolds

Damien Gayet, Jean-Yves Welschinger

July 19, 2013

Abstract

Let X be a smooth complex projective manifold of dimension n equipped with an ample line bundle L and a rank k holomorphic vector bundle E. We assume that $1 \leqslant k \leqslant n$, that X, E and L are defined over the reals and denote by $\mathbb{R} X$ the real locus of X. Then, we estimate from above and below the expected Betti numbers of the vanishing loci in $\mathbb{R} X$ of holomorphic real sections of $E \otimes L^{d}$, where d is a large enough integer. Moreover, given any closed connected codimension k submanifold Σ of \mathbb{R}^{n}, we prove that a real section of $E \otimes L^{d}$ has a positive probability, independent of d, to contain around \sqrt{d}^{n} connected components diffeomorphic to Σ in its vanishing locus.

Mathematics subject classification 2010: 14P25, 32Q15, 60D05
KEYWORDS: Real projective manifold, ample line bundle, random polynomial, Betti numbers

Contents

1 Introduction 2
1.1 Upper estimates 3
1.2 Lower estimates and topology 3
1.3 Some related results 4
2 Lower estimates for the expected Betti numbers 5
2.1 Statement of the results 5
2.1.1 Framework 5
2.1.2 The lower estimates 5
2.2 Closed affine real algebraic submanifolds 6
2.3 Hörmander sections 8
2.4 Proof of Theorem 1.2.1 11
2.5 Proof of Theorem 2.1.1 13
2.6 Proof of Corollary 1.2.2 14
3 Upper estimates for the expected Betti numbers 16
3.1 Statement of the results 16
3.2 Incidence varieties 18
3.3 Computation of the Jacobian determinants 20
3.3.1 Jacobian determinant of ρ_{x} 20
3.3.2 Jacobian determinant of the evaluation map 22
3.4 Proof of Theorem 3.1.3 23
3.4.1 The case $k<n$ 23
3.4.2 The case $k=n$ 24
3.5 Equirepartition of critical points in the complex case 25

1 Introduction

Let X be a smooth complex projective manifold of positive dimension n equipped with an ample line bundle L and let E be a holomorphic vector bundle of rank k over X. From the vanishing theorem of Kodaira and Serre, we know that the dimension N_{d} of the complex vector space $H^{0}\left(X, E \otimes L^{d}\right)$ of global holomorphic sections of $E \otimes L^{d}$ grows as a polynomial of degree n in d. We will assume throughout this paper that $1 \leqslant k \leqslant n$ and that X, E and L are defined over the reals. We denote by $\mathbb{R} X$ the real locus of X and by $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ the real vector space of real holomorphic sections of $E \otimes L^{d}$, see (5). Its dimension equals N_{d}. The discriminant locus $\mathbb{R} \Delta_{d} \subset \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ of sections which do not vanish transversely is a codimension one submanifold for d large enough and for every σ in its complement, the real vanishing locus $\mathbb{R} C_{\sigma}$ of σ is a smooth codimension k submanifold of $\mathbb{R} X$. The topology of $\mathbb{R} C_{\sigma}$ drastically depends on the choice of $\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{d}$. When $n=k=1, X=\mathbb{C} P^{1}, L=\mathcal{O}_{\mathbb{C} P^{1}}(1)$ and $E=\mathcal{O}_{\mathbb{C} P^{1}}$ for example, σ is a real polynomial of degree d in one variable and $\mathbb{R} C_{\sigma}$ the set of its real roots.

The space $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ inherits classical probability measures. Indeed, let h_{E} be a Hermitian metric on E and h_{L} be a Hermitian metric of positive curvature on L, both h_{E} and h_{L} being real, that is invariant under the $\mathbb{Z} / 2 \mathbb{Z}$-Galois action of E and L. We denote by $h_{E, d}=h_{E} \otimes h_{L}^{d}$ the induced metric on $E \otimes L^{d}$. Then, the vector space $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ becomes Euclidean, with the L^{2}-scalar product defined by

$$
\forall \sigma, \tau \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right),\langle\sigma, \tau\rangle=\int_{X} h_{E, d}(\sigma, \tau) d x
$$

where $d x$ denotes any chosen volume form on X (our results being asymptotic in d, they turn out not to depend on the choice of $d x$). It thus inherits a Gaussian probability measure $\mu_{\mathbb{R}}$ whose density at $\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ with respect to the Lebesgue measure is $\frac{1}{\sqrt{\pi_{d}}} e^{-\|\sigma\|^{2}}$.

What is the typical topology of $\mathbb{R} C_{\sigma}$ for $\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ chosen at random for $d \mu_{\mathbb{R}}$? We do not know, but can estimate its average Betti numbers. To formulate our results, let us denote, for every $i \in\{0, \cdots, n-k\}$, by $b_{i}\left(\mathbb{R} C_{\sigma}, \mathbb{R}\right)=\operatorname{dim} H_{i}\left(\mathbb{R} C_{\sigma}, \mathbb{R}\right)$ the i-th Betti number of $\mathbb{R} C_{\sigma}$ and by

$$
E\left(b_{i}\right)=\int_{\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{d}} b_{i}\left(\mathbb{R} C_{\sigma}, \mathbb{R}\right) d \mu_{\mathbb{R}}(\sigma)
$$

its expected value.

1.1 Upper estimates

As in [12], for every $i \in\{0, \cdots, n-k\}$, we denote by $\operatorname{Sym}_{\mathbb{R}}(i, n-k-i)$ the open cone of real symmetric matrices of size $n-k$ and signature $(i, n-k-i)$, by $\mu_{\mathbb{R}}$ the classical Gaussian measure on the space of real symmetric matrices and by $e_{\mathbb{R}}(i, n-k-i)$ the numbers

$$
\begin{equation*}
e_{\mathbb{R}}(i, n-k-i)=\int_{S y m_{\mathbb{R}}(i, n-k-i)}|\operatorname{det} A| d \mu_{\mathbb{R}}(A), \tag{1}
\end{equation*}
$$

see $\S 3.1$. We then denote by $\operatorname{Vol}_{h_{L}}(\mathbb{R} X)$ the volume of $\mathbb{R} X$ for the Riemannian metric induced by the Kähler metric $g_{h_{L}}$ defined by the curvature form of h_{L}, see (3) and (4).

Theorem 1.1.1 Let X be a smooth real projective manifold of dimension $n,\left(L, h_{L}\right)$ be a real holomorphic Hermitian line bundle of positive curvature over X and $\left(E, h_{E}\right)$ be a rank k real holomorphic Hermitian vector bundle, with $1 \leqslant k \leqslant n, k \neq n$. Then, for every $0 \leqslant i \leqslant n-k$,

$$
\limsup _{d \rightarrow \infty} \frac{1}{\sqrt{d}^{n}} E\left(b_{i}\right) \leqslant\binom{ n-1}{k-1} e_{\mathbb{R}}(i, n-k-i) \frac{\operatorname{Vol}_{h_{L}}(\mathbb{R} X)}{\operatorname{Vol}_{F S}\left(\mathbb{R} P^{k}\right)}
$$

Moreover, when $k=n, \frac{1}{\sqrt{d}} E\left(b_{0}\right)$ converges to $\frac{V^{\prime} l_{h_{L}}(\mathbb{R} X)}{\operatorname{Vol}_{F S}\left(\mathbb{R} P^{n}\right)}$ as d grows to infinity.
In fact, the right hand side of the inequality given by Theorem 1.1.1 also involves the determinant of random matrices of size $k-1$ and the volume of the Grassmann manifold of $(k-1)$ linear subspaces of \mathbb{R}^{n-1}, see Theorem 3.1.2, but these can be computed explicitly. Note that when E is the trivial line bundle, Theorem 1.1.1 reduces to Theorem 1.1 of [12].

Theorem 1.1.1 relies on Theorem 3.1.3, which establishes the asymptotic equirepartition of clouds of critical points, see $\S 3.1$. We obtain a similar result in a complex projective setting, for critical points of Lefschetz pencils, see Theorem 3.5.1.

1.2 Lower estimates and topology

Let Σ be a closed submanifold of codimension k of $\mathbb{R}^{n}, 1 \leqslant k \leqslant n$, which we do not assume to be connected. For every $\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{d}$, we denote by $N_{\Sigma}(\sigma)$ the maximal number of disjoint open subsets of $\mathbb{R} X$ having the property that each such open subset U^{\prime} contains a codimension k submanifold Σ^{\prime} such that $\Sigma^{\prime} \subset \mathbb{R} C_{\sigma}$ and $\left(U^{\prime}, \Sigma^{\prime}\right)$ is diffeomorphic to $\left(\mathbb{R}^{n}, \Sigma\right)$. We then set

$$
\begin{equation*}
E\left(N_{\Sigma}\right)=\int_{\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{d}} N_{\Sigma}(\sigma) d \mu_{\mathbb{R}}(\sigma) \tag{2}
\end{equation*}
$$

and we associate to Σ, in fact to its isotopy class in \mathbb{R}^{n}, a positive constant c_{Σ}, see (12).

Theorem 1.2.1 Let X be a smooth real projective manifold of dimension n, $\left(L, h_{L}\right)$ be a real holomorphic Hermitian line bundle of positive curvature over X and $\left(E, h_{E}\right)$ be a rank k real holomorphic Hermitian vector bundle, with $1 \leqslant k \leqslant n$. Let Σ be a closed submanifold of codimension k of \mathbb{R}^{n}, which does not need to be connected. Then,

$$
\liminf _{d \rightarrow \infty} \frac{1}{\sqrt{d}^{n}} E\left(N_{\Sigma}\right) \geqslant c_{\Sigma} V \operatorname{ll}_{h_{L}}(\mathbb{R} X)
$$

In particular, when Σ is connected, Theorem 1.2.1 bounds from below the expected number of connected components diffeomorphic to Σ in the real vanishing locus of a random section $\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$. The constant c_{Σ} does not depend on the choice of the triple $\left(X,\left(L, h_{L}\right),\left(E, h_{E}\right)\right)$, it only depends on Σ. When $k=1$ and $E=\mathcal{O}_{X}$, Theorem 1.2.1 coincides with Theorem 1.0.2 of [14]. Computing c_{Σ} for explicit submanifolds Σ yields the following lower bounds for the Betti numbers.

Corollary 1.2.2 Under the hypotheses of Theorem 1.2.1, for every $i \in\{0, \cdots, n-k\}$,

$$
\liminf _{d \rightarrow \infty} \frac{1}{\sqrt{d}^{n}} E\left(b_{i}\right) \geqslant \exp \left(-e^{84+6 n}\right) \operatorname{Vol}_{h_{L}}(\mathbb{R} X)
$$

1.3 Some related results

The case $X=\mathbb{C} P^{1}, E=\mathcal{O}_{\mathbb{C} P^{1}}$ and $L=\mathcal{O}_{\mathbb{C} P^{1}}(1)$ was first considered by M. Kac in [16] for a different measure. In this case and with our measure, Kostlan [17] and Shub and Smale [28] gave an exact formula for the mean number of real roots of a polynomial, as well as the mean number of intersection points of n hypersurfaces in $\mathbb{R} P^{n}$. Still in $\mathbb{R} P^{n}$, Podkorytov [25] computed the mean Euler characteristics of random algebraic hypersufaces, and Bürgisser [4] extented this result to complete intersections. In [11], we proved the exponential rarefaction of real curves with a maximal number of components in real algebraic surfaces. In [13] and [12], we bounded from above the mean Betti numbers of random real hypersurfaces in real projective manifolds and in [14], we gave a lower bound for them.

A similar probabilistic study of complex projective manifolds has been performed by Shiffman and Zelditch, see [26], [27], [2] for example, or also [3], [29]. In particular, the asymptotic equirepartition of critical points of random sections over a fixed projective manifold has been studied in [7], [8] and [20], or also [10], [1], [5], while we studied critical points of the restriction of a fixed Morse function on random real hypersurfaces, see [13], [12].

A similar question concerns the mean number of components of the vanishing locus of eigenfunctions of the Laplacian. It has been studied on the round sphere by Nazarov and Sodin [23], Lerario and Lundberg [18] or Sarnak and Wigman. In a general Riemannian setting, Zelditch proved in [31] the equidistribution of the vanishing locus, whereas critical points of random eigenfunctions of the Laplacian have been addressed by Nicolaescu in [24].

Section 2 is devoted to lower estimates and the proof of Theorem 1.2.1, and Section 3 to upper estimates and the proof of Theorem 1.1.1.

Aknowledgements. The research leading to these results has received funding from the European Community's Seventh Framework Progamme ([FP7/2007-2013] [FP7/2007-2011]) under grant agreement n° [258204].

2 Lower estimates for the expected Betti numbers

2.1 Statement of the results

2.1.1 Framework

Let us first recall our framework. We denote by X a smooth complex projective manifold of dimension n defined over the reals, by $c_{X}: X \rightarrow X$ the induced Galois antiholomorphic involution and by $\mathbb{R} X=\operatorname{Fix}\left(c_{X}\right)$ the real locus of X which we implicitly assume to be non-empty. We then consider an ample line bundle L over X, also defined over the reals. It comes thus equipped with an antiholomorphic involution $c_{L}: L \rightarrow L$ which turns the bundle projection map $\pi: L \rightarrow X$ into a $\mathbb{Z} / 2 \mathbb{Z}$-equivariant one, so that $c_{X} \circ \pi=\pi \circ c_{L}$. We equip L in addition with a real Hermitian metric h_{L}, thus invariant under c_{L}, which has a positive curvature form ω locally defined by

$$
\begin{equation*}
\omega=\frac{1}{2 i \pi} \partial \bar{\partial} \log h_{L}(e, e) \tag{3}
\end{equation*}
$$

for any non-vanishing local holomorphic section e of L. This metric induces a Kähler metric

$$
\begin{equation*}
g_{h_{L}}=\omega(., i .) \tag{4}
\end{equation*}
$$

on X, which reduces to a Riemannian metric $g_{h_{L}}$ on $\mathbb{R} X$. Let finally E be a holomorphic vector bundle of rank $k, 1 \leqslant k \leqslant n$, defined over the reals and equipped with a antiholomorphic involution c_{E} and a real Hermitian metric h_{E}. For every $d>0$, we denote by

$$
\begin{equation*}
\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)=\left\{\sigma \in H^{0}\left(X, E \otimes L^{d}\right) \mid\left(c_{E} \otimes c_{L^{d}}\right) \circ \sigma=\sigma \circ c_{X}\right\} \tag{5}
\end{equation*}
$$

the space of global real holomorphic sections of $E \otimes L^{d}$. It is equipped with the L^{2}-scalar product defined by the formula

$$
\begin{equation*}
\forall(\sigma, \tau) \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right),\langle\sigma, \tau\rangle=\int_{X} h_{E, d}(\sigma, \tau)(x) d x \tag{6}
\end{equation*}
$$

where $h_{E, d}=h_{E} \otimes h_{L}^{d}$. Here, $d x$ denotes any volume form of X. For instance, $d x$ can be chosen to be the normalized volume form $d V_{h_{L}}=\frac{\omega^{n}}{\int_{X} \omega^{n}}$. This L^{2}-scalar product finally induces a Gaussian probability measure $\mu_{\mathbb{R}}$ on $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ whose density with respect to the Lebesgue one at $\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ writes $\frac{1}{\sqrt{\pi^{N} d}} e^{-\|\sigma\|^{2}}$, where $N_{d}=\operatorname{dim} H^{0}\left(X, E \otimes L^{d}\right)$. It is with respect to this probability measure that we consider random real codimension k submanifolds (as in the works [17] and [28], [13], [12] and [14]).

2.1.2 The lower estimates

The aim of Section 2 is to prove Theorem 1.2.1. In addition to Theorem 1.2.1, we also get the following Theorem 2.1.1, which is a consequence of Proposition 2.4.2 below.

Theorem 2.1.1 Under the hypotheses of Theorem 1.2.1, for every $0 \leqslant \epsilon<1$,

$$
\liminf _{d \rightarrow \infty} \mu_{\mathbb{R}}\left\{\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \mid N_{\Sigma}(\sigma) \geqslant \epsilon c_{\Sigma} V o l_{h_{L}}(\mathbb{R} X) \sqrt{d}^{n}\right\}>0
$$

In fact, the positive lower bound given by Theorem 2.1.1 can be made explicit, see (28).

Let us now denote, for every $1 \leqslant k \leqslant n$, by $\mathcal{H}_{n, k}$ the set of diffeormophism classes of smooth closed connected codimension k submanifolds of \mathbb{R}^{n}. For every $i \in\{0, \cdots, n-k\}$ and every $[\Sigma] \in \mathcal{H}_{n, k}$, we denote by $b_{i}(\Sigma)=\operatorname{dim} H_{i}(\Sigma ; \mathbb{R})$ its i-th Betti number with real coefficients and by $m_{i}(\Sigma)$ its i-th Morse number. This is the infimum over all Morse functions f on Σ of the number of critical points of index i of f. Then, we set $c_{[\Sigma]}=\sup _{\Sigma \in[\Sigma]} c_{\Sigma}$ and

$$
E\left(m_{i}\right)=\int_{\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{d}} m_{i}\left(\mathbb{R} C_{\sigma}\right) d \mu_{\mathbb{R}}(\sigma) .
$$

Corollary 2.1.2 Let X be a smooth real projective manifold of dimension n, $\left(L, h_{L}\right)$ be a real holomorphic Hermitian line bundle of positive curvature over X and $\left(E, h_{E}\right)$ be a rank k real holomorphic Hermitian vector bundle, with $1 \leqslant k \leqslant n$. Then, for every $i \in\{0, \cdots, n-k\}$,

$$
\begin{aligned}
\liminf _{d \rightarrow \infty} \frac{1}{\sqrt{d}^{n}} E\left(b_{i}\right) & \geqslant\left(\sum_{[\Sigma] \in \mathcal{H}_{n, k}} c_{[\Sigma]} b_{i}(\Sigma)\right) \text { Vol }_{h_{L}}(\mathbb{R} X) \text { and likewise } \\
\liminf _{d \rightarrow \infty} \frac{1}{\sqrt{d}^{n}} E\left(m_{i}\right) & \geqslant\left(\sum_{[\Sigma] \in \mathcal{H}_{n, k}} c_{[\Sigma]} m_{i}(\Sigma)\right) V_{o l}(\mathbb{R} X) .
\end{aligned}
$$

2.2 Closed affine real algebraic submanifolds

We introduce here the notion of regular pair, see Definition 2.2.1, and the constant c_{Σ} associated to any isotopy class of smooth closed codimension k submanifold Σ of \mathbb{R}^{n}, see (12).

Definition 2.2.1 Let U be a bounded open subset of \mathbb{R}^{n} and $P \in \mathbb{R}\left[x_{1}, \cdots x_{n}\right]^{k}$, $1 \leqslant k \leqslant n$. The pair (U, P) is said to be regular if and only if

1. zero is a regular value of the restriction of P to U,
2. the vanishing locus of P in U is compact.

In the sequel, for every integer p and every vector $v \in \mathbb{R}^{p}$, we denote by $|v|$ its Euclidian norm, and for every integers p and q, and every linear map $F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$, we denote by F^{*} the adjoint of F, defined by the property

$$
\forall v \in \mathbb{R}^{p}, \forall w \in \mathbb{R}^{q},\langle F(v), w\rangle=\left\langle v, F^{*}(w)\right\rangle,
$$

and denote by $\|F\|$ its operator norm, that is

$$
\|F\|=\sup _{v \in \mathbb{R}^{p} \backslash\{0\}}|F(v)| /|v| .
$$

We will also use the norm

$$
\|F\|_{2}=\sqrt{\operatorname{Tr} F F^{*}}
$$

These norms satisfy $\|F\| \leqslant\|F\|_{2}$. Finally, if $P=\left(P_{1}, \cdots, P_{k}\right) \in \mathbb{R}\left[x_{1}, \cdots, x_{n}\right]^{k}$, we denote by $\|P\|_{L^{2}}$ its L^{2}-norm defined by

$$
\begin{equation*}
\|P\|_{L^{2}}^{2}=\int_{\mathbb{C}^{n}}|P(z)|^{2} e^{-\pi|z|^{2}} d z=\sum_{i=1}^{k} \int_{\mathbb{C}^{n}}\left|P_{i}(z)\right|^{2} e^{-\pi|z|^{2}} d z=\sum_{i=1}^{k}\left\|P_{i}\right\|_{L^{2}}^{2} . \tag{7}
\end{equation*}
$$

Definition 2.2.2 For every regular pair (U, P) given by Definition 2.2.1, we denote by $\mathcal{T}_{(U, P)}$ the set of $(\delta, \epsilon) \in\left(\mathbb{R}_{+}^{*}\right)^{2}$ such that

1. there exists a compact subset K of U satisfying $\inf _{x \in U \backslash K}|P(x)|>\delta$,
2. for every $y \in U,|P(y)|<\delta \Rightarrow \forall w \in \mathbb{R}^{k},\left|\left(d_{\mid y} P\right)^{*}(w)\right| \geqslant \epsilon|w|$.

Then, for every regular pair (U, P), we set $R_{(U, P)}=\max \left(1, \sup _{y \in U}|y|\right)$ and

$$
\begin{equation*}
\tau_{(U, P)}=12 k \rho_{R_{(U, P)}}\|P\|_{L^{2}}^{2} \inf _{(\delta, \epsilon) \in \mathcal{T}_{(U, P)}}\left(\frac{1}{\delta^{2}}+\frac{\pi n}{\epsilon^{2}}\right) \in \mathbb{R}_{+}^{*} \tag{8}
\end{equation*}
$$

where, for every $R>0$,

$$
\begin{gather*}
\rho_{R}=\inf _{\mathbb{R}^{+}} g_{R} \tag{9}\\
g_{R}: s \in \mathbb{R}_{+}^{*} \mapsto \frac{(R+s)^{2 n}}{s^{2 n}} e^{\pi(R+s)^{2}}, \tag{10}
\end{gather*}
$$

so that

$$
\begin{equation*}
e^{\pi R^{2}} \leqslant \rho_{R} \leqslant 4^{n} e^{4 \pi R^{2}} \tag{11}
\end{equation*}
$$

Now, let Σ be a closed submanifold of codimension k of \mathbb{R}^{n}, not necessarily connected. We denote by \mathcal{I}_{Σ} the set of regular pairs (U, P) given by Definition 2.2.1, such that the vanishing locus of P in U contains a subset isotopic to Σ in \mathbb{R}^{n}. It follows from Nash's Theorem [22] that \mathcal{I}_{Σ} is non empty. We then set

$$
\begin{equation*}
c_{\Sigma}=\sup _{(U, P) \in \mathcal{I}_{\Sigma}}\left(\frac{m_{\tau_{(U, P)}}}{2^{n} \operatorname{Vol}\left(B\left(R_{(U, P)}\right)\right)}\right), \tag{12}
\end{equation*}
$$

where $\operatorname{Vol}\left(B\left(R_{(U, P)}\right)\right)$ denotes the volume of the Euclidean ball of radius $R_{(U, P)}$ in \mathbb{R}^{n}, and where, for every $\tau>0$,

$$
\begin{equation*}
m_{\tau}=\sup _{[\sqrt{\tau},+\infty[} f_{\tau}, \tag{13}
\end{equation*}
$$

with $f_{\tau}: a \in\left[\sqrt{\tau},+\infty\left[\mapsto \frac{1}{\sqrt{\pi}}\left(1-\frac{\tau}{a^{2}}\right) \int_{a}^{+\infty} e^{-t^{2}} d t\right.\right.$. For large values of m_{τ}, as the ones which appear in §2.6, the estimate

$$
\begin{equation*}
c_{\Sigma} \geqslant e^{-2 \tau_{(U, P)}} \tag{14}
\end{equation*}
$$

holds, compare (10) of [14].

2.3 Hörmander sections

Our key tool to prove Theorems 1.1.1 and 1.2.1 has been developped by L. Hörmander. We introduce in this $\S 2.3$ the material we need. For every positive d and every $\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$, we set

$$
\|\sigma\|_{L^{2}\left(h_{L}\right)}^{2}=\int_{X}\|\sigma\|_{h_{E, d}}^{2} d V_{h_{L}}
$$

where $d V_{h_{L}}=\omega^{n} / \int_{X} \omega^{n}$, compare (6). Let us choose a field of h_{L}-trivializations of L on $\mathbb{R} X$ given by Definition 3.1.2 of [14]. It provides in particular, for every $x \in \mathbb{R} X$, a local holomorphic chart $\psi_{x}:\left(W_{x}, x\right) \subset X \rightarrow\left(V_{x}, 0\right) \subset \mathbb{C}^{n}$ isometric at x, and a non-vanishing holomorphic section e of L defined over W_{x} such that $\phi=-\log h_{L}(e, e)$ vanishes at x and is positive elsewhere. Moreover, there exist positive constants α_{1}, α_{2} such that

$$
\begin{equation*}
\forall y \in V_{x}, \alpha_{1}|y|^{3} \leqslant \phi \circ \psi_{x}^{-1}(y)-\pi|y|^{2} \leqslant \alpha_{2}|y|^{3} . \tag{15}
\end{equation*}
$$

Restricting W_{x} if necessary, we choose a holomophic trivialization $\left(e_{1}, \cdots, e_{k}\right)$ of $E_{\mid W_{x}}$ which is orthonormal at x. This provides a trivialization $\left(e_{1} \otimes e^{d}, \cdots, e_{k} \otimes e^{d}\right)$ of $E \otimes L_{\mid W_{x}}^{d}$. In this trivialization, the restriction of σ to W_{x} writes

$$
\begin{equation*}
\sigma=\sum_{j=1}^{k} f_{\sigma}^{j} e_{j} \otimes e^{d} \tag{16}
\end{equation*}
$$

for some holomorphic functions $f_{\sigma}^{j}: W_{x} \rightarrow \mathbb{C}$, We write $f_{\sigma}=\left(f_{\sigma}^{1}, \cdots, f_{\sigma}^{k}\right)$ and we set

$$
\begin{equation*}
|\sigma|=\left|f_{\sigma}\right|, \tag{17}
\end{equation*}
$$

so that on $W_{x},\|\sigma\|_{h_{E, d}}^{2}=\left\|\sum_{j=1}^{k} f_{\sigma}^{k} e_{j}\right\|_{h_{E}}^{2} e^{-d \phi}$ and $\|\sigma(x)\|_{h_{E, d}}^{2}=|\sigma(x)|^{2}$. For every $z \in W_{x}$, we define

$$
\begin{align*}
\left\|d_{\mid z} \sigma\right\|_{2} & =\left\|d_{\mid y}\left(f_{\sigma} \circ \psi_{x}^{-1}\right)\right\|_{2}, \tag{18}\\
\left\|d_{\mid z} \sigma\right\| & =\left\|d_{\mid y}\left(f_{\sigma} \circ \psi_{x}^{-1}\right)\right\|, \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
\left(d_{\mid z} \sigma\right)^{*}=\left(d_{\mid y}\left(f_{\sigma} \circ \psi_{x}^{-1}\right)\right)^{*}, \tag{20}
\end{equation*}
$$

where $y=\psi_{x}(z)$. Finally, we denote, for every small enough $r>0$, by $B(x, r) \subset W_{x}$ the ball centered at x and of radius r for the flat metric of V_{x} pulled back by ψ_{x}, so that

$$
\begin{equation*}
B(x, r)=\psi_{x}^{-1}(B(0, r)) . \tag{21}
\end{equation*}
$$

Proposition 2.3.1 Let X be a smooth real projective manifold of dimension n, $\left(L, h_{L}\right)$ be a real holomorphic Hermitian line bundle of positive curvature over X and $\left(E, h_{E}\right)$ be a rank k real holomorphic Hermitian vector bundle, with $1 \leqslant k \leqslant n$. We choose a field of h_{L}-trivializations on $\mathbb{R} X$. Then, for every regular pair (U, P), every large enough integer d, every x in $\mathbb{R} X$ and every local trivialization of E orthonormal at x, there exist $\sigma_{(U, P)} \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ and an open subset U_{d} of $B\left(x, \frac{R_{(U, P)}}{\sqrt{d}}\right) \cap \mathbb{R} X$ such that

1. $\left\|\sigma_{(U, P)}\right\|_{L^{2}\left(h_{L}\right)}$ be equivalent to $\frac{\|P\|_{L^{2}}}{\sqrt{\delta_{L}}}$ as d grows to infinity, where $\|P\|_{L^{2}}$ is defined by (7) and $\delta_{L}=\int_{X} \omega^{n}$,
2. $\left(U_{d}, \sigma_{(U, P)}^{-1}(0) \cap U_{d}\right)$ be diffeomorphic to $\left(U, P^{-1}(0) \cap U\right) \subset \mathbb{R}^{n}$,
3. for every $(\delta, \epsilon) \in \mathcal{T}_{(U, P)}$ given by Definition 2.2.2, there exists a compact subset $K_{d} \subset U_{d}$ such that

$$
\inf _{U_{d} \backslash K_{d}}\left|\sigma_{(U, P)}\right|>\frac{\delta}{2} \sqrt{d}^{n}
$$

while for every y in U_{d},

$$
\begin{equation*}
\left|\sigma_{(U, P)}(y)\right|<\frac{\delta}{2} \sqrt{d}^{n} \Rightarrow \forall w \in \mathbb{R}^{k},\left|\left(d_{\mid y} \sigma_{(U, P)}\right) *(w)\right| \geqslant \frac{\epsilon}{2} \sqrt{d}^{n+1}|w| . \tag{22}
\end{equation*}
$$

Proof. We proceed as in the proof of Proposition 3.1.4 of [14]. Let (U, P) be a regular pair, $x \in \mathbb{R} X$ and d large enough. We set $U_{d}=\psi_{x}^{-1}\left(\frac{1}{\sqrt{d}} U\right) \subset B\left(x, \frac{R_{(U, P)}}{\sqrt{d}}\right)$ and $K_{d}=\psi_{x}^{-1}\left(\frac{1}{\sqrt{d}} K\right)$. Let $\chi: \mathbb{C}^{n} \rightarrow[0,1]$ be a smooth function with compact support in $B\left(0, R_{(U, P)}\right)$, which equals one in a neighbourhood of the origin. Then, let σ be the global smooth section of $E \otimes L^{d}$ defined by $\sigma_{\mid X \backslash W_{x}}=0$ and

$$
\sigma_{\mid W_{x}}=\left(\chi \circ \psi_{x}\right)\left(\sum_{j=1}^{k} P_{j}\left(\sqrt{d} \psi_{x}\right) e_{j} \otimes e^{d}\right),
$$

where $P=\left(P_{1}, \cdots, P_{k}\right)$. From the L^{2}-estimates of Hörmander, see [15] or [19], there exists a global section τ of $E \otimes L^{d}$ such that $\bar{\partial} \tau=\bar{\partial} \sigma$ and $\|\tau\|_{L^{2}\left(h_{E, d}\right)} \leqslant\|\bar{\partial} \sigma\|_{L^{2}\left(h_{E, d}\right)}$ for d large enough. This section τ can be chosen orthogonal to holomorphic sections and is then unique, in particular real. Moreover, there exist positive constants c_{1} and c_{2}, which do not depend on x, such that $\|\tau\|_{L^{2}\left(h_{E, d}\right)} \leqslant c_{1} e^{-c_{2} d}$ and $\sup _{U_{d}}\left(|\tau|+\|\tau\|_{2}\right) \leqslant$ $c_{2} e^{-c_{2} d}$, see Lemma 3.1.5 of [14]. We then set $\sigma_{(U, P)}=\sqrt{d}^{n}(\sigma-\tau)$. It has the desired properties as can be checked along the same lines as in the proof of Proposition 3.1.4 of [14] and thanks to Lemma 2.3.2.

Lemma 2.3.2 Let U be an open subset of $\mathbb{R}^{n}, 1 \leqslant k \leqslant n, f: U \rightarrow \mathbb{R}^{k}$ be a function of class C^{1} and $(\delta, \epsilon) \in\left(\mathbb{R}_{+}^{*}\right)^{2}$ be such that

1. there exists a compact subset K of U such that $\inf _{U \backslash K}|f|>\delta$,
2. for every y in $U,|f(y)|<\delta \Rightarrow \forall w \in \mathbb{R}^{k}$, $\left|\left(d_{\mid y} f\right)^{*}(w)\right| \geqslant \epsilon|w|$.

Then, for every function $g: U \rightarrow \mathbb{R}^{k}$ of class C^{1} such that $\sup _{U}|g|<\delta$ and $\sup _{U}\|d g\|<\epsilon$, zero is a regular value of $f+g$ and $(f+g)^{-1}(0)$ is compact and isotopic to $f^{-1}(0)$ in U.

Proof. The proof is analogous to the one of Lemma 3.1.6 of [14], since $\left\|(d g)^{*}\right\|=\|d g\|$.

The following Lemma 2.3.3 establishes the existence of peak sections for higher rank vector bundles.

Lemma 2.3.3 (compare Lemma 1.2 of [30]) Let X be a smooth real projective manifold of dimension $n,\left(L, h_{L}\right)$ be a real holomorphic Hermitian line bundle of positive curvature over X and $\left(E, h_{E}\right)$ be a rank k real holomorphic Hermitian vector
bundle, with $1 \leqslant k \leqslant n$. Let $x \in \mathbb{R} X,\left(p_{1}, \cdots, p_{n}\right) \in \mathbb{N}^{n}, i \in\{1, \cdots, k\}$ and $p^{\prime}>$ $p_{1}+\cdots+p_{n}$. There exists $d_{0} \in \mathbb{N}$ independent of x such that for every $d>d_{0}$, there exists $\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ with the property that $\|\sigma\|_{L^{2}\left(h_{L}\right)}=1$ and if $\left(y_{1}, \cdots, y_{n}\right)$ are local real holomorphic coordinates in the neighbourhood of x and $\left(e_{1}, \cdots e_{k}\right)$ is a local real holomorphic trivialization of E orthonormal at x, we can assume that in a neighbourhood of x,

$$
\begin{equation*}
\sigma\left(y_{1}, \cdots, y_{n}\right)=\lambda y_{1}^{p_{1}} \cdots y_{n}^{p_{n}} e_{i} \otimes e^{d}\left(1+O\left(d^{-2 p^{\prime}}\right)\right)+O\left(\lambda|y|^{2 p^{\prime}}\right) \tag{23}
\end{equation*}
$$

where $\lambda^{-2}=\int_{B\left(x, \frac{\log d}{\sqrt{d}}\right)}\left|y_{1}^{p_{1}} \cdots y_{n}^{p_{n}}\right|^{2}\left\|e^{d}\right\|_{h_{L}^{d}}^{2} d V_{h_{L}}$, with $d V_{h_{L}}=\omega^{n} / \int_{X} \omega^{n}$ and where e is a local trivialization of L whose potential $-\log h_{L}(e, e)$ reaches a local minimum at x with Hessian $\pi \omega(., i$.$) .$

Proof. The proof goes along the same lines as the one of Lemma 1.2 of [30]. Let η be a cut-off function on \mathbb{R} with $\eta=1$ in a neighbourhood of 0 , and

$$
\psi=\left(n+2 p^{\prime}\right) \eta\left(\frac{d\|z\|^{2}}{\log ^{2} d}\right) \log \left(\frac{d\|z\|^{2}}{\log ^{2} d}\right)
$$

in the coordinates z on X. Then, $i \partial \bar{\partial} \psi$ is bounded from below by $-C \omega$, where C is some uniform constant independent of d and x. Let $s \in C^{\infty}\left(X, E \otimes L^{d}\right)$ be the real section defined by

$$
s=\eta\left(\frac{d\|z\|^{2}}{\log ^{2} d}\right) y_{1}^{p_{1}} \cdots y_{n}^{p_{n}} e_{i} \otimes e^{d} .
$$

Then, from Theorem 5.1 of [6], for d large enough not depending on x, there exists a real section $u \in C^{\infty}\left(X, E \otimes L^{d}\right)$ such that $\bar{\partial} u=\bar{\partial} s$ and satisfying the Hörmander L^{2}-estimates

$$
\int_{X}\|u\|_{h_{E, d}}^{2} e^{-\psi} d V_{h_{L}} \leqslant \int_{X}\|\bar{\partial} s\|_{h_{E, d}}^{2} e^{-\psi} d V_{h_{L}} .
$$

The presence of the singular weight $e^{-\psi}$ forces the jets of u to vanish up to order $2 p^{\prime}$ at x. As in Lemma 1.2 of [30], we conclude that the real holomorphic section $\sigma=(s-u) /\|s-u\|_{L^{2}\left(h_{E, d}\right)}$ satisfies the required properties.
In this first section we will only need peak sections given by Lemma 2.3.3 with $\sum_{i=1}^{n} p_{i}=0$, whereas in the second one we will need those given with $\sum_{i=1}^{n} p_{i} \leqslant 2$.
Definition 2.3.4 For $i \in\{1, \cdots, k\}$, let σ_{0}^{i} be the section given by Lemma 2.3.3 with $p^{\prime}=3$ and $p_{1}=\cdots=p_{n}=0$. Likewise, for every $j \in\{1, \cdots, n\}$, let σ_{j}^{i} be a section given by (23) with $p^{\prime}=3, p_{j}=1$ and $p_{l}=0$ for $l \in\{1, \cdots, n\} \backslash\{j\}$. Finally, for every $1 \leqslant l \leqslant m \leqslant n$, let $\sigma_{l m}^{i}$ be a section given by (23) with $p^{\prime}=3, p_{j}=0$ for every $j \in\{1, \cdots, n\} \backslash\{l, m\}$ and $p_{l}=p_{m}=1$ if $l \neq m$, while $p_{l}=2$ otherwise.

The asymptotic values of the constants λ in (23) are given by Lemma 2.3.5 (compare Lemma 2.1 of [30]).

Lemma 2.3.5 For every $i \in\{1, \cdots, k\}$, the sections given by Definition 2.3.4 satisfy

$$
\begin{align*}
& \sigma_{0}^{i} / \sqrt{\delta_{L} d^{n}} \underset{d \rightarrow \infty}{\sim} e_{i} \otimes e^{d}+O\left(\|y\|^{6}\right), \tag{24}\\
& \forall j \in\{1, \cdots, n\}, \sigma_{j}^{i} / \sqrt{\pi \delta_{L} d^{n+1}} \underset{d \rightarrow \infty}{\sim} y_{j} e_{i} \otimes e^{d}+O\left(\|y\|^{6}\right), \tag{25}\\
& \forall l, m \in\{1, \cdots, n\}, l \neq m, \sigma_{l m}^{i} /\left(\pi \sqrt{\delta_{L} d^{n+2}}\right) \underset{d \rightarrow \infty}{\sim} y_{l} y_{m} e_{i} \otimes e^{d}+O\left(\|y\|^{6}\right), \tag{26}\\
& \text { and } \forall l \in\{1, \cdots, n\}, \sigma_{l l}^{i} /\left(\pi \sqrt{\delta_{L} d^{n+2}}\right) \underset{d \rightarrow \infty}{\sim} \frac{1}{\sqrt{2}} y_{l}^{2} e_{i} \otimes e^{d}+O\left(\|y\|^{6}\right) . \tag{27}
\end{align*}
$$

Moreover, these sections are asymptotically orthonormal as d grows to infinity, as follows from Lemma 2.3.6.

Lemma 2.3.6 (compare Lemma 3.1 of [30]) For every $x \in \mathbb{R} X$, the sections $\left(\sigma_{j}^{i}\right)_{\substack{1 \leqslant \leq \leqslant k \\ 0 \leq j \leqslant n}}$ and $\left(\sigma_{l m}^{i}\right)_{\substack{1 \leqslant i \leqslant k \\ 1 \leqslant 1 \leqslant m \leqslant n}}$ given by Definition 2.3.4 have L^{2}-norm equal to one and their pairwise scalar product are dominated by a $O\left(d^{-1}\right)$ which does not depend on x. Likewise, their scalar products with every section of $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ of L^{2}-norm equal to one and whose 2-jet at x vanishes is dominated by a $O\left(d^{-3 / 2}\right)$ which does not depend on x.

Proof. The proof goes along the same lines as the one of Lemma 3.1 of [30].
Lemma 2.3.7 Denote by v the density of $d V_{h_{L}}=\omega^{n} / \int_{X} \omega^{n}$ with respect to the volume form $d x$ chosen in (6), so that $d V_{h_{L}}=v(x) d x$. Then the sections given by Defintion 2.3.4 times $\sqrt{v(x)}$ are still asymptotically orthonormal for (6).

Proof. This is a direct consequence of Lemmas 2.3.3 and 2.3.6 and the asymptotic concentration of the support of the peak sections near x.

Remark 2.3.8 The complex analogues of Lemmas 2.3.3, 2.3.5 and 2.3.6 hold, compare [30].

2.4 Proof of Theorem 1.2.1

We first compute the expected local C^{1}-norm of sections.
Proposition 2.4.1 Let X be a smooth real projective manifold of dimension n, $\left(L, h_{L}\right)$ be a real holomorphic Hermitian line bundle of positive curvature over X and $\left(E, h_{E}\right)$ be a rank k real holomorphic Hermitian vector bundle, with $1 \leqslant k \leqslant n$. We equip $\mathbb{R} X$ with a field of h_{L}-trivializations, see §2.3. Then, for every positive R,

$$
\begin{aligned}
& \limsup _{d \rightarrow \infty} \sup _{x \in \mathbb{R} X} \frac{1}{d^{n}} E\left(\sup _{B\left(x, \frac{R}{\sqrt{d}}\right)} \frac{|\sigma|^{2}}{v(x)}\right) \leqslant 3 k \delta_{L} \rho_{R} \text { and } \\
& \limsup _{d \rightarrow \infty} \sup _{x \in \mathbb{R} X} \frac{1}{d^{n+1}} E\left(\sup _{B\left(x, \frac{R}{\sqrt{d}}\right)} \frac{\|d \sigma\|_{2}^{2}}{v(x)}\right) \leqslant 3 \pi n k \delta_{L} \rho_{R},
\end{aligned}
$$

where v is given by Lemma 2.3.7 and ρ_{R} is given by (9), see (17) and (18) for the definitions of $|\sigma|$ and $\|d \sigma\|_{2}$.

Proof. The proof goes along the same lines as the proof of Proposition 3.2.1 of [14]. We first establish from the mean value inequality that for every $x \in \mathbb{R} X, R>0$ and $s>0$,

$$
E\left(\sup _{B\left(x, \frac{R}{\sqrt{d}}\right)}|\sigma|^{2}\right) \leqslant \frac{1}{\operatorname{Vol}\left(B\left(\frac{s}{\sqrt{d}}\right)\right)} \int_{B\left(x, \frac{R+s}{\sqrt{d}}\right)} E\left(|\sigma|^{2}\right) \psi_{x}^{*} d y
$$

for d large enough not depending on x. Then, for every $z \in B\left(x, \frac{R+s}{\sqrt{d}}\right) \cap \mathbb{R} X$, we write $\sigma=\sum_{i=1}^{k} a_{i} \sigma_{0}^{i}+\tau$, where $\tau \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ vanishes at z and $\left(\sigma_{0}^{i}\right)_{i=1, \cdots k}$ are the peak sections at z given by Definition 2.3.4. In particular, by Lemma 2.3.5, at the point z, for every $i=1, \cdots, k,\left\|\sigma_{0}^{i}\right\|_{h_{E, d}} \underset{d \rightarrow \infty}{\sim} \sqrt{\delta_{L} d^{n}}$. Moreover, since $\left(e_{1}, \cdots, e_{n}\right)$ is orthonormal at x,

$$
\begin{aligned}
\left|\sigma_{0}^{i}(z)\right|^{2} & =\left\|\sigma_{0}^{i}(z)\right\|_{h_{E, d}}^{2}\left(1+O(|z-x|) e^{d \phi(z)}\right. \\
& \leqslant \delta_{L} d^{n} e^{\pi(R+s)^{2}}(1+o(1))
\end{aligned}
$$

from the inequalities (15), where the $o\left(d^{n}\right)$ can be chosen not to depend on $x \in \mathbb{R} X$. Suppose that $d y=d V_{h_{L}}$. Then, by Lemma 2.3.6, the peak sections are asymptotically orthogonal to each other for the scalar product defined by (6), and asymptotically orthogonal to the space of sections τ vanishing at x. We deduce that

$$
\begin{aligned}
E\left(|\sigma(z)|^{2}\right) & =E\left(\left|\sum_{i=1}^{k} a_{i} \sigma_{0}^{i}\right|^{2}\right)(1+o(1)) \\
& =\left(\sum_{i=1}^{k}\left|\sigma_{0}^{i}(z)\right|^{2}\right) \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} a^{2} e^{-a^{2}} d a(1+o(1)) \\
& \leqslant \frac{1}{2} k \delta_{L} d^{n} e^{\pi(R+s)^{2}}(1+o(1))
\end{aligned}
$$

When $z \notin B\left(x, \frac{R+s}{\sqrt{d}}\right) \cap \mathbb{R} X$, the space of real sections vanishing at z gets of real codimension $2 k$ in $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$. Let $\left\langle\theta_{1}^{i}, \theta_{2}^{i}, i \in\{1, \cdots, k\}\right\rangle$ be an orthonormal basis of its orthogonal complement. From Remark 2.3.7, for every $i \in\{1, \cdots, k\}$, $j \in\{1,2\}$,

$$
\limsup _{d \rightarrow \infty} \frac{1}{d^{n}}\left|\theta_{j}^{i}(z)\right|^{2} \leqslant \delta_{L} e^{\pi(R+s)^{2}}
$$

an upper bound which does not depend on z. We deduce that

$$
\begin{aligned}
E\left(|\sigma(z)|^{2}\right) & =\int_{\mathbb{R}^{2 k}} \left\lvert\, \sum_{i=1}^{k}\left(a_{01}^{i} \theta_{1}^{i}(z)+\left.a_{02}^{i} \theta_{2}^{i}(z)\right|^{2} e^{-\sum_{i=1}^{k}\left(a_{01}^{i}\right)^{2}+\left(a_{02}^{i}\right)^{2}} \frac{1}{\pi^{k}} \Pi_{i=1}^{k} d a_{01}^{i} d a_{02}^{i}\right.\right. \\
& \leqslant \delta_{L} d^{n} e^{\pi(R+s)^{2}}(1+o(1)) \sum_{i=1}^{k} \int_{\mathbb{R}^{2}}\left(a_{01}^{i}\right)^{2}+\left(a_{02}^{i}\right)^{2}+2\left|a_{01}^{i}\right|\left|a_{02}^{i}\right| \frac{1}{\pi} d a_{01}^{i} d a_{02}^{i} \\
& \leqslant 3 \delta_{L} d^{n} e^{\pi(R+s)^{2}}(1+o(1)) .
\end{aligned}
$$

We deduce the first part of Proposition 2.4.1 by taking the supremum over $\mathbb{R} X$, choosing s which minimize $g_{R_{(U, P)}}$ and taking the lim sup as d grows to infinity.

In general, the Bergman section at x for the L^{2}-product (6) associated to the volume form $d x$ is equivalent to the Bergman section σ_{0} at x for $d V_{h}$ times $\sqrt{v(x)}$,
see Lemma 2.3.7. The same holds true for the σ_{j} 's, and the result follows by replacing δ_{L} with $v(x) \delta_{L}$.

The proof of the second assertion goes along the same lines, see the proof of Proposition 3.2.1 of [14].
As in [14], we then compute the probability of presence of closed affine real algebraic submanifolds, inspired by an approach of Nazarov and Sodin [23], see also [18]. Let (U, P) be a regular pair given by Definition 2.2.1 and $\Sigma=P^{-1}(0) \subset U$. Then, for every $x \in \mathbb{R} X$, we set $B_{d}=B\left(x, \frac{R_{(U, P)}}{\sqrt{d}}\right) \cap \mathbb{R} X$, see (21), and denote by $\operatorname{Prob}_{x, \Sigma}\left(E \otimes L^{d}\right)$ the probability that $\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ has the property that $\sigma^{-1}(0) \cap B_{d}$ contains a closed submanifold Σ^{\prime} such that the pair $\left(B_{d}, \Sigma^{\prime}\right)$ be diffeomorphic to $\left(\mathbb{R}^{n}, \Sigma\right)$. That is,
$\operatorname{Prob}_{x, \Sigma}\left(E \otimes L^{d}\right)=\mu_{\mathbb{R}}\left\{\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \mid\left(\sigma^{-1}(0) \cap B_{d}\right) \supset \Sigma^{\prime},\left(B_{d}, \Sigma^{\prime}\right) \sim\left(\mathbb{R}^{n}, \Sigma\right)\right\}$.
We then set $\operatorname{Prob}_{\Sigma}\left(E \otimes L^{d}\right)=\inf _{x \in \mathbb{R} X} \operatorname{Prob}_{x, \Sigma}\left(E \otimes L^{d}\right)$.
Proposition 2.4.2 Let X be a smooth real projective manifold of dimension n, $\left(L, h_{L}\right)$ be a real holomorphic Hermitian line bundle of positive curvature over X and $\left(E, h_{E}\right)$ be a rank k real holomorphic Hermitian vector bundle, with $1 \leqslant k \leqslant n$. Let (U, P) be a regular pair given by Definition 2.2.1 and $\Sigma=P^{-1}(0) \subset U$. Then,

$$
\liminf _{d \rightarrow \infty} \operatorname{Prob}_{\Sigma}\left(E \otimes L^{d}\right) \geqslant m_{\tau_{(U, P)}}
$$

see (13).
Proof. The proof is the same as the one of Proposition 3.3.1 of [14] and is not reproduced here.
The proof of Theorem 1.2.1 (resp. Corollary 2.1.2) then just goes along the same lines as the one of Theorem 1.0.2 (resp. Corollary 1.0.3) of [14].

2.5 Proof of Theorem 2.1.1

Let (U, P) be a regular pair given by Definition 2.2.1. For every $d>0$, let Λ_{d} be a maximal subset of $\mathbb{R} X$ with the property that two distinct points of Λ_{d} are at distance greater than $\frac{2 R_{(U, P)}}{\sqrt{d}}$. The balls centered at points of Λ_{d} and of radius $\frac{R_{(U, P)}}{\sqrt{d}}$ are disjoints, whereas the ones of radius $\frac{2 R_{(U, P)}}{\sqrt{d}}$ cover $\mathbb{R} X$. Note that if we use the local flat metric given by a trivial h_{L}-trivialization, then the associated lattice has asymptotically the same number of balls than Λ_{d} as d grows to infinity, so we can suppose from now on that the balls are defined for this local metric. For every $\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$, denote by $N_{\Sigma}\left(\Lambda_{d}, \sigma\right)$ the number of $x \in \Lambda_{d}$ such that the ball $B_{d}=B\left(x, \frac{R_{(U, P)}}{\sqrt{d}}\right) \cap \mathbb{R} X$ contains a codimension k submanifold Σ^{\prime} with $\Sigma^{\prime} \subset \sigma^{-1}(0)$ and $\left(B_{d}, \Sigma^{\prime}\right)$ diffeomorphic to $\left(\mathbb{R}^{n}, \Sigma\right)$. By definition of $N_{\Sigma}(\sigma), N_{\Sigma}\left(\Lambda_{d}, \sigma\right) \leqslant N_{\Sigma}(\sigma)$,
see $\S 1.2$, while from Proposition 2.4.2, for every $0<\epsilon<1$,

$$
\begin{aligned}
& \left|\Lambda_{d}\right| m_{\tau_{(U, P)}} \leqslant \sum_{x \in \Lambda_{d}} \operatorname{Prob}_{x, \Sigma}\left(E \otimes L^{d}\right) \\
& \leqslant \sum_{j=1}^{\left|\Lambda_{d}\right|} j \mu_{\mathbb{R}}\left\{\sigma \mid N_{\Sigma}\left(\Lambda_{d}, \sigma\right)=j\right\} \\
& \leqslant \epsilon m_{\tau_{(U, P)} \mid}\left|\Lambda_{d}\right| \mu_{\mathbb{R}}\left\{\sigma\left|N_{\Sigma}\left(\Lambda_{d}, \sigma\right) \leqslant \epsilon m_{\tau_{(U, P)}}\right| \Lambda_{d} \mid\right\} \\
& +\left|\Lambda_{d}\right| \mu_{\mathbb{R}}\left\{\sigma\left|N_{\Sigma}\left(\Lambda_{d}, \sigma\right) \geqslant \epsilon m_{\tau_{(U, P)}}\right| \Lambda_{d} \mid\right\} .
\end{aligned}
$$

We deduce that

$$
\begin{equation*}
(1-\epsilon) m_{\tau_{(U, P)}} \leqslant \mu_{\mathbb{R}}\left\{\sigma\left|N_{\Sigma}(\sigma) \geqslant \epsilon m_{\tau_{(U, P)}}\right| \Lambda_{d} \mid\right\} \tag{28}
\end{equation*}
$$

and the result by choosing a sequence $\left(U_{p}, P_{p}\right)_{p} \in \mathcal{I}_{\Sigma}$ such that

$$
\lim _{p \rightarrow \infty} m_{\tau_{\left(U_{p}, P_{p}\right)}}\left|\Lambda_{d}\right|=c_{\Sigma} \operatorname{Vol}_{h_{L}}(\mathbb{R} X) \sqrt{d}^{n}
$$

see (12).

2.6 Proof of Corollary 1.2.2

In this paragraph, for every positive integer p, S^{p} denotes the unit sphere in \mathbb{R}^{p+1}. Corollary 1.2.2 is a consequence of Theorem 1.2.1 and the following Propositions 2.6.1 and 2.6.3.

Proposition 2.6.1 For every $1 \leqslant k \leqslant n, c_{S^{n-k}} \geqslant \exp \left(-e^{54+5 n}\right)$.
Recall the following.
Lemma 2.6.2 (Lemma 2.2.1 of [14]) If $P=\sum_{\left(i_{1}, \cdots, i_{n}\right) \in \mathbb{N}^{n}} a_{i_{1}, \cdots, i_{n}} z_{1}^{i_{1}} \cdots z_{n}^{i_{n}} \in \mathbb{R}\left[z_{1}, \cdots, z_{n}\right]$, then

$$
\|P\|_{L^{2}}^{2}=\int_{\mathbb{C}^{n}}|P(z)|^{2} e^{-\pi|z|^{2}} d z=\sum_{\left(i_{1}, \cdots, i_{n}\right) \in \mathbb{N}^{n}}\left|a_{i_{1}, \cdots, i_{n}}\right|^{2} \frac{i_{1}!\cdots i_{n}!}{\pi^{i_{1}+\cdots+i_{n}}} .
$$

Proof of Proposition 2.6.1. For every $n>0$, we set $P_{k}\left(x_{1}, \cdots, x_{n}\right)=$ $\sum_{j=k}^{n} x_{j}^{2}-1$. For every $x \in \mathbb{R}^{n}$ and $\delta>0$,

$$
\left|P_{k}(x)\right|<\delta \Leftrightarrow 1-\delta<\sum_{i=k}^{n} x_{i}^{2}<1+\delta \Rightarrow\left\|d_{\mid x} P_{k}\right\|_{2}^{2}=4 \sum_{i=k}^{n} x_{i}^{2}>4(1-\delta) .
$$

Moreover from Lemma 2.6.2,

$$
\left\|P_{k}\right\|_{L^{2}}^{2}=1+\frac{2(n-k+1)}{\pi^{2}} \leqslant n-k+2 .
$$

Now set $P_{S}=\left(P_{1}, \cdots, P_{k}\right)$ with $P_{j}(x)=x_{j}$ for $1 \leqslant j \leqslant k-1$, so that

$$
\left\|P_{S}\right\|_{L_{2}}^{2} \leqslant(k-1) / \pi+(n-k+2) \leqslant n+1 \leqslant 2 n
$$

Since for every $w=\left(w_{1}, \cdots, w_{k}\right) \in \mathbb{R}^{k}$ and every $x \in \mathbb{R}^{n}$,

$$
\left|d_{\mid x} P_{S}^{*}(w)\right|^{2}=\sum_{i=1}^{k-1} w_{i}^{2}+w_{k}^{2}\left\|d_{\mid x} P_{k}\right\|_{2}^{2}
$$

we get that $\left\|d_{\mid x} P_{S}^{*}\right\|^{2} \geqslant \min (1,4(1-\delta))$ if $\left|P_{k}(x)\right|<\delta$. Choose

$$
U_{S}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{j=1}^{n} x_{j}^{2}<4\right\} .
$$

Then if $0<\delta<1$,

$$
K_{\delta}=\left\{x \in U_{S} \mid 1-\delta \leqslant \sum_{i=k}^{n} x_{i}^{2} \leqslant 1+\delta \text { and } \sum_{i=1}^{k-1} x_{k}^{2} \leqslant 1-\frac{1}{2}(1+\delta)^{2}\right\}
$$

is compact in U_{S} and taking $R_{\left(U_{S}, P_{S}\right)}^{2}=4$, we see that the pair $\left(U_{S}, P_{S}\right)$ is regular in the sense of Definition 2.2.1. The submanifold $P_{S}^{-1}(0) \subset U_{S}$ is isotopic in \mathbb{R}^{n} to the unit sphere S^{n-k}. We deduce that $(3 / 4,1) \in \mathcal{T}_{\left(U_{S}, P_{S}\right)}$. From (8) and (11) we deduce

$$
\tau_{\left(U_{S}, P_{S}\right)} \leqslant 12 k 4^{n} e^{16 \pi} 2 n(2+\pi n) \leqslant e^{55+5 n}
$$

The estimate $c_{S^{n-1}} \geqslant \exp \left(-e^{56+5 n}\right)$ follows then from (14).
Proposition 2.6.3 For every $1 \leqslant k \leqslant n$ and every $0 \leqslant i \leqslant n-k, c_{S^{i} \times S^{n-i-k}} \geqslant$ $\exp \left(-e^{82+5 n}\right)$.

Proof. For every $1 \leqslant k \leqslant n$ and every $0 \leqslant i \leqslant n-k$, we set

$$
Q_{k}\left(\left(x_{1}, \cdots, x_{i+1}\right),\left(y_{1}, \cdots, y_{n-i-1}\right)\right)=\left(|x|^{2}-2\right)^{2}+\sum_{j=1}^{n-k-i} y_{j}^{2}-1
$$

For every $(x, y) \in \mathbb{R}^{i+1} \times \mathbb{R}^{n-i-1}$ and $0<\delta<1 / 2$,

$$
\begin{aligned}
\left|Q_{k}(x, y)\right|<\delta & \Leftrightarrow 1-\delta<\left(|x|^{2}-2\right)^{2}+\sum_{j=1}^{n-k-i} y_{j}^{2}<1+\delta \\
& \Rightarrow\left\|d_{\mid(x, y)} Q_{k}\right\|_{2}^{2}=4 \sum_{j=1}^{n-k-i} y_{j}^{2}+16|x|^{2}\left(|x|^{2}-2\right)^{2}
\end{aligned}
$$

with $|x|^{2}>2-\sqrt{1+\delta}>1 / 2$. Thus $\left\|d_{\mid(x, y)} Q_{k}\right\|_{2}^{2}>4(1-\delta)$, compare Lemma 2.3.4 of [14]. Moreover from Lemma 2.6.2, $\left\|Q_{k}\right\|_{L^{2}}^{2} \leqslant 13 n^{2}$, compare §2.3.2 of [14]. Now set $Q=\left(Q_{1}, \cdots, Q_{k}\right)$ with $Q_{j}(x, y)=y_{n-i-j}$ for $1 \leqslant j \leqslant k-1$, so that

$$
\|Q\|_{L_{2}}^{2} \leqslant(k-1) / \pi+13 n^{2} \leqslant 13(n+1)^{2}
$$

For every $w=\left(w_{1}, \cdots, w_{k}\right) \in \mathbb{R}^{k}$ and every $(x, y) \in \mathbb{R}^{i+1} \times \mathbb{R}^{n-i-1}$,

$$
\begin{aligned}
\left|d_{\mid(x, y)} Q^{*}(w)\right|^{2} & =\sum_{i=1}^{k-1} w_{i}^{2}+w_{k}^{2}\left\|d_{\mid(x, y)} Q_{k}\right\|_{2}^{2} \\
& >\min (1,4(1-\delta))|w|^{2}
\end{aligned}
$$

if $\left|Q_{k}(x, y)\right| \leqslant \delta<1 / 2$. We choose

$$
\begin{gathered}
U=\left\{(x, y) \in \mathbb{R}^{i+1} \times\left.\mathbb{R}^{n-i-1}| | x\right|^{2}+|y|^{2}<6\right\}, \\
K_{\delta}=\left\{(x, y) \in U \mid 1-\delta \leqslant\left(|x|^{2}-2\right)^{2}+\sum_{j=1}^{n-k-i} y_{j}^{2} \leqslant 1+\delta \text { and } \sum_{j=1}^{k-1} y_{n-i-j}^{2} \leqslant 1-\delta\right\},
\end{gathered}
$$

and $R_{(U, Q)}^{2}=6$. The pair (U, Q) is regular in the sense of Definition 2.2.1 and $Q^{-1}(0) \subset U$ is isotopic in \mathbb{R}^{n} to the product $S^{i} \times S^{n-i-k}$ of unit spheres in \mathbb{R}^{i+1} and $\mathbb{R}^{n-i-k+1}$. We deduce that for every positive $\epsilon,(1 / 2-\epsilon, 1) \in \mathcal{T}_{(U, Q)}$ and from (8) and (11) that

$$
\tau_{(U, Q)} \leqslant 12 k 4^{n} e^{24 \pi} 13(n+1)^{2}(4+\pi n) \leqslant e^{83+6 n}
$$

The estimate $c_{S^{i} \times S^{n-i-k}} \geqslant \exp \left(-e^{84+6 n}\right)$ follows then from (14).

3 Upper estimates for the expected Betti numbers

3.1 Statement of the results

For every $1 \leqslant k \leqslant n$, we denote by $\operatorname{Gr}(k-1, n-1)$ the Grassmann manifold of $(k-1)$-dimensional linear subspaces of \mathbb{R}^{n-1}. The tangent space of $\operatorname{Gr}(k-1, n-1)$ at every $H \in \operatorname{Gr}(k-1, n-1)$ is canonically isomorphic to the space of linear maps $L\left(H, H^{\perp}\right)$ from H to its orthogonal H^{\perp} and we equip it with the norm

$$
A \in L\left(H, H^{\perp}\right) \mapsto\|A\|_{2}=\sqrt{\operatorname{Tr}\left(A^{*} A\right)} \in \mathbb{R}^{+}
$$

The total volume of $\operatorname{Gr}(k-1, n-1)$ for this Riemannian metric is denoted by $\operatorname{Vol}(\operatorname{Gr}(k-1, n-1))$ and we set

$$
V_{k-1, n-1}=\frac{1}{\sqrt{\pi}^{(k-1)(n-k)}} \operatorname{Vol}(\operatorname{Gr}(k-1, n-1))
$$

its volume for the rescaled metric $A \in L\left(H, H^{\perp}\right) \mapsto \frac{1}{\sqrt{\pi}}\|A\|_{2}$. Likewise, we equip $M_{k-1}(\mathbb{R})$ with the Euclidean norm $A \in M_{k-1}(\mathbb{R}) \mapsto\|A\|_{2}=\sqrt{\operatorname{Tr}\left(A^{*} A\right)}$ and set $d \mu(A)=\frac{1}{\pi^{k-1}} e^{-\|A\|_{2}^{2}} d A$ the associated Gaussian measure on $M_{k-1}(\mathbb{R})$. Then, we set

$$
E_{k-1}\left(|\operatorname{det}|^{n-k+2}\right)=\int_{M_{k-1(\mathbb{R})}}|\operatorname{det} A|^{n-k+2} d \mu(A) .
$$

Remark 3.1.1 1. The orthogonal group $O_{n-1}(\mathbb{R})$ acts transitively on the Grassmannian $\operatorname{Gr}(k-1, n-1)$ with fixators isomorphic to $O_{k-1}(\mathbb{R}) \times O_{n-k}(\mathbb{R})$. We deduce that

$$
\begin{aligned}
\operatorname{Vol}(\operatorname{Gr}(k-1, n-1)) & =\operatorname{Vol}\left(O_{n-1}(\mathbb{R})\right) /\left(\operatorname{Vol}\left(O_{k-1}(\mathbb{R})\right) \times \operatorname{Vol}\left(O_{n-k}(\mathbb{R})\right)\right) \\
& =\binom{n-1}{k-1} \sqrt{\pi}{ }^{(k-1)(n-k)} \frac{\prod_{j=1}^{k-1} \Gamma(1+j / 2)}{\prod_{j=n-k+1}^{n-1} \Gamma(1+j / 2)},
\end{aligned}
$$

where Γ denotes the Gamma function of Euler, see for example Lemma 3.1.4 of [12].
2. From formula (15.4.12) of [21] follows that

$$
E_{k-1}\left(|\operatorname{det}|^{n-k+2}\right)=\prod_{j=1}^{k-1} \frac{\Gamma\left(\frac{n-k+2+j}{2}\right)}{\Gamma\left(\frac{j}{2}\right)},
$$

so that $V_{k-1, n-1} E_{k-1}\left(|\operatorname{det}|^{n-k+2}\right)=\frac{(n-1)!}{(n-k)!2^{k-1}}$.
We now keep the framework of $\S 2.1$. Let us denote, for every $i \in\{0, \cdots, n-k\}$, by $b_{i}\left(\mathbb{R} C_{\sigma}, \mathbb{R}\right)=\operatorname{dim} H_{i}\left(\mathbb{R} C_{\sigma}, \mathbb{R}\right)$ the i-th Betti number of $\mathbb{R} C_{\sigma}$ and by

$$
m_{i}\left(\mathbb{R} C_{\sigma}\right)=\inf _{f \text { Morse on } \mathbb{R} C_{\sigma}}\left|\operatorname{Crit}_{i}(f)\right|
$$

its i-th Morse number, where $\left|\operatorname{Crit}_{i}(f)\right|$ denotes the number of critical points of index i of f. We then denote by

$$
E\left(b_{i}\right)=\int_{\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{d}} b_{i}\left(\mathbb{R} C_{\sigma}, \mathbb{R}\right) d \mu_{\mathbb{R}}(\sigma)
$$

and

$$
E\left(m_{i}\right)=\int_{\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{d}} m_{i}\left(\mathbb{R} C_{\sigma}\right) d \mu_{\mathbb{R}}(\sigma)
$$

their expected values. The aim of $\S 3$ is to prove the following Theorem 3.1.2, see (1) for the definition of $e_{\mathbb{R}}(i, n-k-i)$.

Theorem 3.1.2 Let X be a smooth real projective manifold of dimension $n,\left(L, h_{L}\right)$ be a real holomorphic Hermitian line bundle of positive curvature over X and $\left(E, h_{E}\right)$ be a rank k real holomorphic Hermitian vector bundle, with $1 \leqslant k \leqslant n-1$. Then, for every $0 \leqslant i \leqslant n-k$,

$$
\limsup _{d \rightarrow \infty} \frac{1}{\sqrt{d}^{n}} E\left(m_{i}\right) \leqslant \frac{1}{\Gamma\left(\frac{k}{2}\right)} V_{k-1, n-1} E_{k-1}\left(|\operatorname{det}|^{n-k+2}\right) e_{\mathbb{R}}(i, n-k-i) V o l_{h_{L}}(\mathbb{R} X)
$$

Note that the case $k=n$ is covered by Theorems 1.1.1 and 3.1.3. When $k=1$ and $E=\mathcal{O}_{X}, \operatorname{Vol}_{F S}\left(\mathbb{R} P^{k}\right)=\sqrt{\pi}$, see Remark 2.4.4 of [12], so that Theorem 3.1.2 reduces to Theorem 1.0.1 of [12] in this case. The proof of Theorem 3.1.2 actually goes along the same lines as the one of Theorem 1.0.1 of [12]. The strategy goes as follows. We fix a Morse function $p: \mathbb{R} X \rightarrow \mathbb{R}$. Then, almost surely on $\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$, the restriction of p to $\mathbb{R} C_{\sigma}$ is itself a Morse function. For $i \in\{0, \cdots, n-k\}$, we denote by $\operatorname{Crit}_{i}\left(p_{\mid \mathbb{R} C_{\sigma}}\right)$ the set of critical points of index i of this restriction and set

$$
\nu_{i}\left(\mathbb{R} C_{\sigma}\right)=\frac{1}{\sqrt{d}^{n}} \sum_{x \in \operatorname{Crit}_{i}\left(p_{\mathbb{R} C_{\sigma}}\right)} \delta_{x}
$$

if $n>k$ and $\nu_{0}\left(\mathbb{R} C_{\sigma}\right)=\frac{1}{\sqrt{d}^{n}} \sum_{x \in \mathbb{R} C_{\sigma}} \delta_{x}$ if $k=n$. We then set

$$
E\left(\nu_{i}\right)=\int_{\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)} \nu_{i}\left(\mathbb{R} C_{\sigma}\right) d \mu_{\mathbb{R}}(\sigma)
$$

and prove the following equidistribution result (compare Theorem 1.0.2 of [12]).

Theorem 3.1.3 Under the hypotheses of Theorem 3.1.2, let $p: \mathbb{R} X \rightarrow \mathbb{R}$ be a Morse function. Then, for every $i \in\{0, \cdots, n-k\}$, the measure $E\left(\nu_{i}\right)$ weakly converges to

$$
\frac{1}{\Gamma\left(\frac{k}{2}\right)} V_{k-1, n-1} E_{k-1}\left(|\operatorname{det}|^{n-k+2}\right) e_{\mathbb{R}}(i, n-k-i) d v \operatorname{vol}_{h_{L}}
$$

as d grows to infinity. When $k=n, E\left(\nu_{0}\right)$ converges weakly to $\frac{1}{\sqrt{\pi}} \Gamma\left(\frac{n+1}{2}\right) d v o l_{h_{L}}$.
In Theorem 3.1.3 dvol ${ }_{h_{L}}$ denotes the Lebesgue measure of $\mathbb{R} X$ induced by the Kähler metric. Theorem 3.1.2 is deduced from Theorem 3.1.3 by integration of 1 over $\mathbb{R} X$. The next paragraphs are devoted to the proof of Theorem 3.1.3.

Proof of Theorem 1.1.1. It follows from Theorem 3.1.2, the Morse inequalities, Remark 3.1.1 and the computation $V_{o l_{F S} \mathbb{R}} P^{n}=\sqrt{\pi} / \Gamma\left(\frac{n+1}{2}\right)$ (see Remark 2.4.4 of [12]) when $k \leqslant n-1$ and from Theorem 3.1.3 when $k=n$.

3.2 Incidence varieties

Under the hypotheses of Theorem 3.1.3, we set

$$
\mathbb{R} \Delta_{p}^{d}=\left\{\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \mid \sigma \in \mathbb{R} \Delta_{d} \text { or } p_{\mid \mathbb{R} C_{\sigma}} \text { is not Morse }\right\}
$$

and

$$
\mathcal{I}_{i}=\left\{(\sigma, x) \in\left(\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{p}^{d}\right) \times(\mathbb{R} X \backslash \operatorname{Crit}(p)) \mid x \in \operatorname{Crit}_{i}\left(p_{\mid \mathbb{R} C_{\sigma}}\right)\right\} .
$$

We set

$$
\begin{align*}
& \pi_{1}:(\sigma, x) \in \mathcal{I}_{i} \mapsto \tag{29}\\
& \pi_{2}:(\sigma, x) \in \mathcal{I}_{i} \mapsto x \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \text { and } \tag{30}\\
& \pi_{2} .
\end{align*}
$$

Then, for every $\left(\sigma_{0}, x_{0}\right) \in\left(\left(\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{p}^{d}\right) \times(\mathbb{R} X \backslash \operatorname{Crit}(p))\right), \pi_{1}$ is invertible in a neighbourhood $\mathbb{R} U$ of σ_{0}, defining an evaluation map at the critical point

$$
e v_{\left(\sigma_{0}, x_{0}\right)}: \sigma \in \mathbb{R} U \mapsto \pi_{2} \circ \pi_{1}^{-1}(\sigma)=x \in \operatorname{Crit}_{i}\left(p_{\mid \mathbb{R} C_{\sigma}}\right) \cap \mathbb{R} V,
$$

where $\mathbb{R} V$ denotes a neighbourhood of x_{0} in $\mathbb{R} X$, compare $\S 2.3$.2 of [12]. We denote by $d_{\mid \sigma_{0}} e v_{\left(\sigma_{0}, x_{0}\right)}^{\perp}$ the restriction of its differential map $d_{\mid \sigma_{0}} e v_{\left(\sigma_{0}, x_{0}\right)}$ at σ_{0} to the orthogonal complement of $\pi_{1}\left(\pi_{2}^{-1}\left(x_{0}\right)\right)$ in $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$.

Proposition 3.2.1 Under the hypotheses of Theorem 3.1.3,

$$
E\left(\nu_{i}\right)=\frac{1}{\sqrt{d}^{n}}\left(\pi_{2}\right)_{*}\left(\pi_{1}^{*} d \mu_{\mathbb{R}}\right)
$$

Moreover, at every point $x \in \mathbb{R} X \backslash \operatorname{Crit}(p)$,

$$
\left(\pi_{2}\right)_{*}\left(\pi_{1}^{*} d \mu_{\mathbb{R}}\right)_{\mid x}=\frac{1}{\sqrt{\pi^{n}}} \int_{\pi_{1}\left(\pi_{2}^{-1}(x)\right)}\left|\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{\perp}\right|^{-1} d \mu_{\mathbb{R}}(\sigma) d \operatorname{vol}_{h_{L}} .
$$

Proof. The proof is the same as in the one of Proposition 2.8 of [12] and is not reproduced here.
Fix $x \in \mathbb{R} X \backslash \operatorname{Crit}(p)$. Then $\pi_{1}\left(\pi_{2}^{-1}(x)\right)$ is open in a subspace of $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$. Namely,

$$
\begin{align*}
\pi_{1}\left(\pi_{2}^{-1}(x)\right)= & \left\{\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{p}^{d} \mid \sigma(x)=0\right. \text { and } \tag{31}\\
& \left.\exists \lambda \in \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*}, \lambda \circ \nabla_{\mid x} \sigma=d_{\mid x} p\right\}, \tag{32}
\end{align*}
$$

where $\mathbb{R}\left(\left(E \otimes L^{d}\right)_{\mid x}^{*}\right)$ is the real part of the fibre $\left(E \otimes L^{d}\right)_{\mid x}^{*}$. We deduce a well-defined map

$$
\begin{align*}
\rho_{x}: \pi_{1}\left(\pi_{2}^{-1}(x)\right) & \rightarrow \operatorname{Gr}\left(n-k, \operatorname{ker} d_{\mid x} p\right) \times\left(\mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*} \backslash\{0\}\right) \tag{33}\\
\sigma & \mapsto\left(\operatorname{ker} \nabla_{\mid x} \sigma, \lambda\right) . \tag{34}
\end{align*}
$$

For every $\sigma \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{p}^{d}$, the tangent space of $\pi_{1}\left(\pi_{2}^{-1}(x)\right)$ at σ reads

$$
\begin{aligned}
T_{\sigma} \pi_{1}\left(\pi_{2}^{-1}(x)\right)= & \left\{\dot{\sigma} \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \mid \dot{\sigma}(x)=0\right. \text { and } \\
& \left.\exists \dot{\lambda} \in \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*} \mid \dot{\lambda} \circ \nabla_{\mid x} \sigma+\lambda \circ \nabla \dot{\sigma}_{\mid x}=0\right\} .
\end{aligned}
$$

Likewise, for every $\lambda \in \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*} \backslash\{0\}$, the tangent space of $\rho_{x}^{-1}\left(\operatorname{Gr}\left(n-k\right.\right.$, ker $\left.d_{\mid x} p\right) \times$ $\{\lambda\}$) at σ reads
$T_{\sigma} \rho_{x}^{-1}\left(\operatorname{Gr}\left(n-k, \operatorname{ker} d_{\mid x} p\right) \times\{\lambda\}\right)=\left\{\dot{\sigma} \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \mid \dot{\sigma}(x)=0\right.$ and $\left.\lambda \circ \nabla_{\mid x} \dot{\sigma}=0\right\}$. Finally, for every $K \in \operatorname{Gr}\left(n-k\right.$, $\left.\operatorname{ker} d_{\mid x} p\right)$, the tangent space of $\rho_{x}^{-1}(K, \lambda)$ at σ reads

$$
T_{\sigma} \rho_{x}^{-1}(K, \lambda)=\left\{\dot{\sigma} \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \mid \dot{\sigma}(x)=0, \nabla_{\mid x} \dot{\sigma}_{\mid K}=0 \text { and } \lambda \circ \nabla_{\mid x} \dot{\sigma}=0\right\} .
$$

Let us choose local real holomorphic coordinates $\left(x_{1}, \cdots, x_{n}\right)$ of X near x such that $\left(\partial / \partial x_{1}, \cdots, \partial / \partial x_{n}\right)$ be orthonormal at x, with $d_{\mid x} p$ being colinear to $d x_{1}$ and such that $K=\operatorname{ker} \nabla_{\mid x} \sigma=\left\langle\partial / \partial x_{k+1}, \cdots, \partial / \partial x_{n}\right\rangle$. Let us choose a local real holomorphic trivialization $\left(e_{1}, \cdots, e_{k}\right)$ of E near x that is orthonormal at x and be such that ker $\lambda_{\mid x}=\left\langle e_{2} \otimes e^{d}, \cdots, e_{k} \otimes e^{d}\right\rangle_{\mid x}$. For d large enough, we define the following subspaces of $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$:

$$
\begin{align*}
H_{x} & =\left\langle\left(\sigma_{0}^{i}\right)_{1 \leqslant i \leqslant k},\left(\sigma_{j}^{1}\right)_{k+1 \leqslant j \leqslant n}\right\rangle \tag{35}\\
H_{\lambda} & =\left\langle\left(\sigma_{j}^{1}\right)_{1 \leqslant j \leqslant k}\right\rangle \tag{36}\\
H_{K} & =\left\langle\left(\sigma_{j}^{i}\right)_{\substack{2 \leqslant i \leqslant k \\
k+1 \leqslant j \leqslant n}}\right\rangle, \tag{37}
\end{align*}
$$

where the sections $\left(\sigma_{0}^{i}\right)_{1 \leqslant i \leqslant k}$ and $\left(\sigma_{j}^{i}\right)_{\substack{1 \leqslant i \leqslant k \\ 1 \leqslant j \leqslant n}}$ of $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ are given by Lemma 2.3.3 and Definition 2.3.4.
H_{K} is a complement of $T_{\sigma} \rho_{x}^{-1}(K, \lambda)$ in $T_{\sigma} \rho_{x}^{-1}\left(\operatorname{Gr}\left(n-k, \operatorname{ker} d_{\mid x} p\right) \times\{\lambda\}\right), H_{\lambda}$ is a complement of $T_{\sigma} \rho_{x}^{-1}\left(\operatorname{Gr}\left(n-k, \operatorname{ker} d_{\mid x} p\right) \times\{\lambda\}\right)$ in $T_{\sigma} \pi_{1}\left(\pi_{2}^{-1}(x)\right)$ and H_{x} is a complement of $T_{\sigma} \pi_{1}\left(\pi_{2}^{-1}(x)\right)$ in $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$. Then, from Lemmas 2.3.6 and 2.3.7, up to a uniform rescaling by $\sqrt{v(x)}$, these complements are asymptotically orthogonal and their given basis orthonormal. Hence, we can assume from now on that $v=1$.
Lemma 3.2.2 Under the hypotheses of Theorem 3.1.3, let $(\sigma, x) \in \mathcal{I}_{i}$ and $\lambda \in \mathbb{R}(E \otimes$ $\left.L^{d}\right)_{\mid x}^{*} \backslash\{0\}$ such that $\lambda \circ \nabla_{\mid x} \sigma=d_{\mid x} p$. Then, $\lambda \circ \nabla^{2} \sigma_{\mid K_{x}}=\nabla^{2}\left(p_{\mid \mathbb{R} C_{\sigma}}\right)_{\mid x}$, so that the quadratic form $\lambda \circ \nabla^{2} \sigma_{\mid K_{x}}$ is non-degenerated of index i.

Proof. The proof is similar to the one of Lemma 2.3.2 of [12].

3.3 Computation of the Jacobian determinants

3.3.1 Jacobian determinant of ρ_{x}

Under the hypotheses of Theorem 3.1.3, let $(\sigma, x) \in \mathcal{I}_{i}$. We set $(K, \lambda)=\rho_{x}(\sigma)$ and denote by $d_{\mid \sigma} \rho_{x}^{H}$ the restriction of $d_{\mid \sigma} \rho_{x}$ to $H_{K} \oplus H_{\lambda}$. We then denote by $\operatorname{det}\left(d_{\mid \sigma} \rho_{x}^{H}\right)$ the Jacobian determinant of $d_{\mid \sigma} \rho_{x}^{H}$ computed in the given basis of H_{λ} and H_{K}, see (36), (37) and in orthonormal basis of $T_{K} \operatorname{Gr}\left(n-k\right.$, ker $\left.d_{\mid x} p\right) \times \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*}$. By assumption, the operator $\nabla_{\mid x} \sigma$ does not depend on the choice of a connection ∇ on $E \otimes L^{d}$ and is onto. We denote by $\nabla_{\mid x} \sigma^{\perp}$ its restriction to the orthogonal K^{\perp} of $K=\operatorname{ker} \nabla_{\mid x} \sigma$,

$$
\nabla_{\mid x} \sigma^{\perp}: K^{\perp} \rightarrow \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x} .
$$

Likewise, for every $\left(\dot{\sigma}_{K}, \dot{\sigma}_{\lambda}\right) \in H_{K} \oplus H_{\lambda}$, the operators $\nabla_{\mid x} \dot{\sigma}_{K}$ and $\nabla_{\mid x} \dot{\sigma}_{\lambda}$ do not depend on the choice of a connection ∇ on $E \otimes L^{d}$. Finally, we write at a point $y \in \mathbb{R} X$ near x

$$
\sigma(y)=\sum_{i=1}^{k}\left(a_{0}^{i} \sigma_{0}^{i}+\sum_{j=1}^{n} a_{j}^{i} \sigma_{j}^{i}+\sum_{1 \leqslant l \leqslant m \leqslant n} a_{l m}^{i} \sigma_{l m}^{i}\right)(y)+o\left(|y|^{2}\right),
$$

where $\left(a_{0}^{i}\right),\left(a_{j}^{i}\right)$ and $\left(a_{l m}^{i}\right)$ are real numbers and $\left(\sigma_{0}^{i}\right),\left(\sigma_{j}^{i}\right)$ and $\left(\sigma_{l m}^{i}\right)$ are given by Definition 2.3.4. From Lemma 2.3.5 and (31), we deduce that $a_{0}^{i}=0=a_{j}^{1}$ for $1 \leqslant i \leqslant k$ and $k+1 \leqslant j \leqslant n$, and that

$$
\begin{equation*}
\|\lambda\| \sqrt{\pi \delta_{L}} \sqrt{d}^{n+1}\left|a_{1}^{1}\right|=\left\|d_{\mid x} p\right\|+o(1) \tag{38}
\end{equation*}
$$

where the $o(1)$ term is uniformly bounded over $\mathbb{R} X$.
Lemma 3.3.1 Under the hypotheses of Theorem 3.1.3, let $(\sigma, x) \in \mathcal{I}_{i}$ and $(K, \lambda)=$ $\rho_{x}(\sigma)$. Then, $d_{\mid x} \rho_{x}^{H}$ writes

$$
\begin{aligned}
H_{K} \oplus H_{\lambda} & \rightarrow T_{K} G r\left(n-k, \text { ker } d_{\mid x} p\right) \times \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*} \\
\left(\dot{\sigma}_{K}, \dot{\sigma}_{\lambda}\right) & \mapsto\left(-\left(\nabla_{\mid x} \sigma^{\perp}\right)_{\mid \operatorname{ker} \lambda}^{-1} \circ \nabla_{\mid x} \dot{\sigma}_{K \mid K},-\lambda \circ \nabla_{\mid x} \dot{\sigma}_{\lambda} \circ\left(\nabla_{\mid x} \sigma^{\perp}\right)^{-1}\right) .
\end{aligned}
$$

Moreover, $\left|\operatorname{det} d_{\mid \sigma} \rho_{x}^{H}\right|^{-1}=\frac{\left|a_{1}^{1}\right|}{\|\lambda\|^{k}}\left|\operatorname{det}\left(a_{j}^{i}\right)_{2 \leqslant i, j \leqslant k}\right|^{n-k+1}(1+o(1))$, where the $o(1)$ term is uniformly bounded over $\mathbb{R} X$.

Proof. Let $\left(\dot{\sigma}_{K}, \dot{\sigma}_{\lambda}\right) \in H_{K} \oplus H_{\lambda}$ and $\left(\sigma_{s}\right)_{s \in]-\epsilon, \epsilon[}$ be a path of $\pi_{1}\left(\pi_{2}^{-1}(x)\right)$ such that $\sigma_{0}=\sigma$ and $\dot{\sigma}_{0}=\dot{\sigma}_{K}+\dot{\sigma}_{\lambda}$. Then, for every $\left.s \in\right]-\epsilon, \epsilon\left[\right.$ and every $v_{s} \in \operatorname{ker} \nabla_{\mid x} \sigma_{s}$, there exists $\lambda_{s} \in \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*}$ such that

$$
\left\{\begin{array}{l}
\nabla_{\mid x} \sigma_{s}\left(v_{s}\right)=0 \\
\lambda_{s} \circ \nabla_{\mid x} \sigma_{s}=d_{\mid x} p .
\end{array} \quad\right. \text { and }
$$

By derivation, we deduce

$$
\left\{\begin{array}{l}
\nabla_{\mid x} \dot{\sigma}_{0}\left(v_{0}\right)+\nabla_{\mid x} \sigma\left(\dot{v}_{0}\right)=0 \\
\dot{\lambda}_{0} \circ \nabla_{\mid x} \sigma+\lambda \circ \nabla_{\mid x} \dot{\sigma}_{0}=0 .
\end{array}\right. \text { and }
$$

By setting \dot{v} the orthogonal projection of \dot{v}_{0} onto K^{\perp}, we deduce that

$$
\left\{\begin{array}{l}
\dot{v}=-\left(\nabla_{\mid x} \sigma^{\perp}\right)^{-1} \circ \nabla_{\mid x} \dot{\sigma}_{K}\left(v_{0}\right) \quad \text { and } \\
\dot{\lambda}_{0}=-\lambda \circ \nabla_{\mid x} \dot{\sigma}_{\lambda} \circ\left(\nabla_{\mid x} \sigma^{\perp}\right)^{-1} .
\end{array}\right.
$$

The first part of Lemma 3.3.1 follows. Now, recall that $d_{\mid x} p$ is colinear to $d x_{1}$, that K is equipped with the orthonormal basis $\left(\partial / \partial x_{k+1}, \cdots, \partial / \partial x_{n}\right), K^{\perp}$ with the orthonormal basis $\left(\partial / \partial x_{1}, \cdots, \partial / \partial x_{k}\right)$, and that ker $\lambda_{\mid x}$ is spanned by the orthonormal basis $\left(e_{2}, \cdots, e_{k}\right)_{\mid x}$. From Lemma 2.3.3, the map

$$
\dot{\sigma}_{K} \in H_{K} \mapsto \nabla_{\mid x} \dot{\sigma}_{K \mid K} \in L(K, \operatorname{ker} \lambda)
$$

just dilates the norm by the factor $\sqrt{\pi \delta_{L} d^{n+1}}(1+o(1))$, where the $o(1)$ term is uniformly bounded over $\mathbb{R} X$. Now, since the matrix of the restriction of $\nabla_{\mid x} \sigma^{\perp}$ to $K^{\perp} \cap \operatorname{ker} d_{\mid x} p$ in the given basis of $K^{\perp} \cap$ ker $d_{\mid x} p$ and ker λ equals

$$
\sqrt{\pi \delta_{L} d^{n+1}}\left(a_{j}^{i}\right)_{2 \leqslant i, j \leqslant k}+o\left(\sqrt{d}^{n+1}\right),
$$

where the $o\left(\sqrt{d}^{n+1}\right)$ term is uniformly bounded over $\mathbb{R} X$. We deduce that the Jacobian determinant of the map

$$
\left.M \in L(K, \operatorname{ker} \lambda) \mapsto\left(\nabla_{\mid x} \sigma_{\mid \operatorname{ker} \lambda}^{\perp}\right)^{-1} \circ M \in L\left(K, K^{\perp} \cap \operatorname{ker} d_{\mid x} p\right)\right)
$$

equals

$$
\left(\left(\sqrt{\pi \delta_{L} d^{n+1}}\right)^{k-1}\left|\operatorname{det}\left(a_{j}^{i}\right)_{2 \leqslant i, j \leqslant k}\right|(1+o(1))\right)^{k-n} .
$$

The Jacobian determinant of the map

$$
\dot{\sigma}_{K} \in H_{K} \mapsto\left(\nabla_{\mid x} \sigma^{\perp}\right)_{\mid \operatorname{ker} \lambda}^{-1} \circ \nabla_{\mid x} \dot{\sigma}_{K \mid K} \in T_{K} \operatorname{Gr}\left(n-k, \text { ker } d_{\mid x} p\right)
$$

thus equals $\left|\operatorname{det}\left(a_{j}^{i}\right)_{2 \leqslant i, j \leqslant k}\right|^{k-n}+o(1)$, where the $o(1)$ is uniformly bounded over $\mathbb{R} X$. Likewise, from Lemma 2.3.3, the map

$$
\dot{\sigma}_{\lambda} \in H_{\lambda} \mapsto \lambda \circ \nabla_{\mid x} \dot{\sigma}_{\lambda} \in\left(K^{\perp}\right)^{*}
$$

just dilates the norm by a factor $\sqrt{\pi \delta_{L} d^{n+1}}\|\lambda\|+o\left(\sqrt{d}^{n+1}\right)$, where the $o\left(\sqrt{d}^{n+1}\right)$ is uniformly bounded over $\mathbb{R} X$, while the Jacobian determinant of the map

$$
M \in\left(K^{\perp}\right)^{*} \mapsto M \circ\left(\nabla_{\mid x} \sigma^{\perp}\right)^{-1} \in \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*}
$$

equals $\left(\sqrt{\pi \delta_{L}} \sqrt{d}^{n+1}\right)^{-k}\left|\operatorname{det}\left(a_{j}^{i}\right)_{1 \leqslant i, j \leqslant k}\right|^{-1}(1+o(1))$ so that the Jacobian determinant of the map

$$
\dot{\sigma}_{\lambda} \in H_{\lambda} \mapsto \lambda \circ \nabla_{\mid x} \dot{\sigma}_{\lambda} \circ\left(\nabla_{\mid x} \sigma^{\perp}\right)^{-1} \in \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*}
$$

equals $\|\lambda\|^{k}\left|\operatorname{det}\left(a_{j}^{i}\right)_{1 \leqslant i, j \leqslant k}\right|^{-1}+o(1)$, with a $o(1)$ uniformly bounded over $\mathbb{R} X$. As a consequence,

$$
\left|\operatorname{det} d_{\mid \sigma} \rho_{x}^{H}\right|^{-1}=\|\lambda\|^{-k}\left|\operatorname{det}\left(a_{j}^{i}\right)_{2 \leqslant i, j \leqslant k}\right|^{n-k+1}\left|a_{1}^{1}\right|(1+o(1)),
$$

with a $o(1)$ uniformly bounded over $\mathbb{R} X$, since the relation $\lambda \circ \nabla_{\mid x} \sigma=d_{\mid x} p$ implies that a_{j}^{1} vanishes for $2 \leqslant j \leqslant n$.

3.3.2 Jacobian determinant of the evaluation map

Again, under the hypotheses of Theorem 3.1.3 and for $(\sigma, x) \in \mathcal{I}_{i}$, we set for every y in a neighbourhood of x,

$$
\begin{equation*}
\sigma(y)=\sum_{i=1}^{k}\left(a_{0}^{i} \sigma_{0}^{i}+\sum_{j=1}^{n} a_{j}^{i} \sigma_{j}^{i}+\sum_{1 \leqslant l \leqslant m \leqslant n} a_{l m}^{i} \sigma_{l m}^{i}\right)(y)+o\left(|y|^{2}\right), \tag{39}
\end{equation*}
$$

where a_{0}^{i}, a_{j}^{i} and $a_{l m}^{i}$ are real numbers. We then set, for $1 \leqslant l, m \leqslant n, \tilde{a}_{l l}^{1}=\sqrt{2} a_{l l}^{1}$, $\tilde{a}_{l m}^{1}=a_{l m}^{1}$ if $l<m$ and $\tilde{a}_{l m}^{1}=a_{m l}^{1}$ if $l>m$. We denote by $d_{\mid \sigma} e v_{(\sigma, x)}^{H}$ the restriction of $d_{\mid \sigma} e v_{(\sigma, x)}$ to H_{x}, see (35) and by $\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{H}$ its Jacobian determinant computed in the given basis of H_{x} and orthonormal basis of $T_{x} \mathbb{R} X$.

Lemma 3.3.2 Under the hypotheses of Theorem 3.1.3, let $(\sigma, x) \in \mathcal{I}_{i}$. Then,

$$
\left|\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{H}\right|^{-1}=\sqrt{\pi^{n} d^{n}}\left|a_{1}^{1}\right|\left|\operatorname{det}\left(a_{j}^{i}\right)_{2 \leqslant i, j \leqslant k}\right|\left|\operatorname{det}\left(\tilde{a}_{l m}^{1}\right)_{k+1 \leqslant l, m \leqslant n}\right|(1+o(1)),
$$

where the o(1) term has poles of order at most $n-k$ near the critical points of p.
Remark 3.3.3 In Lemma 3.3.2, a function f is said to have a pole of order at most $n-k$ near a point x if $r^{n-k} f$ is bounded near x, where r denotes the distance function to x. Such a function thus belongs to $L^{1}\left(\mathbb{R} X, d v o l_{h}\right)$.

Proof. We choose a torsion free connection $\nabla^{T X}$ (resp. a connection $\nabla^{E \otimes L^{d}}$) on $\mathbb{R} X \backslash \operatorname{Crit}(p)$ (resp. on $E \otimes L^{d}$) such that $\nabla^{T X} d p=0$. They induce a connection on $T^{*} X \otimes E \otimes L^{d}$ which makes it possible to differentiate twice the elements of $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$. The tangent space of \mathcal{I}_{i} then reads

$$
\begin{align*}
T_{(\sigma, x)} \mathcal{I}_{i}= & \left\{(\dot{\sigma}, \dot{x}) \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \times T_{x} \mathbb{R} X \mid \dot{\sigma}(x)+\nabla_{\dot{x}} \sigma=0\right. \text { and } \tag{40}\\
& \left.\exists \dot{\lambda} \in \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*}, \dot{\lambda} \circ \nabla_{\mid x} \sigma+\lambda \circ \nabla_{\mid x} \dot{\sigma}+\lambda \circ \nabla_{\dot{x}, \cdot}^{2} \sigma=0\right\} . \tag{41}
\end{align*}
$$

Recall that $T_{x} \mathbb{R} X$ is the direct sum $K \oplus K^{\perp}$, where $K=\operatorname{ker} \nabla_{\mid x} \sigma$. We write $\dot{x}=$ $\left(\dot{x}_{K}, \dot{x}_{K^{\perp}}\right)$ the coordinates of \dot{x} in this decomposition. From the first equation we deduce, keeping the notations of $\S 3.3 .1$, that $\dot{x}_{K^{\perp}}=-\left(\nabla_{\mid x} \sigma^{\perp}\right)^{-1}(\dot{\sigma}(x))$. From Lemma 2.3.3, the evaluation map at x

$$
\dot{\sigma} \in\left\langle\left(\sigma_{0}^{i}\right)_{1 \leqslant i \leqslant k}\right\rangle \mapsto \dot{\sigma}(x) \in E \otimes L_{\mid x}^{d}
$$

just dilates the norm by a factor $\sqrt{\delta_{L} d^{n}}(1+o(1))$, , where the $o(1)$ term is uniformly bounded over $\mathbb{R} X$, while

$$
\left|\operatorname{det}\left(\nabla_{\mid x} \sigma^{\perp}\right)\right|=\left(\sqrt{\pi \delta_{L} d^{n+1}}\right)^{k}\left|\operatorname{det}\left(a_{j}^{i}\right)_{1 \leqslant i, j \leqslant k}\right|(1+o(1)) .
$$

We deduce by composition that the Jacobian of the map

$$
\dot{\sigma} \in\left\langle\left(\sigma_{0}^{i}\right)_{1 \leqslant i \leqslant k}\right\rangle \mapsto \dot{x}_{K^{\perp}}=-\left(\nabla_{\mid x} \sigma^{\perp}\right)^{-1}(\dot{\sigma}(x))
$$

equals $\left(\sqrt{\pi^{k} d^{k}}\left|\operatorname{det}\left(a_{j}^{i}\right)_{2 \leqslant i, j \leqslant k}\right|\left|a_{1}^{1}\right|\right)^{-1}(1+o(1))$, where the $o(1)$ term is uniformly bounded over $\mathbb{R} X$. Now, equation (41) restricted to K reads

$$
\lambda \circ \nabla_{\dot{x}_{K},}^{2} \sigma_{\mid K}=-\lambda \circ \nabla_{\mid x} \dot{\sigma}_{\mid K} .
$$

From Lemma 2.3.3, the map

$$
\dot{\sigma} \in\left\langle\left(\sigma_{j}^{1}\right)_{k+1 \leqslant j \leqslant n}\right\rangle \mapsto-\lambda \circ \nabla_{\mid x} \dot{\sigma}_{\mid K} \in K^{*}
$$

just dilates the norm by a factor $\|\lambda\| \sqrt{\pi \delta_{L} d^{n+1}}(1+o(1))$, with $o(1)$ term is uniformly bounded over $\mathbb{R} X$. Likewise, from Lemma 2.3.3, the Jacobian of the map $\lambda \circ \nabla^{2} \sigma_{\mid K}$: $K \rightarrow K^{*}$ equals

$$
\begin{equation*}
\left(\|\lambda\| \pi \sqrt{\delta_{L} d^{n+2}}\right)^{n-k}\left|\operatorname{det}\left(\tilde{a}_{l m}^{1}\right)_{k+1 \leqslant l, m \leqslant n}\right|(1+o(1)) \tag{42}
\end{equation*}
$$

Here, the $o(1)$ term is no more uniformly bounded over $\mathbb{R} X$ though. Indeed, from Lemma 2.3.5 and (39),

$$
\lambda \circ \nabla^{2} \sigma_{\mid K}=a_{1}^{1}\left(\|\lambda\| \sqrt{\pi \delta_{L} d^{n+1}}\right)\left(\nabla^{T X} d x_{1}\right)+\sum_{1 \leqslant l \leqslant m \leqslant n} \tilde{a}_{l m}^{1}\left(\|\lambda\| \sqrt{\pi \delta_{L} d^{n+2}}\right) d x_{l} \otimes d x_{m}
$$

since the relation $\lambda \circ \nabla_{\mid x} \sigma=d_{\mid x} p$ imposes that a_{j}^{1} vanishes for $j>1$. Moreover, since $d p=\sum_{i=1}^{n} \alpha_{i} d x_{i}$, with $\alpha_{2}(x)=\cdots=\alpha_{n}(x)=0$ and $\left|\alpha_{1}(x)\right|=\left\|d_{\mid x} p\right\|$, we get that

$$
0=\nabla^{T X}(d p)_{\mid K}=\alpha_{1}\left(\nabla^{T X} d x_{1}\right)_{\mid K}+\sum_{i=1}^{n}\left(d \alpha_{i} \otimes d x_{i}\right)_{\mid K}
$$

so that $\left\|\nabla^{T X} d x_{1 \mid K}\right\|=\frac{1}{\left\|d_{\mid x} p\right\|}\left\|\sum_{i=1}^{n} d \alpha_{i} \otimes d x_{i}\right\|$ has a pole of order one at x. In formula (42), the $o(1)$ term has thus a pole of order at most $n-k$ near the critical points of p.

We deduce that the Jacobian determinant of the map

$$
\dot{\sigma} \in\left\langle\left(\sigma_{j}^{1}\right)_{k+1 \leqslant j \leqslant n}\right\rangle \mapsto \dot{x}_{K}=-\left(\lambda \circ \nabla^{2} \sigma_{\mid K}\right)^{-1} \circ\left(\lambda \circ \nabla_{\mid x} \dot{\sigma}_{\mid K}\right) \in K
$$

equals $\left(\sqrt{\pi^{n-k} d^{n-k}} \operatorname{det}\left(\tilde{a}_{l m}^{1}\right)_{k+1 \leqslant l, m \leqslant n} \mid\right)^{-1}(1+o(1))$, up to sign, where $o(1)$ term has a pole of order at most $n-k$ near the critical points of p. The result follows.

3.4 Proof of Theorem 3.1.3

3.4.1 The case $k<n$

From Proposition 2.4.1 we know that

$$
E\left(\nu_{i}\right)=\frac{1}{\sqrt{\pi^{n} d^{n}}}\left(\int_{\pi_{1}\left(\pi_{2}^{-1}(x)\right)}\left|\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{\perp}\right|^{-1} d \mu_{\mathbb{R}}(\sigma)\right) d v o l_{h_{L}}
$$

From the coarea formula (see [9]), we likewise deduce that

$$
\begin{aligned}
E\left(\nu_{i}\right)= & \frac{1}{\sqrt{\pi^{n} d^{n}}}\left(\int_{\operatorname{Gr}\left(n-k, \operatorname{ker} d_{\mid x} p\right) \times \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*} \backslash\{0\}} e^{-\left(a_{1}^{1}\right)^{2}} \frac{d K \wedge d \lambda}{\sqrt{\pi}^{(n-k)(k-1)+k} \ldots}\right. \\
& \left.\ldots \int_{\rho_{x}^{-1}(K, \lambda)}\left|\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{\perp}\right|^{-1}\left|\operatorname{det} d_{\mid \sigma} \rho_{x}^{\perp}\right|^{-1} d \mu_{\mathbb{R}}(\sigma)\right) d v o l_{h_{L}},
\end{aligned}
$$

since with the notations (39), $\sigma \in \rho_{x}^{-1}(K, \lambda)$ if and only if $\forall i \in\{1, \cdots, k\}$ and $\forall j \in$ $\{k+1, \cdots, n\}, a_{0}^{i}=0=a_{j}^{i}$ while $\forall j \geqslant 2, a_{j}^{1}=0$ and $\left|a_{1}^{1}\right|=\frac{\left\|d_{x x} p\right\|}{\|\lambda\| \sqrt{\pi \delta_{L}} \sqrt{d^{n+1}}}$. From

Lemma 2.3.6 and the relation (38), we deduce that for every $x \in \mathbb{R} X \backslash \operatorname{Crit}(p)$ and every $(K, \lambda) \in \operatorname{Gr}\left(n-k\right.$, $\left.\operatorname{ker} d_{\mid x} p\right) \times \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*} \backslash\{0\}$,

$$
\begin{aligned}
& \int_{\rho_{x}^{-1}(K, \lambda)}\left|\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{\perp}\right|^{-1}\left|\operatorname{det} d_{\mid \sigma} \rho_{x}^{\perp}\right|^{-1} d \mu_{\mathbb{R}}(\sigma) \\
\underset{d \rightarrow \infty}{\sim} & \int_{\rho_{x}^{-1}(K, \lambda)}\left|\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{H}\right|^{-1}\left|\operatorname{det} d_{\mid \sigma} \rho_{x}^{H}\right|^{-1} d \mu_{\mathbb{R}}(\sigma) .
\end{aligned}
$$

Thus, from Lemmas 3.3.1, 3.3.2 and 3.2.2, $E\left(\nu_{i}\right)$ converges to

$$
\begin{aligned}
& \int_{M_{k-1}(\mathbb{R})}\left|\operatorname{det}\left(a_{j}^{i}\right)_{2 \leqslant i, j \leqslant k}\right|^{n-k+2} d \mu\left(a_{j}^{i}\right) \int_{S y m_{\mathbb{R}}(i, n-k-i)}\left|\operatorname{det}\left(\tilde{a}_{l m}^{1}\right)_{k+1 \leqslant l, m \leqslant n}\right| d \mu\left(\tilde{a}_{l m}^{1}\right) \ldots \\
& \ldots \int_{\operatorname{Gr}\left(n-k, \operatorname{ker} d_{\mid x} p\right) \times \mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*} \backslash\{0\}} \frac{\left(a_{1}^{1}\right)^{2} e^{-\left(a_{1}^{1}\right)^{2}}}{\|\lambda\|^{k}} \frac{d K \wedge d \lambda}{\sqrt{\pi}^{(n-k)(k-1)+k}},
\end{aligned}
$$

where the convergence is dominated by a function in $L^{1}\left(\mathbb{R} X, d\right.$ vol $\left._{h_{L}}\right)$, see Remark 3.3.3. We deduce that $E\left(\nu_{i}\right)$ gets equivalent to
$\frac{\left\|d_{\mid x} p\right\|^{2}}{\delta_{L} d^{n+1} \sqrt{\pi}^{k+2}} V_{k-1, n-1} E_{k-1}\left(|\operatorname{det}|^{n-k+2}\right) e_{\mathbb{R}}(i, n-k-i)\left(\int_{\mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*} \backslash\{0\}} \frac{e^{-\left(a_{1}^{1}\right)^{2}}}{\|\lambda\|^{k+2}} d \lambda\right) d v o l_{h_{L}}$. Now,

$$
\begin{aligned}
\frac{\left\|d_{\mid x} p\right\|^{2}}{\pi \delta_{L} d^{n+1}} \int_{\mathbb{R}\left(E \otimes L^{d}\right)_{\mid x}^{*} \backslash\{0\}} \frac{e^{-\left(a_{1}^{1}\right)^{2}}}{\|\lambda\|^{k+2}} d \lambda & =\frac{\operatorname{Vol}\left(S^{k-1}\right)\left\|d_{\mid x} p\right\|^{2}}{\pi \delta_{L} d^{n+1}} \int_{0}^{+\infty} \frac{e^{-\left(a_{1}^{1}\right)^{2}}}{\|\lambda\|^{3}} d\|\lambda\| \\
& =\operatorname{Vol}\left(S^{k-1}\right) \int_{0}^{+\infty} e^{-r^{2}} r d r=\frac{1}{2} \operatorname{Vol}\left(S^{k-1}\right)
\end{aligned}
$$

Since $\operatorname{Vol}\left(S^{k-1}\right)=\frac{2 \sqrt{\pi}}{\Gamma(k / 2)}$, we finally deduce that $E\left(\nu_{i}\right)$ weakly converges to

$$
\frac{1}{\Gamma(k / 2)} V_{k-1, n-1} E_{k-1}\left(|\operatorname{det}|^{n-k+2}\right) e_{\mathbb{R}}(i, n-k-i) d \operatorname{vol}_{h_{L}},
$$

where the convergence is dominated by a function in $L^{1}\left(\mathbb{R} X, d\right.$ vol $\left._{h_{L}}\right)$.

3.4.2 The case $k=n$

When the rank of E equals the dimension of X, the vanishing locus of a generic section σ of $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ is a finite set of points. We set $\nu=\frac{1}{\sqrt{d}} \sum_{x \in \mathbb{R} C_{\sigma}} \delta_{x}$, and define the incidence variety as

$$
\mathcal{I}=\left\{(\sigma, x) \in\left(\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{d}\right) \times \mathbb{R} X \mid \sigma(x)=0\right\}
$$

The projections π_{1} and π_{2} are defined by (29) and (30). As before, for every $\left(\sigma_{0}, x_{0}\right) \in$ $\left(\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \backslash \mathbb{R} \Delta_{d}\right) \times \mathbb{R} X, \pi_{1}$ is invertible in a neighbourhood $\mathbb{R} U$ of σ_{0}, defining an evaluation map at the critical point

$$
e v_{\left(\sigma_{0}, x_{0}\right)}: \sigma \in \mathbb{R} U \mapsto \pi_{2} \circ \pi_{1}^{-1}(\sigma)=x \in \mathbb{R} C_{\sigma} \cap \mathbb{R} V,
$$

where $\mathbb{R} V$ denotes a neighbourhood of x_{0} in $\mathbb{R} X$, compare $\S 2.3 .2$ of [12]. We denote by $d_{\mid \sigma_{0}} e v_{\left(\sigma_{0}, x_{0}\right)}^{\perp}$ the restriction of its differential map $d_{\mid \sigma_{0}} e v_{\left(\sigma_{0}, x_{0}\right)}$ at σ_{0} to the orthogonal complement of $\pi_{1}\left(\pi_{2}^{-1}\left(x_{0}\right)\right)$ in $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$. Then, from Proposition 3.2.1,

$$
E(\nu)=\frac{1}{\sqrt{d}^{n}}\left(\pi_{2}\right)_{*}\left(\pi_{1}^{*} d \mu_{\mathbb{R}}\right)_{\mid x}=\frac{1}{\sqrt{\pi d}^{n}} \int_{\pi_{1}\left(\pi_{2}^{-1}(x)\right)}\left|\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{\perp}\right|^{-1} d \mu_{\mathbb{R}}(\sigma) d v o l_{h_{L}}
$$

The space $H_{x}=\left\langle\left(\sigma_{0}^{i}\right)_{1 \leqslant i \leqslant k}\right\rangle$ is a complement to $T_{\sigma} \pi_{1}\left(\pi_{2}^{-1}(x)\right)$ in $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$ and in the decomposition (39), $a_{0}^{i}=0$ for every $i=1, \cdots, k$. The tangent space of \mathcal{I} at (σ, x) reads

$$
T_{(\sigma, x)} \mathcal{I}=\left\{(\dot{\sigma}, \dot{x}) \in \mathbb{R} H^{0}\left(X, E \otimes L^{d}\right) \times T_{x} \mathbb{R} X \mid \dot{\sigma}(x)+\nabla_{\mid x} \sigma(\dot{x})=0\right\}
$$

As in the proof of Lemma 3.3.2, we deduce that the Jacobian determinant of the map

$$
\dot{\sigma} \in H_{x} \mapsto \dot{x}=-\left(\nabla_{\mid x} \sigma^{\perp}\right)^{-1}(\dot{\sigma}(x)) \in T_{x} \mathbb{R} X
$$

equals $\sqrt{\pi^{n} d^{n}}\left|\operatorname{det}\left(a_{j}^{i}\right)_{1 \leqslant i, j \leqslant n}\right|(1+o(1))$, so that

$$
\left|\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{H}\right|^{-1}=\sqrt{\pi d^{n}}\left|\operatorname{det}\left(a_{j}^{i}\right)_{1 \leqslant i, j \leqslant n}\right|(1+o(1))
$$

where the $o(1)$ term is uniformly bounded over $\mathbb{R} X$. From lemma 2.3.6 we deduce that $E(\nu)$ gets equivalent to

$$
\left(\int_{M_{n}(\mathbb{R})}\left|\operatorname{det}\left(a_{j}^{i}\right)_{1 \leqslant i, j \leqslant n}\right| d \mu\left(a_{j}^{i}\right)\right) \operatorname{dvol}_{h_{L}}=E_{n}(|\operatorname{det}|) \operatorname{dvol}_{h_{L}} .
$$

Formula (15.4.12) of [21], see Remark 3.1.1, now gives

$$
E_{n}(|\operatorname{det}|)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma(1 / 2)}=\frac{1}{\operatorname{Vol}_{F S}\left(\mathbb{R} P^{n}\right)}
$$

see Remark 2.4.4 of [12], hence the result.

3.5 Equirepartition of critical points in the complex case

Let X be a smooth complex projective manifold of dimension $n,\left(L, h_{L}\right)$ be a holomorphic Hermitian line bundle of positive curvature ω over X and $\left(E, h_{E}\right)$ be a rank k holomorphic Hermitian vector bundle, with $1 \leqslant k \leqslant n$. For every $d>0$, we denote by L^{d} the d th tensor power of L and by h^{d} the induced Hermitian metric on L^{d}. We denote by $H^{0}\left(X, L^{d}\right)$ its complex vector space of global holomorphic sections and by N_{d} the dimension of $H^{0}\left(X, L^{d}\right)$. We denote then by $\langle.,$.$\rangle the L^{2}$-Hermitian product on this vector space, defined by the relation

$$
\begin{equation*}
\forall \sigma, \tau \in H^{0}\left(X, L^{d}\right),\langle\sigma, \tau\rangle=\int_{X} h^{d}(\sigma, \tau) d x \tag{43}
\end{equation*}
$$

The associated Gaussian measure is denoted by $\mu_{\mathbb{C}}$. It is defined, for every open subset U of $H^{0}\left(X, L^{d}\right)$, by

$$
\begin{equation*}
\mu_{\mathbb{C}}(U)=\frac{1}{\pi^{N_{d}}} \int_{U} e^{-\|\sigma\|^{2}} d \sigma, \tag{44}
\end{equation*}
$$

where $d \sigma$ denotes the Lebesgue measure of $H^{0}\left(X, L^{d}\right)$. For every $d>0$, we denote by Δ^{d} the discriminant hypersurface of $H^{0}\left(X, E \otimes L^{d}\right)$, that is the set of sections $\sigma \in H^{0}\left(X, E \otimes L^{d}\right)$ which do not vanish transversally. For every $\sigma \in H^{0}\left(X, E \otimes L^{d}\right) \backslash\{0\}$, we denote by C_{σ} the vanishing locus of σ in X. For every $\sigma \in H^{0}\left(X, E \otimes L^{d}\right) \backslash \Delta^{d}$, C_{σ} is then a smooth codimension k complex submanifold of X. We equip X with a Lefschetz pencil $p: X \rightarrow \mathbb{C} P^{1}$. We then denote, for every $d>0$, by Δ_{p}^{d} the set of sections $\left.\sigma \in H^{0}\left(X, E \otimes L^{d}\right)\right)$ such that $\sigma \in \Delta^{d}$, or C_{σ} intersects the critical locus of p, or the restriction of p to C_{σ} is not a Lefschetz pencil. For d large enough, this extended discriminant locus is of measure 0 for the measure $\mu_{\mathbb{C}}$.

For every $\sigma \in H^{0}\left(X, E \otimes L^{d}\right) \backslash \Delta_{p}^{d}$, we denote by $\operatorname{Crit}\left(p_{\mid C_{\sigma}}\right)$ the set of critical points of the restriction of p to C_{σ} and set, for $1 \leqslant k \leqslant n-1$,

$$
\begin{equation*}
\nu\left(C_{\sigma}\right)=\frac{1}{d^{n}} \sum_{x \in \operatorname{Crit}\left(p_{\left.\right|_{\sigma}}\right)} \delta_{x}, \tag{45}
\end{equation*}
$$

where δ_{x} denotes the Dirac measure of X at the point x. When $k=n, \nu\left(C_{\sigma}\right)=$ $\frac{1}{d^{n}} \sum_{x \in C_{\sigma}} \delta_{x}$.

Theorem 3.5.1 Let X be a smooth complex projective manifold of dimension n, $\left(L, h_{L}\right)$ be a holomorphic Hermitian line bundle of positive curvature ω over X and $\left(E, h_{E}\right)$ be a rank k holomorphic Hermitian vector bundle, with $1 \leqslant k \leqslant n$. Let $p: X \rightarrow \mathbb{C} P^{1}$ be a Lefschetz pencil. Then, the measure $E(\nu)$ defined by (45) weakly converges to $\binom{n-1}{k-1} \omega^{n}$ as d grows to infinity.
When $k=1$, Theorem 3.5.1 reduces to Theorem 3 of [13], see also Theorem 1.0.3 of [12].

Proof. The proof goes along the same lines as the one of Theorem 3.1.2, so we only give a sketch of it. Firstly, the analogue of Proposition 3.2.1 provides

$$
E(\nu)=\frac{1}{d^{n}}\left(\pi_{2}\right)_{*}\left(\pi_{1}^{*} d \mu_{\mathbb{C}}\right)
$$

and at every point $x \in X \backslash(\operatorname{Crit}(p) \cup \operatorname{Base}(p))$, where $\operatorname{Base}(p)$ denotes the base locus of p,

$$
\left(\pi_{2}\right)_{*}\left(\pi_{1}^{*} d \mu_{\mathbb{C}}\right)_{\mid x}=\frac{1}{\pi^{n}} \int_{\pi_{1}\left(\pi_{2}^{-1}(x)\right)}\left|\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{\perp}\right|^{-2} d \mu_{\mathbb{R}}(\sigma) \frac{\omega^{n}}{n!}
$$

see Proposition 2.3.3 of [12]. Choosing complex coefficients in decomposition (39), Lemmas 3.3.1 and 3.3.2 remain valid in the complex setting, see Remark 2.3.8. We deduce that

$$
\begin{aligned}
E(\nu)= & \frac{1}{\pi^{n} d^{n}}\left(\int_{\pi_{1}\left(\pi_{2}^{-1}(x)\right)}\left|\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{\perp}\right|^{-2} d \mu_{\mathbb{C}}(\sigma)\right) \frac{\omega^{n}}{n!} \\
\underset{d \rightarrow \infty}{\sim} & \frac{1}{\pi^{n} d^{n}}\left(\int_{\operatorname{Gr\mathbb {C}}\left(n-k, \operatorname{ker} d_{\mid x} p\right) \times\left(E \otimes L^{d}\right)_{\mid x}^{*} \backslash\{0\}} e^{-\left|a_{1}^{1}\right|^{2}} \frac{d K \wedge d \lambda}{\pi^{(n-k)(k-1)+k}} \cdots\right. \\
& \left.\ldots \int_{\rho_{x}^{-1}(K, \lambda)}\left|\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{\perp}\right|^{-2}\left|\operatorname{det} d_{\mid \sigma} \rho_{x}^{\perp}\right|^{-2} d \mu_{\mathbb{C}}(\sigma)\right) \frac{\omega^{n}}{n!},
\end{aligned}
$$

with $\left|a_{1}^{1}\right|$ given by (38), see Lemma 2.3.6 as before. Here, $\operatorname{Gr}_{\mathbb{C}}\left(n-k\right.$, $\left.\operatorname{ker} d_{\mid x} p\right)$ denotes the Grassmann manifold of n - k-dimensional complex linear subspaces of ker $d_{\mid x} p$.

From the complex versions of Lemma 2.3.5 and 2.3.6, see Remark 2.3.8 and the relation (38), we deduce that for every $x \in X \backslash(\operatorname{Crit}(p) \cup \operatorname{Base}(p))$ and every $(K, \lambda) \in$ $\operatorname{Gr}\left(n-k, \operatorname{ker} d_{\mid x} p\right) \times\left(E \otimes L^{d}\right)_{\mid x}^{*} \backslash\{0\}$,

$$
\begin{aligned}
& \int_{\rho_{x}^{-1}(K, \lambda)}\left|\operatorname{det} d_{\mid \sigma} e v_{(\sigma, x)}^{\perp}\right|^{-2}\left|\operatorname{det} d_{\mid \sigma} \rho_{x}^{\perp}\right|^{-2} d \mu_{\mathbb{C}}(\sigma) \\
\sim & \frac{\left|a_{1}^{1}\right|^{4} \pi^{n} d^{n}}{\|\lambda\|^{2 k}} \int_{M_{k-1}(\mathbb{C})}\left|\operatorname{det}\left(a_{j}^{i}\right)_{2 \leqslant i, j \leqslant k}\right|^{2(n-k+2)} d \mu\left(a_{j}^{i}\right) \ldots \\
& \cdots \int_{S y m_{\mathbb{C}}(n-k)}\left|\operatorname{det}\left(\tilde{a}_{l m}^{1}\right)_{k+1 \leqslant l, m \leqslant n}\right|^{2} d \mu\left(\tilde{a}_{l m}^{1}\right) .
\end{aligned}
$$

We deduce that $E(\nu)$ is equivalent to

$$
\begin{aligned}
& \frac{\left\|d_{\mid x} p\right\|^{4}}{\left(\pi \delta_{L} d^{n+1}\right)^{2}} \frac{1}{\pi^{(n-k)(k-1)+k}} \operatorname{Vol}\left(\operatorname{Gr}_{\mathbb{C}}(k-1, n-1)\right) \ldots \\
& \ldots E_{k-1}^{\mathbb{C}}\left(|\operatorname{det}|^{2(n-k+2)}\right) e_{\mathbb{C}}(n-k)\left(\int_{\left(E \otimes L^{d}\right)_{|x|}^{*} \backslash\{0\}} \frac{e^{-\left|a_{1}^{1}\right|^{2}}}{\|\lambda\|^{2(k+2)}} d \lambda\right) \frac{\omega^{n}}{n!},
\end{aligned}
$$

where $e_{\mathbb{C}}(n-k)=\int_{S y m_{\mathbb{C}}(n-k)}|\operatorname{det} A|^{2} d \mu_{\mathbb{C}}(A)$ and

$$
E_{k-1}^{\mathbb{C}}\left(|\operatorname{det}|^{2(n-k+2)}\right)=\int_{M_{k-1}(\mathbb{C})}|\operatorname{det} A|^{2(n-k+2)} d \mu_{\mathbb{C}}(A)
$$

Now,

$$
\begin{aligned}
\frac{\left\|d_{\mid x} p\right\|^{4}}{\left(\pi \delta_{L} d^{n+1}\right)^{2}} \int_{\left(E \otimes L^{d}\right)_{\mid x}^{*} \backslash\{0\}} \frac{e^{-\left|a_{1}^{1}\right|^{2}}}{\|\lambda\|^{2 k+4}} d \lambda & =\operatorname{Vol}\left(S^{2 k-1}\right) \frac{\left\|d_{\mid x} p\right\|^{4}}{\left(\pi \delta_{L} d^{n+1}\right)^{2}} \int_{0}^{+\infty} \frac{e^{-\left|a_{1}^{1}\right|^{2}}}{\|\lambda\|^{5}} d\|\lambda\| \\
& =\operatorname{Vol}\left(S^{2 k-1}\right) \int_{0}^{+\infty} e^{-r^{2}} r^{3} d r=\frac{1}{2} \operatorname{Vol}\left(S^{2 k-1}\right)
\end{aligned}
$$

Hence, $E(\nu)$ is equivalent to
$\frac{1}{2 \pi^{(n-k)(k-1)+k}} \operatorname{Vol}\left(\operatorname{Gr}_{\mathbb{C}}(k-1, n-1)\right) \operatorname{Vol}\left(S^{2 k-1}\right) E_{k-1}^{\mathbb{C}}\left(|\operatorname{det}|^{2(n-k+2)}\right) e_{\mathbb{C}}(n-k) \frac{\omega^{n}}{n!}$, where $e_{\mathbb{C}}(n-k)=(n-k+1)$! by Proposition 3.8 of [12], $\operatorname{Vol}\left(S^{2 k-1}\right)=2 \pi^{k} /(k-1)$!,

$$
E_{k-1}^{\mathbb{C}}\left(|\operatorname{det}|^{2(n-k+2)}\right)=\frac{\prod_{j=1}^{k-1} \Gamma((n-k+2)+j)}{\prod_{j=1}^{k-1} \Gamma(j)}=\frac{\prod_{j=n-k+3}^{n+1} \Gamma(j)}{\prod_{j=1}^{k-1} \Gamma(j)}
$$

by formula 15.4.12 of [21] and

$$
\operatorname{Vol}\left(\operatorname{Gr}_{\mathbb{C}}(k-1, n-1)\right)=\frac{\prod_{j=1}^{k-1} \Gamma(j)}{\prod_{j=n-k+1}^{n-1} \Gamma(j)} \pi^{(k-1)(n-k)}
$$

by a computation analogous to the one given in the real case by Remark 3.1.1. We conclude that $E(\nu)$ weakly converges to $\binom{k-1}{n-1} \omega^{n}$, where the convergence is dominated by a function in $L^{1}\left(X, \frac{\omega^{n}}{n!}\right)$, for it has poles of order at most $2(n-k)$ near the critical points of p and at most 2 near the base points, see [13].

Corollary 3.5.2 Under the hypotheses of Theorem 3.5.1, for every generic $\sigma \in$ $\mathbb{R} H^{0}\left(X, E \otimes L^{d}\right)$, let \mid Crit $p_{\mid C_{\sigma}} \mid$ be the number of critical points of $p_{\mid C_{\sigma}}$. Then,

$$
\frac{1}{d^{n}} E\left(\mid \text { Crit } p_{\mid C_{\sigma}} \mid\right) \underset{d \rightarrow \infty}{\sim}\binom{k-1}{n-1} \int_{X} c_{1}(L)^{n} .
$$

Proof. Corollary 3.5.2 follows from Theorem 3.5 .1 by integration of 1 over X. A direct proof can be given though. The modulus of p is a Morse function on $C_{\sigma} \backslash\left(\right.$ Base $\left.(p) \cup F_{0} \cup F_{\infty}\right)$, where F_{0} (resp. F_{∞}) is the fibre of 0 (resp. of ∞) of $p: X \rightarrow \mathbb{C} P^{1}$. Moreover, the index of every critical point of $|p|$ is $n-k$. As in the proofs of Propositions 1 and 2 in [13], we deduce that $E\left(\mid\right.$ Crit $\left.p_{\mid C_{\sigma}} \mid\right)$ is equivalent to $\left|\chi\left(C_{\sigma}\right)\right|$ as d grows to infinity. Now,

$$
\chi\left(C_{\sigma}\right)=\int_{C_{\sigma}} c_{n-k}\left(C_{\sigma}\right)=\int_{X} c_{n-k}\left(C_{\sigma}\right) \wedge c_{k}\left(E \otimes L^{d}\right)
$$

while from the adjunction formula, $c\left(C_{\sigma}\right) \wedge c\left(E \otimes L^{d}\right)_{\mid C_{\sigma}}=c(X)$. Moreover, for $0 \leqslant i \leqslant k, c_{i}\left(E \otimes L^{d}\right)=\binom{k}{i} d^{i} c_{1}(L)^{i}+o\left(d^{i}\right)$, so that

$$
c\left(E \otimes L^{d}\right)=\left(1+d c_{1}(L)\right)^{k}+o\left(\left(1+d c_{1}(L)\right)^{k}\right)
$$

From the formula $(1+x)^{-k}=\sum_{j=0}^{\infty}(-1)^{j} \frac{j(k-1+j)!}{j!(k-1)!} x^{j}$, we then deduce that $c_{n-k}\left(C_{\sigma}\right)=$ $(-1)^{n-k}\binom{n-1}{k-1} d^{n-k} c_{1}(L)^{n-k}+o\left(d^{n-k}\right)$ and finally that

$$
\chi\left(C_{\sigma}\right)=(-1)^{n-k}\binom{n-1}{k-1} d^{n} \int_{X} c_{1}(L)^{n}+o\left(d^{n}\right)
$$

Hence the result.

References

[1] Antonio Auffinger, Gérard Ben Arous, and Jiří Černý, Random matrices and complexity of spin glasses., Commun. Pure Appl. Math. 66 (2013), no. 2, 165201.
[2] Pavel Bleher, Bernard Shiffman, and Steve Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142 (2000), no. 2, 351-395.
[3] E. Bogomolny, O. Bohigas, and P. Leboeuf, Quantum chaotic dynamics and random polynomials, J. Statist. Phys. 85 (1996), no. 5-6, 639-679.
[4] Peter Bürgisser, Average Euler characteristic of random real algebraic varieties, C. R. Math. Acad. Sci. Paris 345 (2007), no. 9, 507-512.
[5] Jean-Pierre Dedieu and Gregorio Malajovich, On the number of minima of a random polynomial, J. Complexity 24 (2008), no. 2, 89-108.
[6] Jean-Pierre Demailly, Estimations L ${ }^{2}$ pour l'opérateur $\bar{\partial}$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 457-511.
[7] Michael R. Douglas, Bernard Shiffman, and Steve Zelditch, Critical points and supersymmetric vacua. I., Commun. Math. Phys. 252 (2004), no. 1-3, 325-358.
[8] __ Critical points and supersymmetric vacua. II: Asymptotics and extremal metrics., J. Differ. Geom. 72 (2006), no. 3, 381-427.
[9] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.
[10] Yan V. Fyodorov, Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices, Phys. Rev. Lett. 92 (2004), no. 24, 240601, 4.
[11] Damien Gayet and Jean-Yves Welschinger, Exponential rarefaction of real curves with many components, Publ. Math. Inst. Hautes Études Sci. (2011), no. 113, 69-96.
[12] , Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, arXiv:1207.1579 (2012).
[13] , , What is the total Betti number of a random real hypersurface?, J. Reine Angew. Math., published online, 10.1515/crelle-2012-0062 (2012).
[14] , Lower estimates for the expected betti numbers of random real hypersurfaces, arXiv:1303.3035 (2013).
[15] Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966.
[16] M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), 314-320.
[17] E. Kostlan, On the distribution of roots of random polynomials, From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), Springer, New York, 1993, pp. 419-431.
[18] Antonio Lerario and Erik Lundberg, Statistics on Hilbert's sixteenth problem, arXiv:212.3823 (2013).
[19] Xiaonan Ma and George Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, vol. 254, Birkhäuser Verlag, Basel, 2007.
[20] Brian Macdonald, Density of complex critical points of a real random $\mathrm{SO}(m+1)$ polynomial, J. Stat. Phys. 141 (2010), no. 3, 517-531.
[21] Madan Lal Mehta, Random matrices, third ed., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004.
[22] John Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405-421.
[23] Fedor Nazarov and Mikhail Sodin, On the number of nodal domains of random spherical harmonics, Amer. J. Math. 131 (2009), no. 5, 1337-1357.
[24] Liviu I. Nicolaescu, Critical sets of random smooth functions on compact manifolds ii, arXiv:1101.5990 (2011).
[25] S. S. Podkorytov, The mean value of the Euler characteristic of an algebraic hypersurface, Algebra i Analiz 11 (1999), no. 5, 185-193.
[26] Bernard Shiffman and Steve Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999), no. 3, 661-683.
[27] , Number variance of random zeros on complex manifolds, Geom. Funct. Anal. 18 (2008), no. 4, 1422-1475.
[28] M. Shub and S. Smale, Complexity of Bezout's theorem. II. Volumes and probabilities, Computational algebraic geometry (Nice, 1992), Progr. Math., vol. 109, Birkhäuser Boston, 1993, pp. 267-285.
[29] Mikhail Sodin and Boris Tsirelson, Random complex zeroes. I. Asymptotic normality, Israel J. Math. 144 (2004), 125-149.
[30] Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), no. 1, 99-130.
[31] Steve Zelditch, Real and complex zeros of Riemannian random waves, Spectral analysis in geometry and number theory, Contemp. Math., vol. 484, Amer. Math. Soc., Providence, RI, 2009, pp. 321-342.

Université de Lyon
CNRS UMR 5208
Université Lyon 1
Institut Camille Jordan
43 blvd. du 11 novembre 1918
F-69622 Villeurbanne cedex
France
gayet@math.univ-lyon1.fr
welschinger@math.univ-lyon1.fr

