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Abstract: In this paper we study multi-task kernel ridge regression and
try to understand when the multi-task procedure performs better than
the single-task one, in terms of averaged quadratic risk. In order to do
so, we compare the risks of the estimators with perfect calibration, the
oracle risk. We are able to give explicit settings, favorable to the multi-task
procedure, where the multi-task oracle performs better than the single-
task one. In situations where the multi-task procedure is conjectured to
perform badly, we also show the oracle does so. We then complete our
study with simulated examples, where we can compare both oracle risks in
more natural situations. A consequence of our result is that the multi-task
ridge estimator has a lower risk than any single-task estimator, in favorable
situations.
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1. Introduction

Increasing the sample size is the most common way to improve the performance
of statistical estimators. In some cases (see, for instance, the experiments of
Evgeniou et al. [13] on customer data analysis or those of Jacob et al. [18] on
molecule binding problems), having access to some new data may be impossible,
often due to experimental limitations. One way to circumvent those constraints
is to use datasets from several related (and, hopefully, “similar”) problems, as
if it gave additional (in some sense) observations on the initial problem. The
statistical methods using this heuristic are called “multi-task” techniques, as
opposed to “single-task” techniques, where every problem is treated one at a
time. In this paper, we study kernel ridge regression in a multi-task framework
and try to understand when multi-task can improve over single-task.

The first trace of a multi-task estimator can be found in the work of Stein
[28]. In this article, Charles Stein showed that the usual maximum-likelihood
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estimator of the mean of a Gaussian vector (of dimension larger than 3, ev-
ery dimension representing here a task) is not admissible—that is, there exists
another estimator that has a lower risk for every parameter. He showed the exis-
tence of an estimator that uniformly attains a lower quadratic risk by shrinking
the estimators along the different dimensions towards an arbitrary point. An ex-
plicit form of such an estimator was given by James and Stein [19], yielding the
famous James-Stein estimator. This phenomenon, now known as the “Stein’s
paradox”, was widely studied in the following years and the behaviour of this
estimator was confirmed by empirical studies, in particular the one from Efron
and Morris [12]. This first example clearly shows the goals of the multi-task pro-
cedure: an advantage is gained by borrowing information from different tasks
(here, by shrinking the estimators along the different dimensions towards a com-
mon point), the improvement being scored by the global (averaged) squared risk.
Therefore, this procedure does not guarantee individual gains on every task, but
a global improvement on the sum of those task-wise risks.

We consider here p ≥ 2 different regression tasks, a framework we refer to as
“multi-task” regression, and where the performance of the estimators is mea-
sured by the fixed-design quadratic risk. Kernel ridge regression is a classical
framework to work with and comes with a natural norm, which often has desir-
able properties (such as, for instance, links with regularity). This norm is also a
natural “similarity measure” between the regression functions. Evgeniou et al.
[13] showed how to extend kernel ridge regression to a multi-task setting, by
adding a regularization term that binds the regression functions along the dif-
ferent tasks together. One of the main questions that is asked is to assert whether
the multi-task estimator has a lower risk than any single-task estimator. It was
recently proved by Solnon et al. [27] that a fully data-driven calibration of this
procedure is possible, given some assumptions on the set of matrices used to
regularize—which correspond to prior knowledge on the tasks. Under those as-
sumptions, the estimator is showed to verify an oracle inequality, that is, its risk
matches (up to constants) the best possible one, the oracle risk. Thus, it suffices
to compare the oracle risks for the multi-task procedure and the single-task one
to provide an answer to this question.

The multi-task regression setting, which could also be called “multivariate
regression”, has already been studied in different papers. It was first introduced
by Brown and Zidek [9] in the case of ridge regression, and then adapted by
Evgeniou et al. [13] in its kernel form. Another view of the meaning of “task
similarity” is that the functions all share a few common features, and can be
expressed by a similar regularization term. This idea was expressed in a linear
set up (also known as group lasso) by Obozinski et al. [25] and Lounici et al. [23],
in multiple kernel learning by Koltchinskii and Yuan [21] or in semi-supervised
learning by Ando and Zhang [1]. The kernel version of this was also studied [2,
18], a convex relaxation leading to a trace norm regularization and allowing the
calibration of parameters. Another point of view was brought by Ben-David and
Schuller [8], defining a multi-task framework in classification, two classification
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problems being similar if, given a group of permutations of the input set, a
dataset of the one can be permuted in a dataset of the other. They followed the
analysis of Baxter [7], which shows very general bounds on the risk of a multi-
task estimator in a model-selection framework, the sets of all models reflecting
the insight the statistician has on the multi-task setting.

Advantages of the multi-task procedure over the single task one were first
shown experimentally in various situations by, for instance, Thrun and O’Sullivan
[29], Caruana [11] or Bakker and Heskes [6]. For classification, Ben-David and
Schuller [8] compare upper bounds on multi-task and single-task classification
errors, and showed that the multi-task estimator could, in some settings, need
less training data to reach the same upper bounds. The low dimensional linear
regression setting was analysed by Rohde and Tsybakov [26], who showed that,
under sparsity assumptions, restricted isometry conditions and using the trace-
norm regularization, the multi-task estimator achieves the rates of a single-task
estimator with a np-sample. Liang et al. [22] also obtained a theoretical crite-
rion, applicable to the linear regression setting and unfortunately non observ-
able, which tells when the multi-task estimator asymptotically has a lower risk
than the lower one. A step was recently carried by Feldman et al. [14] in a kernel
setting where every function is estimated by a constant. They give a closed-form
expression of the oracle for two tasks and run simulations to compare the risk
of the multi-task estimator to the risk of the single-task estimator.

In this article we study the oracle multi-task risk and compare it to the oracle
single-task risk. We then find situations where the multi-task oracle is proved
to have a lower risk than the single-task oracle. This allows us to better under-
stand which situation favors the multi-task procedure and which does not. After
having defined our model (Section 2), we write down the risk of a general multi-
task ridge estimator and see that it admits a convenient decomposition using
two key elements: the mean of the tasks and the resulting variance (Section 3).
This decomposition allows us to optimize this risk and get a precise estimation
of the oracle risk, in settings where the ridge estimator is known to be minimax
optimal (Section 4). We then explore several repartitions of the tasks that give
the latter multi-task rates, study their single-task oracle risk (Section 5) and
compare it to their respective multi-task rates. This allows us to discriminate
several situations, depending whether the multi-task oracle either outperforms
its single-task counterpart, underperforms it or whether both behave similarly
(Section 6). We also show that, in the cases favorable to the multi-task ora-
cle detailed in the previous sections, the estimator proposed by Solnon et al.
[27] behaves accordingly and achieves a lower risk than the single-task oracle
(Section 7). We finally study settings where we can no longer explicitly study
the oracle risk, by running simulations, and we show that the multi-task oracle
continues to retain the same virtues and disadvantages as before (Section 8).

We now introduce some notations, which will be used throughout the article.

• The integer n is the sample size, the integer p is the number of tasks.
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• For any n× p matrix Y , we define

y = vec(Y ) := (Y1,1, . . . , Yn,1, Y1,2, . . . , Yn,2, . . . , Y1,p, . . . , Yn,p) ∈ R
np,

that is, the vector in which the columns Y j := (Yi,j)1≤i≤n are stacked.
• Mn(R) is the set of all real square matrices of size n.
• Sp(R) is the set of symmetric matrices of size p.
• S+

p (R) is the set of symmetric positive-semidefinite matrices of size p.
• S++

p (R) is the set of symmetric positive-definite matrices of size p.
• 1 is the vector of size p whose components are all equal to 1.
• ‖·‖2 is the usual Euclidean norm on R

k for any k ∈ N: ∀u ∈ R
k, ‖u‖22 :=∑k

i=1 u
2
i .

• For two real sequences (un) and (vn) we write un ≍ vn if there exists
positive constants ℓ and L such that, for a large enough n, ℓvn ≤ un ≤ Lvn.

• For (a, b) ∈ R
2, a ∧ b denotes the minimum of a and b.

2. Kernel ridge regression in a multi-task setting

We consider here that each task is treated as a kernel ridge-regression problem
and we will then extend the single-task ridge-regression estimator in a multi-task
setting.

2.1. Model and estimator

Let Ω be a set, A be a σ-algebra on Ω and P be a probability measure on A. We
observe Dn = (Xi, Y

1
i , . . . , Y

p
i )

n
i=1 ∈ (X × R

p)n. For each task j ∈ {1, . . . , p},
Dj

n = (Xi, y
j
i )

n
i=1 is a sample with distribution Pj, whose first marginal distri-

bution is P , for which a simple regression problem has to be solved.
We assume that for every j ∈ {1, . . . , p}, F j ∈ L2(P), Σ is a symmetric

positive-definite matrix of size p such that the vectors (εji )
p
j=1 are independent

and identically distributed (i.i.d.) with normal distribution N (0,Σ), with mean
zero and covariance matrix Σ, and

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}, yji = F j(Xi) + εji . (1)

We suppose here, for simplicity, that Σ = σ2Ip, with σ2 ∈ R
⋆
+.

Remark 1. This implies that the outputs of every task are independent, which
slightly simplifies the setting but allow lighter calculations. It is to be noted,
though, that the analysis carried afterwards can still take place without this
assumption. This can be dealt by diagonalizing Σ, majoring the quantities of
interest using the largest eigenvalue of Σ and minoring those quantities by its
smallest eigenvalue. The comparisons shown in Section 6 are still valid, only be-
ing enlarged by the condition number of Σ. A fully data-driven estimation of Σ
was proposed by Solnon et al. [27].
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We consider here a fixed-design setting, that is, we consider the input points
as fixed and want to predict the output of the functions F j on those input
points only. The analysis could be transfered to the random-design setting by
using tools developped by Hsu et al. [17].

For an estimator (F̂ 1, . . . , F̂ p), the natural quadratic risk to consider is

E


 1

np

p∑

j=1

n∑

i=1

(F̂ j(Xi)− F j(Xi))
2|(X1, . . . , Xn)


 .

For the sake of simplicity, all the expectations that follow will implicitly be writ-
ten conditional on (X1, . . . , Xn). This corresponds to the fixed-design setting,
which treats the input points as fixed.

Remark 2. We will use the following notations from now on :

f = vec
(
(f j(Xi))i,j

)
, f j = vec

(
(f j(Xi))

n
i=1

)
and y = vec

(
(Y j

i )i,j

)
,

so that, when using such vectorized notations, the elements are stacked task by
task, the elements refering to the first task always being stored in the first entries
of the vector, and so on.

We want to estimate f using elements of a particular function set. Let F ⊂
L2(P) be a reproducing kernel Hilbert space (RKHS) [4], with kernel k and
feature map Φ : X → F , which give us the positive semidefinite kernel matrix
K = (k(Xi, Xℓ))1≤i,ℓ≤n ∈ S+

n (R).
As done by Solnon et al. [27] we extend the multi-task estimators generalizing

the ridge-regression used in Evgeniou et al. [13]. Given a positive-definite matrix
M ∈ S++

p (R), we consider the estimator

F̂M ∈ argmin
g∈Fp

{
1

np

n∑

i=1

p∑

j=1

(yji − gj(Xi))
2

︸ ︷︷ ︸
Empirical risk

+

p∑

j=1

p∑

ℓ=1

Mj,l〈gj , gℓ〉F
︸ ︷︷ ︸

Regularization term

}
. (2)

This leads to the fixed-design estimator

f̂M = AMy ∈ R
np ,

with

AM = AM,K := K̃M (K̃M + npInp)
−1 = (M−1 ⊗K)

(
(M−1 ⊗K) + npInp

)−1
,

where ⊗ denotes the Kronecker product (see the textbook of Horn and Johnson
[16] for simple properties of the Kronecker product).

Remark 3. This setting also captures the single-task setting. Taking j ∈ {1, . . . , p},
f j = (f j(X1), . . . , f

j(Xn))
⊤ being the target-signal for the jth task and yj =

(yj1, . . . , y
j
n)

⊤ being the observed output of the jth task, the single-task estimator
for the jth task becomes (for λ ∈ R+)

f̂ j
λ = Aλy

j = K(K + nλIn)
−1yj .
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2.2. Two regularization terms for one problem

A common hypothesis that motivates the use of multi-task estimators is that
all the target functions of the different tasks lie in a single cluster (that is, the
p functions that are estimated are all close with respect to the norm defined
on F). Two different regularization terms are usually considered in this setting:

• one that penalizes the norms of the p function and their differences, in-
troduced by Evgeniou et al. [13], leading to the criterion (with (gj)pj=1 ∈
Fp, (α, β) ∈ (R+)

2)

1

np

n∑

i=1

p∑

j=1

(yji − gj(Xi))
2 +

α

p

p∑

j=1

∥∥gj
∥∥2
F +

β

2p

p∑

j=1

p∑

k=1

∥∥gj − gk
∥∥2
F ; (3)

• one that penalizes the norms of the average of the p functions and the
resulting variance, leading to the criterion (with (gj)pj=1 ∈ Fp, (λ, µ) ∈
(R+)

2)

1

np

n∑

i=1

p∑

j=1

(yji−gj(Xi))
2+λ

∥∥∥∥∥

∑p
j=1 g

j

p

∥∥∥∥∥

2

F
+µ



∑p

j=1

∥∥gj
∥∥2
F

p
−
∥∥∥∥∥

∑p
j=1 g

j

p

∥∥∥∥∥

2

F


 .

(4)

As we will see, those two penalties are closely related. Lemma 1 indeed shows
that the two former penalties can be obtained as a special case of Equation (2),
the matrix M being respectively

MSD(α, β) :=
α

p

11⊤

p
+

α+ pβ

p

(
Ip −

11⊤

p

)

and

MAV(λ, µ) :=
λ

p

11⊤

p
+

µ

p

(
Ip −

11⊤

p

)
.

Thus, we see that those two criteria are related, since MSD(α, β) = MAV(α, α+
pβ) for every (α, β). Minimizing Equations (3) and (4) over Fp respectly give

the ridge estimators f̂SD(α, β) = AMSD(α,β)Y and f̂AV(λ, µ) = AMAV(λ,µ)Y .

Remark 4. We can now see that the regularization terms used in Equations (3)
and (4) are equivalent when the parameters are not constrained to be positive.
However, if one desires to use the regularization (3) (that is, with λ = α and
µ = α + pβ) and seeks to calibrate those parameters by taking them to be non-
negative (which is to be expected if they are seen as regularization parameters),
the following problems could occur:

• if the optimization is carried over (λ, µ), then the selected parameter β =
µ−λ
p may be negative;

• conversely, if the risk of the estimator defined by Equation (3) is optimized
over the parameters (α, α+pβ) with the constraints α ≥ 0 and β ≥ 0, then
the infimum over R

2
+ could never be approached.
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We will also show in the next section that the risk of f̂AV(λ, µ) nicely decom-
poses in two parts, the first part depending only on λ and the second only on µ,
which is not the case for f̂SD(α, β) because of the aforementioned phenomenon.
This makes us prefer the second formulation and use the matrices MAV instead
of the matrices MSD.

3. Decomposition of the risk

A fully data-driven selection of the hyper-parameters was proposed by Arlot and
Bach [3], for the single-task ridge estimator, and by Solnon et al. [27] for the
multi-task estimator. The single-task estimator is shown to have a risk which is
close to the single-task oracle-risk (with a fixed-design)

R
⋆
ST = inf

(λ1,...,λp)∈R
p
+





1

np
E




p∑

j=1

∥∥∥f̂ j
λj − f j

∥∥∥
2

2





 ,

while the multi-task estimator is shown to have a risk which is close to the
multi-task oracle risk

R
⋆
MT = inf

(λ,µ)∈R2
+

{
1

np
E

[∥∥∥f̂MAV(λ,µ) − f
∥∥∥
2

2

]}
.

The purpose of this paper is to closely study both oracle risks and, ultimately,
to compare them. We show in this section how to decompose the risk of an
estimator obtained by minimizing Equation (4) over (gj)pj=1 ∈ Fp. A key point
of this analysis is that the matrix MAV(λ, µ) naturally decomposes over two
orthogonal vector-subspaces of R

p. By exploiting this decomposition we can
simply use the classical bias-variance decomposition to analyse the Euclidean
risk of those linear estimators.

3.1. Eigendecomposition of the matrix MAV(λ, µ)

In this section we show that all the matrices MAV(λ, µ) have the same eigen-
vectors, which gives us a simple decomposition of the matrices AMAV(λ,µ). Let

us denote by (e1, . . . , ep) the canonical basis of Rp. The eigenspaces of p−111⊤

are orthogonal and correspond to:

• span {e1 + · · ·+ ep} associated to eigenvalue 1,
• span {e2 − e1, . . . , ep − e1} associated to eigenvalue 0.

Thus, with (λ, µ) ∈ (R+)2, we can diagonalize in an orthonormal basis any ma-
trixMAV(λ, µ) asM = MAV(λ, µ) = P⊤Dλ

p ,µp
P , withD = Diag{λ

p ,
µ
p , . . . ,

µ
p } =

Dλ
p ,µp

. Let us also diagonalize K in an orthonormal basis : K = Q⊤∆Q,

∆ = Diag{γ1, . . . , γn}. Then

AM = AMAV(λ,µ) = (P⊤ ⊗Q⊤)
[
(D−1 ⊗∆)

(
(D−1 ⊗∆) + npInp

)−1
]
(P ⊗Q) .
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We can then note that (D−1⊗∆)
(
(D−1 ⊗∆) + npInp

)−1
is a diagonal matrix,

whose diagonal entry of index (j − 1)n+ i (i ∈ {1, . . . , n}, j ∈ {1, . . . , p}) is
{ γi

γi+nλ if j = 1 ,
γi

γi+nµ if j > 1 .

In the following section we will use the following notations :

• for every j ∈ {1, . . . , p}, (hj
i )

n
i=1 denotes the coordinates of (f j(Xi))

n
i=1 in

the basis that diagonalizes K,
• for every i ∈ {1, . . . , n}, (νji )pj=1 denotes the coordinates of (hj

i )
p
j=1 in the

basis that diagonalizes M .

Or, to sum up, we have :

∀j ∈ {1, . . . , p},



hj
1
...
hj
n


 = Q



f j(X1)

...
f j(Xn)




and

∀i ∈ {1, . . . , n},



ν1i
...
νpi


 = P



h1
i
...
hp
i


 .

With the usual notation νj = (νj1 , . . . , ν
j
n)

⊤ and f , we get, by using elementary
properties of the Kronecker product,

ν =



ν1

...
νp


 = (P ⊗Q)f .

3.2. Bias-variance decomposition

We now use a classical bias-variance decomposition of the risk of f̂AV(λ, µ) and
show that the quantities introduced above allow a simple expression of this risk.
For any matrix M ∈ S++

p (R), the classical bias-variance decomposition for the

linear estimator f̂M = AMy is

1

np
E

[∥∥∥f̂M − f
∥∥∥
2

2

]
=

1

np
‖(AM − Inp)f‖22 +

1

np
tr(A⊤

MAM · (Σ⊗ In))

=
1

np
‖(AM − Inp)f‖22

︸ ︷︷ ︸
Bias

+
σ2

np
tr(A⊤

MAM )

︸ ︷︷ ︸
Variance

.

We can now compute both bias and variance of the estimator f̂AV(λ, µ) by
decomposing AMAV(λ,µ) on the eigenbasis introduced in the previous section.
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np×Variance :

σ2 tr(A⊤
MAM )

= σ2 tr

(
(P ⊗Q)⊤

[
(D−1 ⊗∆)

(
(D−1 ⊗∆) + npInp

)−1
]2

(P ⊗Q)

)

= σ2 tr

([
(D−1 ⊗∆)

(
(D−1 ⊗∆) + npInp

)−1
]2)

= σ2
n∑

i=1

[(
γi

γi + nλ

)2

+ (p− 1)

(
γi

γi + nµ

)2
]

.

np×Bias :

‖(AM − Inp)f‖22
= ‖(P ⊗Q)⊤

[
(D−1 ⊗K)

(
(D−1 ⊗K) + npInp

)−1 − Inp

]
(P ⊗Q)f‖22

= ‖
[
(D−1 ⊗∆)

(
(D−1 ⊗∆) + npInp

)−1 − Inp

]
ν‖22

= (nλ)2
n∑

i=1

(ν1i )
2

(γi + nλ)2
+ (nµ)2

n∑

i=1

p∑

j=2

(νji )
2

(γi + nµ)2

= (nλ)2
n∑

i=1

(ν1i )
2

(γi + nλ)2
+ (nµ)2

n∑

i=1

∑p
j=2(ν

j
i )

2

(γi + nµ)2
.

Thus, the risk of f̂AV(λ, µ) becomes

nλ2
n∑

i=1

(ν1
i )

2

p

(γi + nλ)2
+

σ2

np

n∑

i=1

(
γi

γi + nλ

)2

+nµ2
n∑

i=1

∑p
j=2(ν

j
i )

2

p

(γi + nµ)2
+

σ2(p− 1)

np

n∑

i=1

(
γi

γi + nµ

)2

.

(5)

This decomposition has two direct consequences:

• the oracle risk of the multi-task procedure can be obtained by optimizing
Equation (5) independently over λ and µ;

• the estimator f̂AV can be calibrated by independently calibrating two pa-
rameters.

It is now easy to optimize over the quantities in Equation (5). An interesting
fact is that both sides have a natural and interesting interpretation, which we
give now.
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3.3. Remark

To avoid further ambiguities and to simplify the formulas we introduce the
following notations for every i ∈ {1, . . . , n}:

µi = ν1i =
h1
i + · · ·+ hp

i√
p

and

ς2i =

∑p
j=1(h

j
i )

2

p
−
(∑p

j=1 h
j
i

p

)2

=
1

p

p∑

j=1

(
hj
i −

∑p
j=1 h

j
i

p

)2

,

so that

pς2i =

p∑

j=2

(νji )
2 .

Remark 5. We can see that for every i ∈ {1, . . . , n}, µi/
√
p is the average of

the p target functions f j, expressed on the basis diagonalizing K. Likewise, ς2i
can be seen as the variance between the p target functions f j (which does not
come from the noise).

Henceforth, the risk of f̂AV(λ, µ) over (λ, µ) is decoupled into two parts.

• With the parameter λ, a part which corresponds to the risk of a single-task
ridge estimator, which regularizes the mean of the tasks functions, with a
noise variance σ2/p:

nλ2
n∑

i=1

µ2
i

p

(γi + nλ)2
+

σ2

np

n∑

i=1

(
γi

γi + nλ

)2

. (6)

• With the parameter µ, a part which corresponds to the risk of a single-
task ridge estimator, which regularizes the variance of the tasks functions,
with a noise variance (p− 1)σ2/p:

nµ2
n∑

i=1

ς2i
(γi + nµ)2

+
(p− 1)σ2

np

n∑

i=1

(
γi

γi + nµ

)2

. (7)

Remark 6. Our analysis can also be used on any set of positive semi-definite
matrices M that are jointly diagonalizable on an orthonormal basis, as was{
MAV(λ, µ), (λ, µ) ∈ R

2
+

}
. The element of interest then becomes the norms of

the projections of the input tasks on the different eigenspaces (here, the mean
and the resulting variance of the p tasks). An example of such a set is when the
tasks are known to be split into several clusters, the assignement of each task to
its cluster being known to the statistician. The matrices that can be used then
regularize the mean of the tasks and, for each cluster, the variance of the tasks
belonging to this cluster.
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4. Precise analysis of the multi-task oracle risk

In the latter section we showed that, in order to obtain the multi-task risk, we
just had to optimize several functions, which have the form of the risk of a kernel
ridge estimator. The risk of those estimators has already been widely studied.
Johnstone [20] (see also the article of Caponnetto and De Vito [10] for random
design) showed that, for a single-task ridge estimator, if the coefficients of the
decomposition of the input function on the eigenbasis of the kernel decrease
as i−2δ, with 2δ > 1, then the minimax rates for the estimation of this imput
function is of order n1/2δ−1. The kernel ridge estimator is then known to be
minimax optimal, under certain regularity assumptions (see the work of Bach
[5] for more details). If the eigenvalues of the kernel are known to decrease as
i−2β, then a single-task ridge estimator is minimax optimal under the following
assumption:

1 < 2δ < 4β + 1 . (HM(β, δ))

The analysis carried in the former section shows that the key elements to
express this risk are the components of the average of the signals (µi) and the
components of the variance of the signals (ςi) on the basis that diagonalises the
kernel matrix K, together with the eigenvalues of this matrix (γi). It is then
natural to impose the same natural assumptions that make the single-task ridge
estimator optimal on those elements. We first suppose that the eigenvalues of
the kernel matrix have a polynomial decrease rate:

∀i ∈ {1, . . . , n}, γi = ni−2β . (HK(β))

Then, we assume that the the components of the average of the signals and the
variance of the signals also have a polynomial decrease rate:

∀i ∈ {1, . . . , n},
{

µ2
i

p = C1ni
−2δ

ς2i = C2ni
−2δ

. (HAV(δ, C1, C2))

Remark 7. We assume for simplicity that both Assumptions (HK(β)) and
(HAV(δ, C1, C2)) hold in equality, although the equivalence ≍ is only needed.

Example 1. This example, related to Assumptions (HAV(δ, C1, C2)) and
(HK(β)) by taking β = m and 2δ = k + 2, is detailed by Wahba [30] and by
Gu [15]. Let P (2π) the set of all square-integrable 2π-periodic functions on R,

m ∈ N
⋆ and define H =

{
f ∈ P (2π) , f

(m)
|[0,2π] ∈ L2 [0, 2π]

}
. This set H has a

RKHS structure, with a reproducing kernel having the Fourier base functions
as eigenvectors. The i-th eigenvalue of this kernel is i−2m. For any function
f ∈ P [0, 2π]∩Ck [0, 2π], then its Fourier coefficient are O(i−k). For instance, if
f ∈ P [0, 2π] such that ∀x ∈ [−π, π] , f (k)(x) = |x|, then its Fourier coefficients
are ≍ i−(k+2).
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Under Assumptions (HK(β)) and (HAV(δ, C1, C2)), we can now more pre-
cisely express the risk of a multi-task estimator. Equation (6) thus becomes

nλ2
n∑

i=1

µ2
i

p

(γi + nλ)2
+

σ2

np

n∑

i=1

(
γi

γi + nλ

)2

= nλ2
n∑

i=1

C1ni
−2δ

(ni−2β + nλ)2
+

σ2

np

n∑

i=1

(
ni−2β

ni−2β + nλ

)2

= C1λ
2

n∑

i=1

i4β−2δ

(1 + λi2β)2
+

σ2

np

n∑

i=1

1

(1 + λi2β)
2

= R(n, p, σ2, λ, β, δ, C1) ,

while Equation (7) becomes

nµ2
n∑

i=1

ς2i
(γi + nµ)2

+
(p− 1)σ2

np

n∑

i=1

(
γi

γi + nµ

)2

= nµ2
n∑

i=1

C2ni
−2δ

(ni−2β + nµ)2
+

(p− 1)σ2

np

n∑

i=1

(
ni−2β

ni−2β + nµ

)2

= C2µ
2

n∑

i=1

i4β−2δ

(1 + µi2β)2
+

(p− 1)σ2

np

n∑

i=1

1

(1 + µi2β)
2

= R(n, p, (p− 1)σ2, µ, β, δ, C2) ,

with

R(n, p, σ2, x, β, δ, C) = Cx2
n∑

i=1

i4β−2δ

(1 + xi2β)2
+

σ2

np

n∑

i=1

1

(1 + xi2β)
2 . (8)

Remark 8. It is to be noted that the function R corresponds to the risk of a
single-task ridge estimator when the decomposition of the input function on the
eigenbasis of K has i−2δ for coefficients and when p = 1. Thus, studying R will
allow us to derive both single-task and multi-task oracle rates.

4.1. Study of the optimum of R(n, p, σ2, ·, β, δ, C)

We just showed that the function R(n, p, σ2, ·, β, δ, C) was suited to derive both
single-task and multi-task oracle risk. Bach [5] showed how to obtain a majo-
ration on the function R(n, p, σ2, ·, β, δ, C), so that its infimum was showed to
match the minimax rates under Assumption (HM(β, δ)).

In this section, we first propose a slightly more precise upper bound of this
risk function. We then show how to obtain a lower bound on this infimum
that matches the aforementioned upper bound. This will be done by precisely
localizing the parameter minimizing R(n, p, σ2, ·, β, δ, C).

Let us first introduce the following notation:
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Definition 1.

R⋆(n, p, σ2, β, δ, C) = inf
λ∈R+

{
R(n, p, σ2, λ, β, δ, C)

}
.

We now give the upper bound on R⋆(n, p, σ2, β, δ, C). For simplicity, we will
denote by κ(β, δ) a constant, defined in Equation (24), which only depends on
β and δ.

Property 1. Let n and p be positive integers, σ, β and δ positive real numbers
such that (HM(β, δ)), (HK(β)) and (HAV(δ, C1, C2)) hold. Then,

R⋆(n, p, σ2, β, δ, C) ≤
(
21/2δ

(np
σ2

)1/2δ−1

C1/2δκ(β, δ)

)
∧ σ2

p
. (9)

Proof. Property 1 is proved in Section C of the appendix.

In the course of showing Property 1, we obtained an upper bound on the risk
function R that holds uniformly on R+. Obtaining a similar (up to multiplicative
constants) lower bound that also holds uniformly on R+ is unrealistic. However,
we will be able to lower bound R⋆ by showing that R is minimized by an optimal
parameter λ⋆ that goes to 0 as n goes to +∞.

Property 2. If Assumption (HM(β, δ)) holds, the risk R(n, p, σ2, ·, β, δ, C) at-
tains its global minimum over R+ on [0, ε

(
np
σ2

)
], with

ε
(np
σ2

)
=
√
C(1/2δ)−121/2δκ(β, δ)× 1

(
np
σ2

)1/2−(1/4δ)

(
1 + η

(np
σ2

))
,

where η(x) goes to 0 as x goes to +∞.

Proof. Property 2 is shown in Section D of the appendix.

Remark 9. Thanks to the assumption made on δ, 1
2δ − 1 < 0 so that

(
np
σ2

) 1
2δ−1

goes to 0 as np
σ2 goes to +∞. This allows us to state that, if the other parameters

are constant, λ⋆ goes to 0 as the quantity np
σ2 goes to +∞.

We can now give a lower bound on R⋆(n, p, σ2, β, δ, C). We will give two
versions of this lower bound. First, we state a general result.

Property 3. For every (C, β, δ) such that 1 < 2δ < 4β holds, there exits an
integer N and a constant α ∈ (0, 1) such that, for every for every (n, p, σ2)
verifying np

σ2 ≥ N , we have

R⋆(n, p, σ2, β, δ, C) ≥
(
α
(np
σ2

)1/2δ−1

C1/2δκ(β, δ)

)
∧ σ2

4p
. (10)

Proof. Property 3 is proved in Section E.3 of the appendix.
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Remark 10. It is to be noted that N and α only depend on β and δ. We can
also remark that α can be taken arbitrarily close to

∫ 1

0
u

1
2β

−1

(1+u)2 du

∫ +∞
0

u
1
2β

−1

(1+u)2 du
∧
∫ 1

0
u

1−2δ
2β

+1

(1+u)2 du

∫ +∞
0

u
1−2δ
2β

+1

(1+u)2 du

.

Numerical computations show that, by taking β = δ = 2, this constant is larger
than 0.33.

Remark 11. The assumption made on β and δ is slighlty more restrictive than
(HM(β, δ)), under which the upper bound is shown to hold and under which the
single-task estimator is shown to be minimax optimal.

We are now ensured that R attains its global minimum on R+, thus we can
give the following definition.

Definition 2. For every n, p, σ2, δ, β and C, under the assumption of Prop-
erty 2, we introduce

λ⋆
R ∈ argmin

λ∈R+

{
R(n, p, σ2, λ, β, δ, C)

}
.

We now give a slightly refined version of Property 3, by discussing whether
this optimal parameter λ⋆

R is larger or lower than the threshold n−2β . This
allows us to better understand the effect of regularizarion on the oracle risk R⋆.

Property 4. For every (β, δ) such that 4β > 2δ > 1, integers N1 and N2 exist
such that

1. for every (n, p, σ2) verifying np
σ2 ≥ N1 and n1−2δ × p

σ2 ≤ 1
N2

, then

λ⋆
R ≥ 1

n2β

and

R⋆(n, p, σ2, β, δ, C) ≍
(
σ2

np

)1−1/2δ

.

2. for every (n, p, σ2) verifying np
σ2 ≥ N1 and n1−2δ × p

σ2 ≥ N2, then

λ⋆
R ≤ 1

n2β

and

R⋆(n, p, σ2, β, δ, C) ≍ R(n, p, σ2, 0, β, δ, C) ≍ σ2

p
;

Proof. Property 4 is proved in Section E.4 of the appendix.

Remark 12. If p ≤ nσ2 and δ > 1 then we are in the first case, for a large
enough n. This is a case where regularization has to be employed in order to
obtain optimal convergence rates.
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Remark 13. If σ2 and n are fixed and p goes to +∞ then we are in the second
case. It is then useless to regularize the risk, since the risk can only be lowered
by a factor 4. This also corresponds to a single-task setting where the noise
variance σ2 is very small and where the estimation problem becomes trivial.

4.2. Multi-task oracle risk

We can now use the upper and lower bounds on R⋆ to control the oracle risk of
the multi-task estimator. We define

λ⋆ ∈ argmin
λ∈R+

{
R(n, p, σ2, λ, β, δ, C1)

}

and
µ⋆ ∈ argmin

µ∈R+

{
R(n, p, (p− 1)σ2, µ, β, δ, C2)

}
.

Property 2 ensures that λ⋆ and µ⋆ exist, even though they are not necessarily
unique. The oracle risk then is

R
⋆
MT = inf

(λ,µ)∈R2
+

{
1

np
E

[∥∥∥f̂MAV(λ,µ) − f
∥∥∥
2

2

]}
=

1

np
E

[∥∥∥f̂MAV(λ⋆,µ⋆) − f
∥∥∥
2

2

]
.

We now state the main result of this paper, which simply comes from the analysis
of R⋆ performed above.

Theorem 1. For every n, p, C1, C2, σ
2, β and δ such that Assumption (HM(β, δ))

holds, we have

R
⋆
MT ≤ 21/2δ

(np
σ2

)1/2δ−1

κ(β, δ)
[
C

1/2δ
1 + (p− 1)1−(1/2δ)C

1/2δ
2

]
. (11)

Furthermore, constants N and α ∈ (0, 1) exist such that, if n ≥ N , p/σ2 ≤ n
and 2 < 2δ < 4β, we have

R
⋆
MT ≥ α

(np
σ2

)1/2δ−1

κ(β, δ)
[
C

1/2δ
1 + (p− 1)1−(1/2δ)C

1/2δ
2

]
. (12)

Proof. The risk of the multi-task estimator f̂MAV(λ,µ) can be written as

R(n, p, σ2, λ, β, δ, C1) +R(n, p, (p− 1)σ2, µ, β, δ, C2) .

We then apply Properties 1 and 3, since p/σ2 ≤ n implies that p/(p− 1)σ2 ≤ n.
The assumption δ > 1 ensures that the first setting of Property 4 holds.

Remark 14. An interesting fact is that the oracle multi-task risk is of the order
(np/σ2)1/2δ−1. This corresponds to the risk of a single-task ridge estimator with
sample size np.

Remark 15. As noted before, the assumption under which the lower bound
holds is slightly stronger than Assumption (HM(β, δ)).
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5. Single-task oracle risk

In the former section we obtained a precise approximation of the multi-task
oracle risk R

⋆
MT. We would now like to obtain a similar approximation for the

single-task oracle risk R
⋆
ST. In the light of Section 3, the only element we need

to obtain the oracle risk of task j ∈ {1, . . . , p} is the expression of (hj
i )

n
i=1,

that is, the coordinates of (f j(Xi))
n
i=1 on the eigenbasis of K. Unfortunately,

Assumption (HAV(δ, C1, C2)) does not correspond to one set of task functions
(f1, . . . , fp). Thus, since several single-task settings can lead to the same multi-
task oracle risk, we now explicitly define two repartitions of the task functions
(f1, . . . , fp), for which the single-task oracle risk will be computed.

• “2 points”: suppose, for simplicity, that p is even and that

f1 = · · · = fp/2 and fp/2+1 = · · · = fp . (2Points)

• “1 outlier”:
f1 = · · · = fp−1 . (1Out)

Both assumptions correspond to settings in which the multi-task procedure
would legitimately be used. Assumption (2Points) models the fact that all the
functions lie in a cluster of small radius. It supposes that the functions are split
into two groups of equal size, in order to be able to explicitly derive the single-
task oracle risk. Assumption (1Out) supposes that all the functions are grouped
in one cluster, with one outlier. In order to make the calculations possible, all
the functions in one group are assumed to be equal. Since this is not a fully
convincing situation to study the behaviour of the multi-task oracle, simula-
tion experiments were also run on less restrictive settings. The results of those
experiments are shown in Section 8.

Remark 16. The hypotheses (2Points) and (1Out) made on the functions f j

can be expressed on (hj
i ). Assumption (2Points) becomes

∀i ∈ {1, . . . , n}, h1
i = · · · = h

p/2
i and h

p/2+1
i = · · · = hp

i ,

while Assumption (1Out) becomes

∀i ∈ {1, . . . , n}, h1
i = · · · = hp−1

i .

Under those hypotheses we now want to derive an expression of (h1
i , . . . , h

p
i )

given (µi, ςi) so that we can exactly compute the single-task oracle risk. Re-
member we defined for every i ∈ {1, . . . , n},

µi =
1√
p

p∑

j=1

hj
i

and

ς2i =
1

p

p∑

j=1

(
hj
i

)2
− µ2

i

p
=

1

p

p∑

j=1

(
hj
i −

µi√
p

)2

.
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We also re-introduce the single-task oracle risk:

R
⋆
ST = inf

(λ1,...,λp)∈R
p
+





1

np

p∑

j=1

∥∥∥f̂ j
λj − f j

∥∥∥
2

2



 .

We now want to closely study this single-task oracle risk, in both settings.

5.1. Analysis of the oracle single-task risk for the “2 points” case

(2Points)

In this section we write the single-task oracle risk when Assumption (2Points)

holds. As shown in Lemma 8, the risk of the estimator f̂ j
λ = Aλy

j for the jth
task, which we denote by Rj(λ), verifies

R(n, 1, σ2, λ, β, δ,
(√

C1 −
√
C2

)2
) ≤ Rj(λ) ≤ R(n, 1, σ2, λ, β, δ,

(√
C1 +

√
C2

)2
) .

Both upper and lower parts eventually behave similarly. In order to simplify
notations and to avoid having to constantly write two risks, we will assume that
half of the tasks have a risk equal to the right-hand side of the later inequality
and the other half a risk equal to the left-hand side of this inequality. This leads
to the following assumption:

∀i ∈ {1, . . . , n},
{

h1
i =

√
ni−δ(

√
C1 +

√
C2)

hp
i =

√
ni−δ(

√
C1 −

√
C2)

. (H2Points)

This minor change does not affect the convergence rates of the estimator. Con-

sequently, if 1 ≤ j ≤ p/2 the risk for task j is R(n, 1, σ2, λ, β, δ,
(√

C1 +
√
C2

)2
)

so that the oracle risk for task j is, given that nσ2 ≥ 1,

≍
( n

σ2

)1/2δ−1

κ(β, δ)×
(√

C1 +
√
C2

)1/δ
,

and if p/2 + 1 ≤ j ≤ p the risk for task j is R(n, 1, σ2, λ, β, δ,
(√

C1 −
√
C2

)2
)

so that the oracle risk for task j is, given that nσ2 ≥ 1,

≍
( n

σ2

)1/2δ−1

κ(β, δ)×
∣∣∣
√
C1 −

√
C2

∣∣∣
1/δ

,

Remark 17. We can remark that (H2Points) implies (2Points) and that (H2Points)
implies (HAV(δ, C1, C2)), as shown in Lemma 10. Consequently, if (H2Points)
holds, we have, for every i ∈ {1, . . . , n}, h1

i = µi√
p + ςi and hp

i = µi√
p − ςi.

Corollary 1. For every n, p, C1, C2, σ
2, β and δ such that 2 < 2δ < 4β and

nσ2 > 1 and that Assumptions (H2Points) and (HK(β)) hold, then

R
⋆
ST ≍

(np
σ2

)1/2δ−1 κ(β, δ)

2
×p1−1/2δ

[(√
C1 +

√
C2

)1/δ
+
∣∣∣
√
C1 −

√
C2

∣∣∣
1/δ
]

.

(13)
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5.2. Analysis of the oracle single-task risk for the “1 outlier” case

(1Out)

In this section we suppose that Assumption (1Out) holds. As shown in Lemma 9,
we can lower and upper bound the risks of the single-tasks estimators by func-
tions of the shape R(n, p, σ2, λ, β, δ, C). As in the latter section, to avoid the
burden of writing two long risk terms at every step, and since all those risks
have the same convergence rates, we suppose from now on the new assumption:

∀i ∈ {1, . . . , n}
{

h1
i =

√
ni−δ

(√
C1 +

1√
p−1

√
C2

)

hp
i =

√
ni−δ

(√
C1 −

√
p− 1

√
C2

) . (H1Out)

This minor change does not affect the convergence rates of the estimator. Conse-

quently, if 1 ≤ j ≤ p−1 the risk for task j is R(n, 1, σ2, λ, β, δ,
(√

C1 +
√

C2

p−1

)2
)

so that the oracle risk for task j is, given that nσ2 ≥ 1,

≍
( n

σ2

)1/2δ−1

κ(β, δ)×
(
√
C1 +

√
C2

p− 1

)1/δ

,

while the risk for task p is R(n, 1, σ2, λ, β, δ,
(√

C1 −
√
(p− 1)C2

)2
) so that the

oracle risk for task p is, given that nσ2 ≥ 1,

≍
( n

σ2

)1/2δ−1

κ(β, δ)×
∣∣∣
√
C1 −

√
(p− 1)C2

∣∣∣
1/δ

.

Remark 18. We can also remark here that (H1Out) implies (1Out) and that
(H1Out) implies (HAV(δ, C1, C2)), as shown in Lemma 9. Consequently, if
(H1Out) holds, we have, for every i ∈ {1, . . . , n}, h1

i = µi√
p + 1√

p−1
ςi and

hp
i = µi√

p −√
p− 1ςi.

oracle

Corollary 2. For every n, p, C1, C2, σ
2, β and δ such that 2 < 2δ < 4β and

nσ2 > 1 and that Assumptions (H1Out) and (HK(β)) hold, then

R
⋆
ST ≍

(np
σ2

)1/2δ−1

κ(β, δ)

× p1−1/2δ


p− 1

p

(
√
C1 +

√
C2

p− 1

)1/δ

+
1

p

∣∣∣
√
C1 −

√
(p− 1)C2

∣∣∣
1/δ


 .

(14)

6. Comparison of multi-task and single-task

In the two latter section we obtained precise approximations of the multi-task
oracle risk, R⋆

MT, and of the single-task oracle risk, R⋆
ST, under either Assump-

tion (H2Points) or (H1Out). We can now compare both risks in either setting,
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by studying their ratio

ρ =
R

⋆
MT

R⋆
ST

.

We will express the quantity ρ as a factor of

r =
C2

C1
.

The parameter r controls the amount of the signal which is contained in the
mean of the functions. When r is small, the mean of the tasks contains much
more signal than the variance of the tasks, so that the tasks should be “similar”.
This is a case where the multi-task oracle is expected to perform better than
the single-task oracle. On the contrary, when r is large, the variance of the tasks
is more important than the mean of the tasks. This is a case where the tasks
would be described as “non-similar”. It is then harder to conjecture whether
the single-task oracle performs better than the multi-task oracle and, as we will
see later, the answer to this greatly depends on the setting.

6.1. Analysis of the oracle multi-task improvement for the “2

points” case (2Points)

We now express ρ as a function of r when the tasks are split in two groups.

Corollary 3. For every n, p, C1, C2, σ
2, β and δ such that 2 < 2δ < 4β and

nσ2 > p and that Assumptions (H2Points) and (HK(β)) hold, then

ρ ≍
p1/2δ−1 + (p−1

p )1−(1/2δ)r1/2δ

(1 +
√
r)

1/δ
+ |1−√

r|1/δ
. (15)

Remark 19. The right-hand side of Equation (15) is always smaller than 1
2 .

Thus, under the assumptions of Corollary 3, the multi-task oracle risk can never
be arbitrarily worse than the single-task oracle risk.

We can first see that, under the assumptions of Corollary 3, ρ = Θ
(
p1/2δ−1

)

as r goes to 0. This is the same improvement that we get we multiplying the

sample-size by p. We also have ρ = Θ

((
p−1
p

)1−(1/2δ)
)

as r goes to +∞, so

that the multi-task oracle and the single-task oracle behave similarly. Finally,

ρ = Θ

(
r1/2δ

(1+
√
r)

1/δ
+|1−√

r|1/δ
)

as p goes to +∞, so that the behaviours we just

discussed are still valid with a large number of tasks.

6.2. Analysis of the oracle multi-task improvement for the “1

outlier” case (1Out)

We now express ρ as a function of r when the tasks are grouped in one group,
with one outlier.
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Corollary 4. For every n, p, C1, C2, σ
2, β and δ such that 2 < 2δ < 4β and

nσ2 > p and that Assumptions (H1Out) and (HK(β)) hold, then

ρ ≍
p1/2δ−1 +

(
p−1
p

)1−(1/2δ)

r1/2δ

p−1
p

(
1 +

√
r

p−1

)1/δ
+ 1

p

∣∣∣1−
√
r(p− 1)

∣∣∣
1/δ

. (16)

We can see that, under the assumptions of Corollary 4, ρ = Θ
(
p1/2δ−1

)
as

r goes to 0. As in the latter section, this is the same improvement that we get we

multiplying the sample-size by p. However, ρ = Θ

((
p−1
p

)1−1/2δ

× p(p−1)−1/2δ

1+(p−1)1−1/δ

)

as r goes to +∞. This quantity goes to +∞ as p −→ +∞, so that the multi-task
oracle performs arbitrarily worse than the single-task one in this asymptotic set-
ting. Finally, ρ = Θ

(
r1/2δ

)
as p goes to +∞. This quantity goes to +∞ as r

goes to +∞, so that the behaviours we just mentioned stay valid with a large
number of tasks.

6.3. Discussion

When r is small, either under Assumption (2Points) or (1Out), the mean of
the signal is much stronger than the variance. Thus, the multi-task procedure
performs better than the single-task one.

Example 2. If r = 0, then all the tasks are equal. The improvement of the
multi-task procedure over the single-task one then is p1/2δ−1. This was expected:
it corresponds to the risk of a ridge regression with a np-sample.

As r goes to 0, the multi-task oracle outperforms its single-task counterpart
by a factor p1/2δ−1. When p is large (but, remember, this only holds when
p/σ2 ≤ n, so n also has to be large), this leads to a substantial improvement. It
is easily seen that, for any constant C > 1, if r ≤ (C − 1)2δ(p− 1)1−2δ, then the
right-hand side of Equation (15) becomes smaller than Cp1/2δ−1. Thus, if the
tasks are similar enough, the multi-task oracle performs as well as the oracle for
a np-sample, up to a constant.

On the contrary, when r is large, the variance carries most of the signal, so
that the tasks differ one from another. As r goes to +∞, the two settings have
different behaviours:

• under Assumption (2Points) (that is, when we are faced to two equally-
sized groups), the oracle risks of the multi-task and of the single-task
estimators are of the same order: they can only differ by a multiplicative
constant;

• under Assumption (1Out) (that is, when we are faced to one cluster and
one outlier), the single-task oracle outperforms the multi-task one, by a
factor which is approximatly p1/δ.
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Finally, Assumption (2Points) presents no drawback for the multi-task oracle,
since under those hypotheses its performance cannot be worse than the single-
task oracle’s one. On the contrary, Assumption (1Out) presents a case where
the use of a multi-task technique greatly increases the oracle risk, when the
variance between the tasks is important, while it gives an advantage to the
multi-task oracle when this variance is small. The location where the multi-task
improvement stops corresponds to the barrier ρ = 1. Studying this object seems
difficult, since we only know ρ up to a multiplicative constant. Also, finding the
contour lines of the righ-hand side of Equation (16) does not seem to be an easy
task. In Section 8, we will run simulations in situations where the oracle risk
can no longer be explicitly derived. We will show that the behaviours found in
these two examples still appear in the simulated examples.

7. Risk of a multi-task estimator

Solnon et al. [27] introduced an entirely data-driven estimator to calibrate
MAV(λ, µ) over R

2
+. One of their main results is an oracle inequality, that com-

pares the risk of this estimator to the oracle risk. Thus, R⋆
MT is attainable by a

fully data-driven estimator. We now show that our estimation of the multi-task
oracle risk is precise enough so that we can use it in the mentionned oracle
inequality and still have a lower risk than the single-task oracle one.

The following assumption will be used, with df(λ) = tr(Aλ) and Aλ = K(K+
nλIn)

−1 :

∀j ∈ {1, . . . , p} , ∃λ0,j ∈ (0,+∞) ,

df(λ0,j) ≤
√
n and

1

n

∥∥(Aλ0,j − In)f
j
∥∥2
2
≤ σ2

√
lnn

n





(Hdf)

We will also denote M =
{
MAV(λ, µ), (λ, µ) ∈ R

2
+

}
and M̂HM the estimator

introduced in Solnon et al. [27], which belongs to M. Theorem 29 of Solnon
et al. [27] thus states:

Theorem 2. Let α = 2, θ ≥ 2, p ∈ N
⋆ and assume (Hdf) holds true. An

absolute constant L > 0 and a constant n1(θ) exist such that the following holds
as soon as n ≥ n1(θ).

E

[
1

np

∥∥∥f̂M̂HM

− f
∥∥∥
2

2

]
≤
(
1 +

1

ln(n)

)2

E

[
inf

M∈M

{
1

np

∥∥∥f̂M − f
∥∥∥
2

2

}]

+Lσ2(2 + θ)2p
ln(n)3

n
+

p

nθ/2

‖f‖22
np

.

(17)

We first remark that

E

[
inf

M∈M

{
1

np

∥∥∥f̂M − f
∥∥∥
2

2

}]
≤ R

⋆
MT .
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We can now plug the oracle risk in the oracle inequality (17). Then, if we suppose
that, for i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, (hj

i )
2 = nCji−2δ, we have that

‖f‖22 =

p∑

j=1

n∑

i=1

(hj
i )

2 = n

p∑

j=1

Cj
n∑

i=1

i−2δ ≤ nζ(2δ)

p∑

j=1

Cj .

Remark 20. Assumption (2Points) means that for every i ∈ {1, . . . , n}, if
1 ≤ j ≤ p/2,

Cj =
(√

C1 +
√
C2

)2

and if p/2 + 1 ≤ j ≤ p,

Cj =
(√

C1 −
√
C2

)2
.

Assumption (1Out) means that for every i ∈ {1, . . . , n}, if 1 ≤ j ≤ p− 1,

Cj =

(
√
C1 +

√
C2

p− 1

)2

while

Cp =
(√

C1 −
√
(p− 1)C2

)2
.

Property 5. Under Assumptions (HK(β)) and (HAV(δ, C1, C2)) with 2δ > 2,
there exists a constant N1 such that for every n ≥ N1, Assumption (Hdf) holds.

Proof. We can see that Assumption (Hdf) is made independently on every task.

Thus we can suppose that p = 1. Let us denote b(λ) = n−1 ‖(Aλ − In)f‖22. We
can see that if there exists constants c > 0 and d > 1 such that for every λ ∈ R+

b(λ) ≤ cσ2 df(λ)−d, then Assumption (Hdf) holds for n large enough. Indeed, let
λ ∈ R+ such that df(λ) ≤ √

n. Then, if b(λ) ≤ cσ2 df(λ)−d, b(λ) ≤ σ2c(
√
n)−d ≤

σ2cn
(−d+1)/2

√
n

. It just suffices to see that, for n large enough, cn−d+1 ≤ ln(n).

Using Lemmas 6 and 5 we can see that, for every λ ∈ R+,

b(λ) ≤ λ
2δ−1
2β

β
I1(β, δ)

and, for n large enough, there exists a constant α such that, for every λ ∈ R+,

df(λ) = trAλ ≥ α
λ

−1
2β

2β
I2(β)

Thus, for n large enough, there exists a constant c (depending on σ2, β and δ)
such that, for every λ ∈ R+,

b(λ) ≤ cσ2 tr(Aλ)
−(2δ−1) .

Hence, if 2δ > 2, there exists a constant N1 such that for every n ≥ N1,
Assumption (Hdf) holds.
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Thus, we can apply Theorem 2 to the estimator f̂
M̂HM

under either Assump-

tion (2Points) or (1Out) (and we denote by ρ either ρ2Points or ρ1Out).

Property 6. For every positive numbers (β, δ, θ, C1, C2) verifying 4β > 2δ > 2
and θ > 1, there exists positive constants (N(β, δ, θ), L) such that, for every
(n, p, σ2) verifying n ≥ N and p

σ2 ≤ n, if Assumption (HK(β)) and if either
Assumption (H2Points) or Assumption (H1Out) hold, the ratio between the risk

of the estimator f̂
M̂HM

and the single-task oracle risk verifies

E

[
1
np

∥∥∥f̂M̂HM

− f
∥∥∥
2

2

]

R⋆
ST

≤
(
1 +

1

ln(n)

)2

ρ

+ Cst×
Lσ2(2 + θ)2p ln(n)3

n + pζ(2δ)

nθ/2
1
p

∑p
j=1 C

j

(
n
σ2

)1/2δ−1
κ(β, δ)× 1

p

∑p
j=1(C

j)1/2δ
.

Proof. This is a straightforward application of the preceding results.

We now show that the latter fully data-driven multi-task ridge estimator
achieves a lower risk than the single-task ridge oracle, in both settings (2Points)
and (1Out).

Corollary 5. For every positive numbers (β, δ, θ, σ2, ε) verifying 4β > 2δ > 2
and θ > 2, there exists positive constants (N, r) such that, for every (n, p, C1, C2)
verifying n ≥ N , p

σ2 ≤ n1/4δ and C2

C1
≤ r, if Assumptions (HK(β)) holds and if

either Assumption (H2Points) or Assumption (H1Out) hold, the ratio between

the risk of the estimator f̂
M̂HM

and the single-task oracle risk verifies

E

[
1
np

∥∥∥f̂M̂HM

− f
∥∥∥
2

2

]

R⋆
ST

< ε .

Proof. First, we can see that under either Assumption (2Points) or Assump-
tion (1Out), both 1

p

∑p
j=1 C

j and 1
p

∑p
j=1(C

j)1/2δ converge, as p goes to +∞,
to quantities only depending on C1, C2 and δ and are thus bounded with respect
to p. Then, as it was shown in the previous section, both ρ2Points and ρ1Out go
to 0 as C1

C2
goes to 0. Finally, we can see that p

σ2 ≤ n1/4δ implies that p
σ2 ≤ n

and that

σ2p ln(n)3

n(
n
σ2

)1/2δ−1
=
(
σ2
)1/2δ × p× ln(n)3

n1/2δ
≤
(
σ2
)1+1/2δ × ln(n)3

n1/4δ
−→

n→+∞
0

together with

p
nθ/2

(
n
σ2

)1/2δ−1
≤
(
σ2
)1/2δ × n1−θ/2−1/4δ −→

n→+∞
0 .
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Remark 21. The result shown in Corollary (5) establishes that a fully data-
driven multi-task estimator outperforms an oracle single-task estimator, which
is minimax optimal .

8. Numerical experiments

The hypotheses we used in the former sections, although sufficient to precisely
derive the risk of the estimator, do not reflect realistic situations. In this section
we study less restrictive settings. However, we are no longer able to obtain
simple formulas for the oracle risk as we did before. Thus, we resort to numerical
simulations to illustrate the behaviour of both single-task and multi-task oracles.

8.1. Setting A: relaxation of Assumptions (HAV(δ, C1, C2)) and

(2Points) in order to get one general group of tasks

In the latter sections we modeled the fact that the p target functions are close.
However, due to technical constraints we were only able to deal with cases where
the functions are split into two groups and are then equal inside each group,
thus introducing Assumptions (2Points) and (1Out). We propose here to extend
this setting by simulating a more general group of tasks. Those tasks should all
be at a comparable distance from a centroid function.

We suppose that (εji )i∈{1,...,n},j∈{1,...,p} is a sequence of i.i.d. random vari-
ables, independent of (Xi)i∈{1,...,n}, following a Rademacher distribution (that

is, such that P(εji = 1) = P(εji = −1) = 1/2). The target functions are then
defined by

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}, hj
i =

√
ni−δ

(√
C1 + εji

√
C2

)
. (18)

Thus, all the p target functions are “close” to a centroid function, whose coordi-
nates on the eigenvectors of the kernel matrix are

√
ni−δ

√
C1, with a “dispersion

factor”
√
C2. In this setting, we can easily express the key elements for the anal-

ysis of this risk :

µ2
i

p
= ni−2δ

(
√
C1 +

∑p
j=1 ε

j
i

p

√
C2

)2

and

ς2i = ni−2δ


1

p

p∑

j=1

(√
C1 + εji

√
C2

)2
−
(
√
C1 +

∑p
j=1 ε

j
i

p

√
C2

)2

 .

Remark 22. The theoretical analysis developed previously cannot be applied
here, due to the presence of random terms, which depend on i, in front of the
decay term ni−2δ.
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8.2. Setting B: random drawing of the input points and functions

Assumptions (HK(β)) and (HAV(δ, C1, C2)) model the behaviour of the spectral
elements of f and K as if they exactly follow the spectral elements of the
kernel operator and the input function. Although convenient for the analysis,
this setting is unlikely to hold in practice and we propose here to draw the input
points (Xi)

n
i=1 and compute the risk using the eigenvalues of the kernel matrix.

We suppose here that (Xi)
n
i=1 is a sequence of i.i.d. random variables uni-

formly drawn on [−π, π]. As in the latter section, we also suppose that we
have an i.i.d. sequence of random variables (εji )i∈{1,...,n},j∈{1,...,p}, independent
of (Xi)i∈{1,...,n}, following a Rademacher distribution. The target functions are
then defined by

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}, f j(Xi) =
(√

C1 + εji
√
C2

)
|Xi| . (19)

As stated in Wahba [30] and in Gu [15], a natural kernel to use is, with m ∈ N
⋆,

R(x, y) = 2

+∞∑

i=1

cos (i(x− y))

i2m
.

In this setting, the coefficients of the decomposition of f : x 7→ |x| on the Fourier
basis are known to be asymptotically equivalent to i−2. Thus, this setting is a
natural extension of Assumptions (HK(β)) and (HAV(δ, C1, C2)), with β = m—
since the eigenvalues of the kernel R are i−2m—and δ = 2.

8.3. Setting C: further relaxation of Assumptions (HAV(δ, C1, C2))
and (2Points) in one group of tasks

We consider the same tasks than in Setting A, but also allow the regular-
ity of the variance to vary. This gives the following model, supposing that
(εji )i∈{1,...,n},j∈{1,...,p} is a sequence of i.i.d. random variables, independent of
(Xi)i∈{1,...,n}, following a Rademacher distribution:

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}, hj
i =

√
n
(√

C1i
−δ1 + εji

√
C2i

−δ2
)

.

We allow the variance to have a varying regularity and intensity by changing C2

and δ2. This gives us the following quantities of interest: for every i ∈ {1, . . . , n},

µ2
i

p
= ni−2δ1

(
√
C1 +

∑p
j=1 ε

j
i

p

√
C2i

−(δ2−δ1)

)2

and

ς2i = ni−2δ1

(
1

p

p∑

j=1

(√
C1 + εji

√
C2i

−(δ2−δ1)
)2

−
(
√
C1 +

∑p
j=1 ε

j
i

p

√
C2i

−(δ2−δ1)

)2)
.
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8.4. Setting D: relaxation of Assumptions (1Out) and

(HAV(δ, C1, C2))

Assumption (1Out) states that we have one of p − 1 identical tasks and one
outlier. We now simulate a slightly more general setting by having one cluster
of p− 1 around 0 and an outlier. This gives the following model, supposing that
(εji )i∈{1,...,n},j∈{1,...,p} is a sequence of i.i.d. random variables, independent of
(Xi)i∈{1,...,n}, following a Rademacher distribution:

∀i ∈ {1, . . . , n} , ∀j ∈ {1, . . . , p− 1} , hj
i =

√
nεji i

−2

and
∀i ∈ {1, . . . , n} , hp

i =
√
nC2ε

p
i i

−δ2 .

We allow the outlier to have a varying regularity and intensity by changing C2

and δ2. This gives us the following quantities of interest: for every i ∈ {1, . . . , n},

µ2
i

p
= ni−δ1



√
C1

p

p−1∑

j=1

εji +
εpi
p

√
C2i

−(δ2−δ1)




2

and

ς2i = ni−δ1


p− 1

p
C1 +

1

p
C2i

−2(δ2−δ1) −


1

p

p−1∑

j=1

εji +
εpi
p

√
C2i

−(δ2−δ1)




2

 .

8.5. Methodology

In every setting, we computed the oracle risks of both the multi-task estimator
and the single-task one. As shown before, for instance in Equation (5), both the
multi-task risk (which has two hyper-parameters, λ and µ) and the single-task
risk (which has p hyper-parameters, λ1 to λp) can be decomposed as a sum
of several functions, each depending on a unique hyper-parameter. We used
Newton’s method to optimize each of those p+2 functions over, respectively, λ,
µ, λ1, . . . , λp. Our stopping criterion was that the derivative of the function being
optimized was inferior to 10−5, in absolute value. We replicated each experiment
N = 100 times. This gives us N independent realisations of (R⋆

MT,R
⋆
ST), the

randomness coming from the repartition of the tasks and, in Setting B, from
the drawing of the input points (Xi)

n
i=1.

In Settings A and B, we first test the hypothesisH0 = {P (R⋆
MT < R

⋆
ST) < 0.5}

againstH1 = {P (R⋆
MT < R

⋆
ST) ≥ 0.5}. This amounts to testing whether the me-

dian of
R

⋆
MT

R⋆
ST

is larger than one. For every iteration i ∈ {1, . . . , N}, we observe

Bi = 1R⋆
MT<R⋆

ST
. Since the random variables (Bi)i∈{1,...,N} follow a Bernouilli

distribution of parameter P (R⋆
MT < R

⋆
ST), we can apply Hoeffding’s inequality
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[24] and see that, for every ε > 0, [B̄N − ε, 1] is a confidence interval of level

1− e−2Nε2 for P (R⋆
MT < R

⋆
ST). This leads to the following p-value:

π1 =

{
e−2N(B̄N−0.5)2 if B̄N ≥ 0.5 ,
0 otherwise .

In those two settings, we also test the hypothesis H0 =
{
E

[
R

⋆
MT

R⋆
ST

]
> 1
}

against H1 =
{
E

[
R

⋆
MT

R⋆
ST

]
≤ 1
}
. Let us denote by Ê

[
R

⋆
MT

R⋆
ST

]
the empirical mean of

the random variables
R

⋆
MT

R⋆
ST

, Ŝtd
[
R

⋆
MT

R⋆
ST

]
the resulting standard deviation and Φ

the cumulative distribution function of a standard gaussian distribution. Then,
a classical use of the central limit theorem and of Slutsky’s Lemma gives that

[
0, Ê

[
R

⋆
MT

R⋆
ST

]
+

ε√
n
Ŝtd

[
R

⋆
MT

R⋆
ST

]]

is an asymptotic confidence interval of level Φ(ε) for E
[
R

⋆
MT

R⋆
ST

]
. This leads to the

following asymptotic p-value:

π2 = Φ

[
√
n

(
Ê

[
R

⋆
MT

R⋆
ST

]
− 1

)
Ŝtd

[
R

⋆
MT

R⋆
ST

]−1
]

.

The results of those tests are shown in Table 1 for Setting A and in Table 2 for
Setting B.

In Settings C and D, we use the same asymptotic framework and show error
bars corresponding to the asymptotic confidence interval

[
Ê

[
R

⋆
MT

R⋆
ST

]
− z0.975√

n
Ŝtd

[
R

⋆
MT

R⋆
ST

]
, Ê

[
R

⋆
MT

R⋆
ST

]
+

z0.975√
n

Ŝtd

[
R

⋆
MT

R⋆
ST

]]

of level 95%, where zα denotes the quantile of order α of the standard gaussian
distribution. The results of those simulations are shown in Figure 1 for Setting C
and in Figure 2 for Setting D.

We used the following values for the parameters: n = 50, p = 5, σ2 = 1 and
C1 = 1. We finally settled δ = 2 in Settings A and B and δ1 = 2 in Settings C
and D.

8.6. Interpretation

When all the tasks are grouped in one cluster (Settings A, B and C), the same
phenomenon as under Assumption (2Points) appears. In situations where the
mean component of the signal has more weight than the variance component
(in Settings A and B, that is when r is small, in Setting C, this occurs when
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C2 r = C2
C1

β B̄100 π1 Ê

[
R

⋆
MT

R⋆
ST

]
Ŝtd

[
R

⋆
MT

R⋆
ST

]
π2

0.01 0.01 2 1 < 10−15 0.434 0.0324 < 10−15

and 0.1 0.1 2 1 < 10−15 0.672 0.0747 < 10−15

0.5 0.5 2 0.94 < 10−15 0.898 0.0913 < 10−15

1 1 2 0.51 9.80× 10−1 1.01 0.129 0.773
5 5 2 0.38 1 0.998 0.0292 0.302
10 10 2 0.42 1 0.996 0.0172 9.90× 10−3

100 100 2 0.76 1.35× 10−6 0.997 5.44× 10−3 5.97× 10−10

0.01 0.01 4 1 < 10−15 0.426 0.0310 < 10−15

0.1 0.1 4 1 < 10−15 0.703 0.0737 < 10−15

0.5 0.5 4 0.75 3.73× 10−6 0.934 0.113 1.80× 10−9

1 1 4 0.31 1 1.08 0.163 1.00
5 5 4 0.38 1 1.01 0.0439 0.965
10 10 4 0.43 1 0.993 0.0304 0.0113
100 100 4 0.83 3.48 × 10−10 0.992 0.0103 1.22× 10−14

Table 1

Comparison of the multi-task oracle risk to the single-task oracle risk in Setting A.

C2 r = C2
C1

m B̄100 π1 Ê

[
R

⋆
MT

R⋆
ST

]
Ŝtd

[
R

⋆
MT

R⋆
ST

]
π2

0.01 0.01 2 1 < 10−15 0.570 0.0409 < 10−15

0.1 0.1 2 1 < 10−15 0.745 0.0333 < 10−15

0.5 0.5 2 0.99 < 10−15 0.907 0.0406 < 10−15

1 1 2 0.80 1.52× 10−8 0.961 0.0459 < 10−15

5 5 2 0.55 0.607 0.995 0.205 2.59× 10−3

10 10 2 0.53 0.835 0.996 0.114 6.23× 10−4

100 100 2 0.81 4.50× 10−9 0.996 6.35× 10−3 1.03× 10−11

0.01 0.01 4 1 < 10−15 0.527 0.0409 < 10−15

0.1 0.1 4 1 < 10−15 0.756 0.0534 < 10−15

0.5 0.5 4 0.93 < 10−15 0.917 0.0650 < 10−15

1 1 4 0.49 1 1.01 0.0896 0.855
5 5 4 0.40 1 0.997 0.0295 0.170
10 10 4 0.41 1 0.998 0.0179 0.114
100 100 4 0.84 9.10× 10−11 0.994 8.71× 10−3 7.36× 10−14

Table 2

Comparison of the multi-task oracle risk to the single-task oracle risk in Setting B.

δ2 is large and C2 is small) then the multi-task oracle seems to outperform the
single-task one. On the contrary, when the mean component of the signal is
negligible compared to the variance component (likewise, this occurs in Settings
A and B when r is large and in Setting C when δ2 is small or when C2 large),
then both oracles seem to perform similarly.

Adversary settings to the multi-task oracle appear when one task is added
outside of a cluster (Setting D). When this outlier is less regular than the tasks
belonging to the cluster (that is, when δ2 is large), the single-task oracle per-
forms better than the multi-task one, which confirms the theoretical analysis
performed in Section 6.2.
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9. Conclusion

This paper shows the existence of situations where the multi-task kernel ridge
regression, with a perfect parameter calibration, can perform better than the
single-task one. This happens when the tasks are distributed given simple spec-
ifications, which are studied both theoretically and on simulated examples.

The analysis performed here allows us to have a precise estimation of the risk
of the multi-task oracle (Theorem 1), this result holding under a few hypothe-
ses on the regularity of the kernel, of the mean of the tasks and of its resulting
variance. Several simple single-task settings are then investigated, with the con-
straint that they respect the latter assumptions. This theoretical grounding,
backed-up by our simulated examples, allows us to understand better when and
where the multi-task procedure outperforms the single-task one.

• The situation where all the regression functions are close in the RKHS
(that is, their differences are extremely regular) is favorable to the multi-
task procedure, when using the matrices M =

{
MAV(λ, µ), (λ, µ) ∈ R

2
+

}
.

In this setting, the multi-task procedure can do much better than the
single-task one (as if it had p times more input points). It is also shown
to never do worse (up to a multiplicative constant) !

• On the contrary, when one outlier lies far apart from this cluster, this
multi-task procedure suddenly performs badly, that is, arbitrarily worse
than the single-task one. This comes as no surprise, since the addition of
a far less regular task naturally destroys the joint learning of a group of
tasks. In this case, the use of a multi-task procedure which clusters the
tasks together (because of the choice of M) is inadapted to the situation.

Our analysis can easily be adapted to a slightly wider set of assumptions on
the tasks than the one presented here (all the tasks are grouped together, in one
cluster). It is for instance possible to treat the case where the tasks are grouped
in two (or more) clusters—when the allocation of each task to its cluster is
known to the statistician, at the price of introducing more hyperparameters.
We are still limited, though, to certain cases of hypotheses, reflected on the
set of matricial hyperparameters M. The failure of the multi-task oracle on
the case where one outlier stays outside of one group of tasks can be seen, not
as the impossibility to use multi-task techniques in this situation, but rather
as the fact the set of matrices used here, M =

{
MAV(λ, µ), (λ, µ) ∈ R

2
+

}
, is

inadapted to the situation. We can at least see two different solutions to this
kind of inadaptation. First, the use of prior knowledge can help the statistician
to craft an ad hoc set M. Second, we could seek to automatically adapt to the
situation in order to learn a good set M from data.

Learning more complex sets M is an important—but complex—challenge,
that we want to address in the future. This question can at least be split into
three (not necessarily independent) problems, that call for the elaboration of
new tools:
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• a careful study of the risk, to find a set M⋆ ⊂ S++
p (R) of candidate

matrices;
• optimization tools, to derive an algorithm able to select a matrix in this
set M⋆;

• new concentration of measure results, to be able to show oracle inequalities
that control the risk of the output of the algorithm.

Our estimation of the multi-task oracle risk is also shown to be precise enough
so that we can plug it in an oracle inequality, hereby showing the existence of
a multi-task estimator that has a lower risk than the single-task oracle (under
the same favorable circumstances as before).

Finally, it would be intereting to extend the analysis developped here to
the random-design setting. This could be done, for instance, by using the tools
brought by Hsu et al. [17], that link random-design convergence rates to fixed-
design ones.

Acknowledgments: The author thanks Sylvain Arlot and Francis Bach for
inspireful discussions and their precious comments, which greatly helped to in-
prove the quality of this paper.
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Appendices

Appendix A: Decomposition of the matrices MSD(α, β) and
MAV(λ, µ)

We now give a few technical results that were used in the former sections.

Lemma 1. The penalty used in Equation (3) can be obtained by using in Equa-
tion (2) the matrix MSD(α, β), such that

MSD(α, β) =
α

p

11⊤

p
+

α+ pβ

p

(
Ip −

11⊤

p

)
. (20)

The penalty used in Equation (4) can be obtained by using in Equation (2) the
matrix MAV(α, β), such that

MAV(λ, µ) =
λ

p

11⊤

p
+

µ

p

(
Ip −

11⊤

p

)
. (21)

Proof. For the first part, since

p∑

j=1

p∑

k=1

∥∥gj − gk
∥∥2
F =

∑

j,k

〈gj , gj〉F − 2〈gj, gk〉F + 〈gk, gk〉F

= 2p

p∑

j=1

〈gj , gj〉F − 2
∑

j,k

〈gj , gk〉F ,

the penalty term of Equation (3) can be written as

α

p

p∑

j=1

〈gj , gj〉F + β

p∑

j=1

〈gj , gj〉F − β

p

∑

j,k

〈gj , gk〉F ,

leading to the matrix

α+ pβ

p
Ip −

β

p
11⊤ =

α

p

11⊤

p
+

α+ pβ

p

(
Ip −

11⊤

p

)
= MSD(α, β) .
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For the second part, since

∥∥∥∥∥∥

p∑

j=1

gj

∥∥∥∥∥∥

2

F

=
∑

j,k

〈gj , gk〉F ,

the penalty term of Equation (4) can be written as

λ

p2

∑

j,k

〈gj , gk〉F +
µ

p

p∑

j=1

〈gj , gj〉F − µ

p2

∑

j,k

〈gj , gk〉F ,

leading to the matrix

λ− µ

p2
11⊤ +

µ

p
Ip =

λ

p

11⊤

p
+

µ

p

(
Ip −

11⊤

p

)
= MAV(λ, µ) .

Appendix B: Useful control of some sums

Let us introduce the following integrals :

I1 = I1(β, δ) =

∫ +∞

0

u
1−2δ
2β +1

(1 + u)2
du ,

I2 = I2(β) =

∫ +∞

0

u
1
2β −1

(1 + u)2
du = I1(β, 0) .

Under Assumption (HM(β, δ)), both integrals converge. We also introduce their
discrete counterparts. For every n ∈ N

⋆ and every λ ∈ R+ :

S1(n, λ) =
n∑

i=1

i4β−2δ

(1 + λi2β)2
,

S2(n, λ) =

n∑

i=1

1

(1 + λi2β)
2 .

We here give a first elementary technical result.

Lemma 2. The map defined on R+ by

t 7→ t4β−2δ

(1 + λt2β)2

is positive, increasing on [0, t⋆] and decreasing on [t⋆,+∞) to 0, with

t⋆ =

(
4β − 2δ

2δλ

)1/2β
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Proof. This map is nonnegative and converges to 0 in 0 and +∞. Furthermore

d

dt

(
t4β−2δ

(1 + λt2β)2

)
= (4β − 2δ)

t4β−2δ−1

(1 + λt2β)2
− 4βλt2β−1 t4β−2δ

(1 + λt2β)3

=
t4β−2δ−1

(1 + λt2β)3
[
(4β − 2δ)(1 + λt2β)− 4βλt2β

]

=
t4β−2δ−1

(1 + λt2β)3
[
4β + 4βλt2β − 2δ − 2δλt2β − 4βλt2β

]

=
t4β−2δ−1

(1 + λt2β)3
[
(4β − 2δ)− 2δλt2β

]
.

The only parameter t⋆ that cancels out this equation is

t⋆ =

(
4β − 2δ

2δλ

)1/2β

.

We now give a serie of technical results to control I1, I2, S1 and S2, which
will be useful in the following sections.

Lemma 3.

∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt =

λ(2δ−1)/2β

2βλ2

∫ +∞

0

u
1−2δ
2β +1

(1 + u)2
du =

λ(2δ−1)/2β

2βλ2
I1 .

Proof. Apply the change of variables u = λt2β see Bach (5) for more details.

Lemma 4.

∫ +∞

0

1

(1 + λt2β)2
dt =

λ−1/2β

2β

∫ +∞

0

u
1−2β
2β

(1 + u)2
du =

λ−1/2β

2β
I2 .

Proof. Apply the change of variables u = λt2β see Bach (5) for more details.

Lemma 5. We have the following bounds S2. For every n ∈ N
⋆ and every

λ ∈ R
⋆
+,

•
S2(n, λ) ≤

λ−1/2β

2β
I2 .

•
S2(n, λ) ≥

∫ n+1

1

1

(1 + λt2β)2
dt .

Proof. To show the first point we just remark that

S2(n, λ) =

n∑

i=1

1

(1 + λi2β)
2 ≤

∫ n

0

1

(1 + λt2β)2
dt ≤

∫ +∞

0

1

(1 + λt2β)2
dt .

The second point is likewise straightforward.
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Lemma 6. We have the following bounds on S1 : for every n ∈ N
⋆, every

(β, δ) ∈ R
2
+ such that 4β > 2δ and every λ ∈ R

⋆
+,

S1(n, λ) ≤
λ(2δ−1)/2β

βλ2
I1 ,

Furthermore, let

t⋆ =

(
4β − 2δ

2δλ

)1/2β

and n⋆ = ⌊t⋆⌋.
• If n⋆ < n− 1

S1(n, λ) ≥
∫ n+1

0

t4β−2δ

(1 + λt2β)2
dt−

∫ n⋆+2

n⋆

t4β−2δ

(1 + λt2β)2
dt ;

• while if n⋆ ≥ n

S1(n, λ) ≥
∫ n

0

t4β−2δ

(1 + λt2β)2
dt .

Proof. Lemma 2 shows that t 7→ t4β−2δ

(1+λt2β)2 is increasing on [0, t⋆] and decreasing

on [t⋆,+∞(. Thus we have the following comparisons :

∫ n⋆

0

t4β−2δ

(1 + λt2β)2
dt ≤

n⋆∑

i=1

i4β−2δ

(1 + λi2β)2
≤
∫ n⋆+1

1

t4β−2δ

(1 + λt2β)2
dt

and

∫ n+1

n⋆+2

t4β−2δ

(1 + λt2β)2
dt ≤

n∑

i=n⋆+1

i4β−2δ

(1 + λi2β)2
≤
∫ n

n⋆

t4β−2δ

(1 + λt2β)2
dt .

By adding those two lines we get

S1(n, λ) =

n∑

i=1

i4β−2δ

(1 + λi2β)2
≤
∫ n⋆+1

1

t4β−2δ

(1 + λt2β)2
dt+

∫ n

n⋆

t4β−2δ

(1 + λt2β)2
dt

≤ 2

∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt ,

which shows the first point. We also get, if n⋆ < n− 1

S1(n, λ) ≥
∫ n⋆

0

t4β−2δ

(1 + λt2β)2
dt+

∫ n+1

n⋆+2

t4β−2δ

(1 + λt2β)2
dt

≥
∫ n+1

0

t4β−2δ

(1 + λt2β)2
dt−

∫ n⋆+2

n⋆

t4β−2δ

(1 + λt2β)2
dt .

The last point is evident, since if n⋆ ≥ n the integrand is increasing on [0, n].
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Appendix C: Proof of Property 1

Let n and p be integers, σ, β and δ real numbers such that (HM(β, δ)) hold.
We want to study the value and the location of the infimum on R+ of

λ 7−→ R(n, p, σ2, λ, β, δ, C) = Cλ2
n∑

i=1

i4β−2δ

(1 + λi2β)2
+

σ2

np

n∑

i=1

1

(1 + λi2β)
2 (22)

Property 7. For every λ in R+, we have

R(n, p, σ2, λ, β, δ, C) ≤ CI1
β

λ(2δ−1)/2β +
σ2I2
2βnp

λ−1/2β . (23)

Proof. This is a straightforward application of the majorations of the finite sums
by integrals given in Lemmas 5 and 6, together with the change of variables done
in Lemmas 3 and 4.

Lemma 7. Let A ∈ R+, the minimum over R
⋆
+ of λ 7→ λ(2δ−1)/2β + Aλ−1/2β

is attained for

λ⋆ =

(
A

2δ − 1

)β/δ

and has for value

A1−(1/2δ) 2δ

(2δ − 1)1−(1/2δ)
.

Proof. This mapping is differentiable and has +∞ for limit in 0 and in +∞.
Then

d

dλ

(
λ2δ/(2δ−1) +Aλ−1/2β

)
=

1

λ

(
2δ − 1

2β
λ(2δ−1)/2β − A

2β
λ−1/2β

)
.

We see there is only one minimizer λ⋆ verifying

2δ−1
2β (λ⋆)(2δ−1)/2β = A

2β (λ
⋆)−1/2β

⇔ (2δ − 1)2β(λ⋆)2δ−1 = A2β(λ⋆)−1

⇔ (λ⋆)2δ = A2β

(2δ−1)2β

⇔ λ⋆ =
(

A
2δ−1

)β/δ
.

Pluging-in the value of λ⋆ leads to the optimal value
(

A

2δ − 1

)(2δ−1)/2δ

+A

(
A

2δ − 1

)−1/2δ

= A(2δ−1)/2δ
(
(2δ − 1)(1/2δ)−1 + (2δ − 1)1/2δ

)

= A(2δ−1)/2δ(2δ − 1)1/2δ
(

1

2δ − 1
+ 1

)

= A(2δ−1)/2δ(2δ − 1)1/2δ
(

2δ

2δ − 1

)

= A(2δ−1)/2δ 2δ

(2δ − 1)1−(1/2δ)
.



M. Solnon/Comparison between multi-task and single-task oracles 39

Definition 3. To simplify notations, since this quantity depends only on β and
δ and appears throughout the paper, we will use the following notation :

κ(β, δ) = I1(β, δ)
1/2δI2(β)

1−(1/2δ)(2δ − 1)1/2δ
δ

β(2δ − 1)
. (24)

We now prove Property 1

Proof. First R(n, p, σ2, 0, β, δ, C) = σ2

p , so that R⋆(n, p, σ2, β, δ, C) ≤ σ2

p . Then,

the right-hand side of Equation (23) can be written as

CI1
β

[
λ(2δ−1)/2β +

σ2I2
2npCI1

λ−1/2β

]
.

Consequently, Lemma 7 implies that the optimal value of this upper bound with
respect to λ is

CI1
β

(
σ2I2

2npCI1

)1−(1/2δ)
2δ

(2δ − 1)1−(1/2δ)
,

which is exactly the right-hand side of Equation (9).

Appendix D: Proof of Property 2

In order to perform this analysis we observe that R is composed of two factors :

• a bias factor Cλ2
n∑

i=1

i4β−2δ

(1 + λi2β)2
, which is an increasing function of λ;

• a variance factor
σ2

np

n∑

i=1

1

(1 + λi2β)
2 , which is a convex, decreasing func-

tion of λ.

We show that, if λ is too large, then the bias term exceeds the upper bound on
R⋆(n, p, σ2, β, δ, C) given in Equation (9).

Proof. We see that, using Equation (22), for every λ ∈ R+,

R(n, p, σ2, λ, β, δ, C) ≥ C
λ2

(1 + λ)2
.

The right-hand side of this equation is increasing. Thus, if a real number ε
matches this bound with the upper bound of R⋆, that is,

C
ε2

(1 + ε)2
=

1

np
× (np)1/2δC(1/2δ)21/2δκ(β, δ) ,

we can state that the infimum of R is attained by a parameter λ⋆ ∈ [0, ε]. The
latter equation is equivalent to

ε2 = A
(np
σ2

)(1/2δ)−1

(1 + ε)2 ,
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with
A = C(1/2δ)−121/2δκ(β, δ) .

This leads to

ε

(
1−

√
A
(np
σ2

)(1/4δ)−1/2
)

=
√
A
(np
σ2

)(1/4δ)−2

,

so that if
√
A
(
np
σ2

)(1/4δ)−1/2
< 1 that is, if

np

σ2
>

1

C
× 2

1
2δ−1 × κ(β, δ)

2δ
2δ−1 ,

then

ε =

√
A
(
np
σ2

)(1/4δ)−1/2

1−
√
A
(
np
σ2

)(1/4δ)−1/2
=

√
A
(np
σ2

)(1/4δ)−1/2 (
1 + η

(np
σ2

))
, (25)

where η(x) goes to 0 as x goes to +∞.

Appendix E: On the way to showing Property 3

The proof of Property 3 uses two results that we give here.

E.1. Control of the risk on
[
0, n−2β

]

Property 8. For every n, p, σ2, C, δ and β, we have

inf
λ∈[0,n−2β ]

{
R(n, p, σ2, λ, β, δ, C)

}
≥ σ2

4p
.

Proof. For every λ ∈
[
0, n−2β

]
we have

R(n, p, σ2, λ, β, δ, C) ≥ σ2

np

n∑

i=1

1

(1 + λi2β)
2

≥ σ2

p
× 1

n

n∑

i=1

1
(
1 +

(
i
n

)2β)2

≥ σ2

4p
.
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E.2. Control of the risk on
[
n−2β, ε

(
np

σ2

)]

Property 9. There exists an integer N and a constant α ∈ (0, 1) such that for
every (n, p, σ2) such that np/σ2 ≥ N , every (β, δ) ∈ R

2
+ such that 4β > 2δ > 1

and every λ ∈ [n−2β , ε
(
np
σ2

)
] we have

R(n, p, σ2, λ, β, δ, C) ≥ α

(
CI1
β

λ(2δ−1)/2β +
σ2I2
2βnp

λ−1/2β

)
. (26)

Proof. We seek to minor the two sums composing R, which was definded in
Equation (22), by their integral counterparts, uniformly on [n−2β, ε

(
np
σ2

)
]. The

technical details are exposed in Lemmas 5 and 6.
For the first sum, using Lemma 5, we have that

n∑

i=1

1

(1 + λi2β)2
≥
∫ n+1

0

1

(1 + λt2β)2
dt−

∫ 1

0

1

(1 + λt2β)2
dt

≥
∫ +∞

0

1

(1 + λt2β)2
dt−

∫ +∞

n+1

1

(1 + λt2β)2
dt−

∫ 1

0

1

(1 + λt2β)2
dt .

First, with the change of variables u = λt2β (as in 5),

∫ +∞

n+1

1

(1 + λt2β)2
dt =

∫ +∞

0

1

(1 + λt2β)2
dt

∫ +∞
n+1

1
(1+λt2β)2

dt
∫ +∞
0

1
(1+λt2β)2

dt

=

∫ +∞

0

1

(1 + λt2β)2
dt

∫ +∞
λ(n+1)2β

u
1
2β

−1

(1+u)2 du

∫ +∞
0

u
1
2β

−1

(1+u)2 du

≤
∫ +∞

0

1

(1 + λt2β)2
dt

∫ +∞
1

u
1
2β

−1

(1+u)2 du

∫ +∞
0

u
1
2β

−1

(1+u)2 du
,

since λ ≥ n−2β .
We also have , with the change of variables u = λt2β (as in 5),

∫ 1

0

1

(1 + λt2β)2
dt =

∫ +∞

0

1

(1 + λt2β)2
dt

∫ 1

0
1

(1+λt2β)2 dt∫ +∞
0

1
(1+λt2β)2

dt

=

∫ +∞

0

1

(1 + λt2β)2
dt

∫ λ

0
u

1
2β

−1

(1+u)2 du

∫ +∞
0

u
1
2β

−1

(1+u)2 du

≤
∫ +∞

0

1

(1 + λt2β)2
dt

∫ ε

0
u

1
2β

−1

(1+u)2 du

∫ +∞
0

u
1
2β

−1

(1+u)2 du
.
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Since ε, which was defined in Equation (25), verifies ε(x) −→ 0 as x −→ +∞,
we get

∫ ε(x)

0
u

1
2β

−1

(1+u)2 du

∫ +∞
0

u
1
2β

−1

(1+u)2 du
−→

x→+∞
0 .

All those arguments imply that there exists an integer n1 and real number
c1 ∈ (0, 1) such that, for every (n, p, σ2) such that np/σ2 ≥ n3 and for every
λ ∈ [n−2β, ε

(
np
σ2

)
],

n∑

i=1

1

(1 + λi2β)2
≥ c1

∫ +∞

0

1

(1 + λt2β)2
dt .

For the second sum we carry a similar analysis, using Lemma 6 instead of
Lemma 5. First, supposing that 4β > 2δ, we know that

⌊(
4β−2δ
2δλ

)1/2β⌋

(
4β−2δ
2δλ

)1/2β −→
λ→0

1 .

Since ε(np/σ2) goes to 0 as np/σ2 goes to +∞. Consequently, let ζ > 0 and
n3 be an integer such that for every (n, p, σ2) such that np/σ2 ≥ n3, and every
λ ∈ [n−2β, ε

(
np
σ2

)
], we have

∣∣∣∣∣∣∣∣

⌊(
4β−2δ
2δλ

)1/2β⌋

(
4β−2δ
2δλ

)1/2β − 1

∣∣∣∣∣∣∣∣
< ζ and

∣∣∣∣∣∣∣∣

⌊(
4β−2δ
2δλ

)1/2β⌋
+ 2

(
4β−2δ
2δλ

)1/2β − 1

∣∣∣∣∣∣∣∣
< ζ .

Consequently, for every (n, p, σ2) such that np/σ2 ≥ n3 and every λ ∈ [n−2β , ε
(
np
σ2

)
],

we have (with t⋆ =
(

4β−2δ
2δλ

)1/2β
and n⋆ = ⌊t⋆⌋) :

n⋆ ≥ (1− ζ)

(
4β − 2δ

2δλ

)1/2β

= z1 and n⋆ + 2 ≤ (1 + ζ)

(
4β − 2δ

2δλ

)1/2β

= z2 .

We can remark that λz2β1 and λz2β2 do not depend on λ. Consequently, for every
(n, p, σ2) such that np/σ2 ≥ n3 and every λ ∈ [n−2β , ε

(
np
σ2

)
], we get

∫ n⋆+2

n⋆

t4β−2δ

(1 + λt2β)2
dt ≤

∫ z2

z1

t4β−2δ

(1 + λt2β)2
dt .
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We finally see that

∫ z2

z1

t4β−2δ

(1 + λt2β)2
dt =

∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt

∫ z2
z1

t4β−2δ

(1+λt2β)2
dt

∫ +∞
0

t4β−2δ

(1+λt2β)2
dt

=

∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt

∫ λz2β
2

λz2β
1

u
1−2δ
2β

+1

(1+u)2 du

∫ +∞
0

u
1−2δ
2β

+1

(1+u)2 du

= c3

∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt ,

with

c3 =

∫ λz2β
2

λz2β
1

u
1−2δ
2β

+1

(1+u)2 du

∫ +∞
0

u
1−2δ
2β

+1

(1+u)2 du

∈ (0, 1)

being independent of λ and arbitrarily close to 0. Thus, we have that, using
Lemma 6,

• if n⋆ ≥ n− 1:
n∑

i=1

i4β−2δ

(1 + λi2β)2
≥
∫ n

0

t4β−2δ

(1 + λt2β)2
dt

≥
∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt−

∫ +∞

n

t4β−2δ

(1 + λt2β)2
dt ;

• if n⋆ < n− 1 and np/σ2 ≥ n3:

n∑

i=1

i4β−2δ

(1 + λi2β)2

≥
∫ n

0

t4β−2δ

(1 + λt2β)2
dt− c3

∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt

≥
∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt−

∫ +∞

n

t4β−2δ

(1 + λt2β)2
dt− c3

∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt .

With the change of variables u = λt2β (as in 5),

∫ +∞

n

1

(1 + λt2β)2
dt =

∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt

∫ +∞
n

t4β−2δ

(1+λt2β)2
dt

∫ +∞
0

t4β−2δ

(1+λt2β)2
dt

=

∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt

∫ +∞
λn2β

u
1−2δ
2β

+1

(1+u)2 du

∫ +∞
0

u
1−2δ
2β

+1

(1+u)2 du

≤
∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt

∫ +∞
1

u
1−2δ
2β

+1

(1+u)2 du

∫ +∞
0

u
1−2δ
2β

+1

(1+u)2 du

,
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since λ ≥ n−2β. This implies that there exists an integer n2 and real number
c2 ∈ (0, 1) such that, for every (n, p, σ2) such that np/σ2 ≥ n2 and for every
λ ∈ [n−2β, ε

(
np
σ2

)
],

n∑

i=1

i4β−2δ

(1 + λi2β)2
≥ c2

∫ +∞

0

t4β−2δ

(1 + λt2β)2
dt .

By taking N = max(n1, n2) and α = min(c1, c2), we have that for every
(n, p, σ2) such that np/σ2 ≥ N and every λ ∈ [n−2β, ε

(
np
σ2

)
]

R(n, p, σ2, λ, β, δ, C) ≥ α

(
CI1
2β

λ(2δ−1)/2β +
σ2I2
2βnp

λ−1/2β

)
.

E.3. Proof of Property 3

Proof. This proof uses two results proved in Sections E.1 and E.2 of the ap-
pendix. Property 2 shows that R attains its minimum on

[
0, ε

(
np
σ2

)]
, where ε(x)

goes to 0 as x goes to 0. First, Property 8 shows that

inf
λ∈[0,n−2β ]

{
R(n, p, σ2, λ, β, δ, C)

}
≥ σ2

4p
.

Then, using Property 9 shows that there exists an integer N and a constant
α ∈ (0, 1) such that for every (n, p, σ2) such that np

σ2 ≥ N , every (β, δ) ∈ R
2
+

such that 4β > 2δ > 1 and every λ ∈ [n−2β, ε
(
np
σ2

)
] we have

R(n, p, σ2, λ, β, δ, C) ≥ α

(
CI1
β

λ(2δ−1)/2β +
σ2I2
2βnp

λ−1/2β

)
. (27)

Thus, using the same analysis than for Property 1, we get

inf
λ∈[n−2β ,ε(np

σ2 )]

{
R(n, p, σ2, λ, β, δ, C)

}
≥ α

(np
σ2

)1/2δ−1

C1/2δκ(β, δ) .

E.4. Proof of Property 4

The proof of Property 1 clearly shows two regimes :

• when λ⋆
R ≤ n−2β, the multi-task risk is ≍ σ2

p ;

• when λ⋆
R ≥ n−2β, the multi-task risk is ≍

(
σ2

np

)1−1/2δ

.

We now show that if λ is too close to zero then the variance term exceeds
the upper bound on R⋆(n, p, σ2, β, δ, C) given in Equation (9).
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Proof. Let us denote

m1 = inf
λ∈[0,n−2β ]

{
R(n, p, σ2, λ, β, δ, C)

}

and
m2 = inf

λ∈[n−2β ,ε(np

σ2 )]

{
R(n, p, σ2, λ, β, δ, C)

}
.

If m1 < m2 then λ⋆
R ≤ 1

n2β , else λ⋆
R ≥ 1

n2β . Under the present assumptions, we
can use the proof Property 3 and state that there exists an integer N1 and a
constant α ∈ (0, 1) such that

σ2

p
≥ m1 ≥ σ2

4p
,

and

21/2δ
(np
σ2

)1/2δ−1

C1/2δκ(β, δ) ≥ m2 ≥ α
(np
σ2

)1/2δ−1

C1/2δκ(β, δ) .

Both assumptions n2δ−1 × σ2

p −→ 0 and n2δ−1 × σ2

p −→ +∞ ensure that either
m1 > m2 or m2 < m1 asymptotically hold.

Appendix F: Study of the different multi-task hypotheses

Lemma 8. Under Assupmtion (HAV(δ, C1, C2)), Assumption (2Points) is equiv-
alent to

∃(εi)i∈N ∈ {−1, 1}N , ∀i ∈ {1, . . . , n},
{

∀j ∈
{
1, . . . , p

2

}
, hj

i =
√
ni−δ(

√
C1 + εi

√
C2)

∀j ∈
{
p
2 + 1, . . . , p

}
, hj

i =
√
ni−δ(

√
C1 − εi

√
C2)

.

The risk of the estimator f̂ j
λ = Aλy

j for the jth task, which we denote by Rj(λ),
verifies

R(n, 1, σ2, λ, β, δ,
(√

C1 −
√
C2

)2
) ≤ Rj(λ)

and

Rj(λ) ≤ R(n, 1, σ2, λ, β, δ,
(√

C1 +
√
C2

)2
) .

Proof. We have that, for every i ∈ {1, . . . , n}




µi√
p = 1

2h
1
i +

1
2h

p
i

ς2i = 1
2

(
h1
i − µi√

p

)2
+ 1

2

(
hp
i − µi√

p

)2

⇔





hp
i = 2 µi√

p − h1
i

ς2i = 1
2

(
h1
i − µi√

p

)2
+ 1

2

(
2 µi√

p − h1
i − µi√

p

)2

⇔
{

hp
i = 2µi − h1

i

ς2i =
(
h1
i − µi

)2
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This is equivalent to h1
i = µi√

p + ςi and hp
i = µi√

p − ςi. Thus, the first point is

proved. For the second point, let j ∈ {1, . . . , p}. There exists (εi)i∈N ∈ {−1, 1}N
such that (hj

i )
2 = ni−2δ

(√
C1 + εi

√
C2

)2
. The risk of f̂ j

λ then is

λ2
n∑

i=1

i4β−2δ
(√

C1 + εi
√
C2

)2

(1 + λi2β)2
+

σ2

n

n∑

i=1

1

(1 + λi2β)
2 .

We conclude by seeing that, for every ε ∈ {−1, 1}, we have
(√

C1 −
√
C2

)2 ≤(√
C1 + ε

√
C2

)2 ≤
(√

C1 +
√
C2

)2

Lemma 9. Under Assupmtion (HAV(δ, C1, C2)), Assumption (1Out) is equiv-
alent to

∃(εi)i ∈ N ∈ {−1, 1}N , ∀i ∈ {1, . . . , n},
{

∀j ∈ {1, . . . , p− 1} , hj
i =

√
ni−δ

(√
C1 + εi

√
C2

p−1

)

hp
i =

√
ni−δ(

√
C1 − εi

√
(p− 1)C2)

.

If j ∈ {1, . . . , p− 1}, the risk of the estimator f̂ j
λ = Aλy

j for the jth task, which
we denote by Rj(λ), verifies

R(n, 1, σ2, λ, β, δ,

(
√
C1 −

√
C2

p− 1

)2

) ≤ Rj(λ)

and

Rj(λ) ≤ R(n, 1, σ2, λ, β, δ,

(
√
C1 +

√
C2

p− 1

)2

) ,

while the risk of the estimator f̂p
λ = Aλy

p for the pth task, which is denoted by
Rp(λ), verifies

R(n, 1, σ2, λ, β, δ,
(√

C1 −
√
(p− 1)C2

)2
) ≤ Rp(λ)

and

Rp(λ) ≤ R(n, 1, σ2, λ, β, δ,
(√

C1 +
√
(p− 1)C2

)2
) .
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Proof. For the first part, we have that, for every i ∈ {1, . . . , n}




µi√
p = p−1

p h1
i +

1
ph

p
i

ς2i = p−1
p

(
h1
i − µi√

p

)2
+ 1

p

(
hp
i − µi√

p

)2

⇔





hp
i = p µi√

p − (p− 1)h1
i

ς2i = p−1
p

(
h1
i − µi√

p

)2
+ 1

p

(
p µi√

p − (p− 1)h1
i − µi√

p

)2

⇔





hp
i = p µi√

p − (p− 1)h1
i

ς2i = p−1
p

(
h1
i − µi√

p

)2
+ (p−1)2

p

(
h1
i − µi√

p

)2

⇔





hp
i = p µi√

p − (p− 1)h1
i

ς2i = (p− 1)
(
h1
i − µi√

p

)2

This is equivalent to saying that there exists (εi)i∈N ∈ {−1, 1}N such that

{
hp
i = p µi√

p − (p− 1)h1
i

h1
i = µi√

p + εi√
p−1

ςi

⇔
{

h1
i = µi√

p + εi√
p−1

ςi

hp
i = µi√

p − εi
√
p− 1ςi

Lemma 10. Assumption (H2Points) implies Assumption (HAV(δ, C1, C2)).

Proof. For every i ∈ {1, . . . , n}, we suppose we have

{
h1
i =

√
ni−δ(

√
C1 +

√
C2)

hp
i =

√
ni−δ(

√
C1 −

√
C2)

.

Thus,

µi =
1√
p

p∑

j=1

hj
i =

√
p

2

(
h1
i + hp

i

)
=

√
p×√

ni−δ
√
C1 ,

so that µ2
i = pC1ni

−2δ. Furthermore,

ς2i =
1

p

p∑

j=1

(
hj
i −

µi√
p

)2

=
1

p

p∑

j=1

(√
ni−δ

√
C2

)2
= C2ni

−2δ .

Lemma 11. Assumption (H1Out) implies Assumption (HAV(δ, C1, C2)).
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Proof. For every i ∈ {1, . . . , n}, we suppose we have

{
h1
i =

√
ni−δ

(√
C1 +

1√
p−1

√
C2

)

hp
i =

√
ni−δ

(√
C1 −

√
p− 1

√
C2

) .

Thus,

µi =
1√
p

p∑

j=1

hj
i =

1√
p

(
(p− 1)h1

i + hp
i

)
=

√
p×√

ni−δ
√
C1 ,

so that µ2
i = pC1ni

−2δ. Furthermore,

ς2i =
1

p

p∑

j=1

(
hj
i −

µi√
p

)2

=
1

p

[
(p− 1)

(√
ni−δ

√
C2√

p− 1

)2

+
(√

p− 1
√
ni−δ

√
C2

)2
]
= C2ni

−2δ .
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