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Exact 3D solution for static and damped harmonic response
of simply supported general laminates

A. Loredoa,∗

aDRIVE, Université de Bourgogne, 49 rue Mlle Bourgeois, 58027 Nevers, France

Abstract

The state-space method is adapted to obtain three dimensional exact solutions for the static and damped
dynamic behaviors of simply supported general laminates. The state-space method is written in a general
form that permits to handle both cross-ply and antisymmetric angle-ply laminates. This general form also
permits to obtain exact solutions for general laminates, albeit with some constraints. For the general case
and for the static behavior, either an additive term is added to the load to simulate simply supported
boundary conditions, or the plate bends in a particular way. For the dynamic behavior, the general case
leads to pairs of natural frequencies for each order, with associated mode shapes.

Finite element simulations have been performed to validate most of the results presented in this study.
As the boundary conditions needed for the general case are not so straightforward, a specific discussion has
been added. It is shown that these boundary conditions also work for the two aforementioned laminate
classes.

The damped harmonic response of a non symmetrical isotropic sandwich is studied for different fre-
quencies around the fundamental frequency. The static and undamped dynamic behaviors of the [-15/15],
[0/30/0] and [-10/0/40] laminates are studied for various length-to-thickness ratios.

Keywords: Laminate, Exact 3D solution, Static, Damped, Harmonic, State-space method

1. Introduction

In the field of the study of multilayered anisotropic plates, exact 3D solutions occupy a particular
place. They have been obtained for a consequent variety of problems including static mechanical behavior,
undamped and damped dynamic behavior, sometimes coupled with initial stresses, thermal and piezoelectric
loads. Solutions for simply supported plates are the easiest to obtain if the load is supposed to vary like a bi-
sine function, because only a single term has to be handled for each quantity. For more general loadings, the
decomposition of all quantities with respect to a basis must be performed, leading to systems of equations of
growing size. That is the reason why these exact 3D solutions are of poor practical interest: easy to compute
for unrealistic problems and hard to compute for practical problems. However, they are of particular interest
from the theoretical point of view. Pagano’s solution [1], Srinivas’ solutions [2, 3] have been cited hundred
of times in works of various nature like plate theories, numerical simulations, and experimental studies.
These exact solutions had permitted to confirm or infirm numerous hypothesis, to enhance plate models, to
validate finite element behavior, etc.

In addition to these first studies, we can cite works for cylindrical shells [4, 5] including interfacial
damage [6], works for thermal loading [7], works dealing with thermoelectroelastic coupling [8] which has
been extended for the vibrations of initially stressed plates [9] and circular, annular, and sectorial plates [10].
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Additional references can be found in [11], and more recent works [12, 13]. The state-space method can also
be used with functionally graded materials [14], possibly including viscoelastic foundation [15].

For plates studies, solutions have first been obtained for cross-ply laminates in works like [1–3]. Since,
many other studies have been concerned with this class of laminates. Exact solutions have also been obtained
for antisymmetric angle ply laminates, first in reference [16], and then in [7, 13, 17]. Among these works,
references [7, 13] deal with both classes of laminates, but they are not treated exactly in the same manner:
the basis of functions and the boundary conditions are chosen to fit the behavior of the considered class.
In [17], authors present a method, based on an iterative variational approach, which can treat general
lamination schemes. For general lamination schemes, only an approximate solution can be obtained, but
this method provides the exact solution for cross-ply and antisymmetric angle ply laminates. In a more
recent work [18], authors also treat both class of laminates in the framework of electroelasticity with the
help of a sampling surfaces method. The solution is dependent on the number of sampling surfaces that
are considered. They extend the study to a laminate which is called unsymmetric angle-ply in their paper,
which is in fact –from the mechanical point of view– an antisymmetrical angle-ply laminate bonded on the
top and bottom surfaces by an isotropic layer. For this particular case, the exact solution can be obtained
for the simply supported boundary condition.

In this paper, the state-space method is used to obtain exact solutions for the bending of laminates. It
is shown that the cross-ply and the antisymmetric angle-ply cases can be treated with the same process,
including the same choice of basis functions and boundary conditions. At the end of the process, the two
above cases naturally separates because null or particular constants values appear that makes the behavior
of each type of laminate appropriate. Further, the same process can be applied to a general lamination
sequence. It can give an exact solution for these laminates according to the following limitation: either the
simply supported condition is no longer verified, or an additional term must be added to the loading.

Three dimensional finite element simulations have been added to this study. A section is devoted to the
study of the particular boundary conditions that must be applied to a 3D mesh to fit the corresponding
boundary conditions of the problem. An additional interest of these simulations is to validate the above
solving process, especially for damped structures and for general laminates for which no guarantee were
given by previous works.

Without loss of generality, the study is intentionally limited to cases involving a single order decompo-
sition of all quantities.

2. Governing equations and solving method

The solving procedure presented in this section belongs to the state-space method family. In the following,
Greek subscripts take values 1 or 2 and Latin subscripts take values 1, 2 or 3. Einstein’s summation
convention is used for subscripts only. The comma used as a subscript index means the partial derivative
with respect to the directions corresponding to the following indexes. Displacements are supposed to be
small enough to discard the nonlinear part of the strain tensor.

The plate is located in (x, y) ∈ [0, a]× [0, b]. The laminate is composed of N layers located between −h/2
and h/2, where h is the total height. The reference plane is taken as the z = 0 plane. The `th layer is
located between elevations ζ`−1 and ζ`, hence ζ0 = −h/2 and ζN = h/2.

Each ply is supposed to have a linear orthotropic (visco)elastic behavior with (x, y) as a plane of sym-
metry. This behavior is taken into account with the help of a complex fourth–order Hooke’s tensor C`ijkl.
In addition, all the fields are considered to have complex values. Volumetric forces are neglected. Hence, in
the `–th layer: {

εij = 1
2 (ui,j + uj,i)

σij,j = ρ`üi
with σij = C`ijklεij (1)

At this time, the state-space method main idea is used. The system is reorganized, separating the derivatives
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with respect to z from derivatives with respect to x and y:

u1,3 = 2ε13 − u3,1
u2,3 = 2ε23 − u3,2
u3,3 = ε33

σ13,3 = ρ`ü1 − σ11,1 − σ12,2
σ23,3 = ρ`ü2 − σ21,1 − σ22,2
σ33,3 = ρ`ü3 − σ31,1 − σ32,2

(2)

In order to eliminate εα3, ε33 and σαβ from the above equations, Hooke’s law is used:

εα3 = 2S`α3β3σβ3

ε33 =
1

C`3333
(σ33 − C`33αβεαβ)

σαβ = C`αβγδεγδ + C`αβ33ε33 = Q`αβγδεγδ +
C`αβ33
C`3333

σ33

(3)

where S`α3β3 are components of the compliance tensor and Q`αβγδ = C`αβγδ − C`αβ33C
`
33γδ/C

`
3333 are the

generalized plane stress stiffnesses1. Replacing εα3, ε33 and σαβ into (2) by means of formulas (3), and
then, replacing the strains εαβ with the corresponding displacement derivatives lead to a system which only
depends on u1, u2, u3, σ13, σ23, σ33 and their spatial and temporal derivatives.

The method takes advantage of the decomposition of each quantity into a sum of a dyadic product of
trigonometric functions of x and y like, taking u1 as an example:

u1(x, y, z, t) =

M∑
m=1

N∑
n=1

[
us,m,n(z) cos

(mπ
a
x
)

sin
(nπ
b
y
)

+ua,m,n(z) sin
(mπ
a
x
)

cos
(nπ
b
y
)]
ejωt (4)

where us,m,n(z) and ua,m,n(z) are the 2×M ×N components of u(x, y, z, t) with respect to the trigono-
metric basis, which are in fact functions of z that must be determined. For clarity, let us focus on a single
term, corresponding to a choice of m and n in the above sum and let us introduce ξ = mπ/a and η = nπ/b.
From this point, superscripts m,n and the time contribution are omitted for clarity. All quantities are
expressed with the help of a trigonometric basis as follow:

u1(x, y, z) = us(z) cos(ξx) sin(ηy) + ua(z) sin(ξx) cos(ηy)

u2(x, y, z) = vs(z) sin(ξx) cos(ηy) + va(z) cos(ξx) sin(ηy)

u3(x, y, z) = ws(z) sin(ξx) sin(ηy) + wa(z) cos(ξx) cos(ηy)

σ13(x, y, z) = σs13(z) cos(ξx) sin(ηy) + σa13(z) sin(ξx) cos(ηy)

σ23(x, y, z) = σs23(z) sin(ξx) cos(ηy) + σa23(z) cos(ξx) sin(ηy)

σ33(x, y, z) = σs33(z) sin(ξx) sin(ηy) + σa33(z) cos(ξx) cos(ηy)

(5)

Introduction of these functions into the system previously built lead to a 12 × 12 first–order differential
system of equations of the form:

∂

∂z
{X(z)} =

[
A`
]
{X(z)} (6)

1Note that the generalized plane stress hypothesis is not taken into account in this work, as it is generally the case for 2D
plate models, but these well known quantities naturally appear here.
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where:

{X(z)}T = {us(z), vs(z), ws(z), σs13(z), σs23(z), σs33(z),

ua(z), va(z), wa(z), σa13(z), σa23(z), σa33(z)} (7)

and the matrix
[
A`
]
is given in Appendix A. This system admits the solution:

{X(z)} = e[A
`]z {C`} (8)

where
{
C`
}
is a vector which contains 12 constants that must be determined with the boundary conditions.

Depending on the position of the layer, these boundary conditions are either continuity conditions at the
interfaces, either boundary conditions on the lower or on the upper face of the plate. Hence, at each of the
N − 1 interfaces z = ζ`, ` ∈< 1, N − 1 >, the continuity of all the functions of (7) gives 12 independent
conditions, which can be summarized as:{

X(ζ`−)
}

=
{
X(ζ`+)

}
, ` ∈< 1, N − 1 > (9)

or:
e[A

`]ζ` {C`} = e[A
`+1]ζ` {C`+1

}
, ` ∈< 1, N − 1 > (10)

On the lower and upper faces, the three displacements remain unknown. Let the three stresses of (11) have
the following prescribed values:

σ13(x, y,−h2 ) = σ13(x, y,+h
2 ) = 0

σ23(x, y,−h2 ) = σ23(x, y,+h
2 ) = 0

σ33(x, y,−h2 ) = + q
2 sin(ξx) sin(ηy) + p

2 cos(ξx) cos(ηy)

σ33(x, y,+h
2 ) = − q2 sin(ξx) sin(ηy)− p

2 cos(ξx) cos(ηy)

(11)

This leads to 6× 2 = 12 additional conditions:

{
X(−h2 )

}T
=
{
us(−h2 ), vs(−h2 ), ws(−h2 ), 0, 0,+ q

2 ,

ua(−h2 ), va(−h2 ), wa(−h2 ), 0, 0,+p
2

}
{
X(+h

2 )
}T

=
{
us(+h

2 ), vs(+h
2 ), ws(+h

2 ), 0, 0,− q2 ,
ua(+h

2 ), va(+h
2 ), wa(+h

2 ), 0, 0,−p2
}

(12)

The term p is null, except for general laminates as we shall see later. Hence, there are 12×N independent
equations in (10) and (12) for the 12×N unknowns:

us(−h2 ), vs(−h2 ), ws(−h2 ), ua(−h2 ), va(−h2 ), wa(−h2 ),

C`1, C
`
2, . . . , C

`
12, with ` ∈< 1, N − 1 >,

us(+h
2 ), vs(+h

2 ), ws(+h
2 ), ua(+h

2 ), va(+h
2 ), wa(+h

2 )

(13)

Thus, this linear system can be solved, and the solution is computed.

2.1. The case of general laminates
A detailed discussion for the specific simply supported boundary conditions, covering all the cases, is

given in section 3. We will only focus in this section to the particular case of general laminates. Applying
the above process lead, for the general case, to a deflection which does not verify the simply supported
conditions. The wa(z) function does not verify wa(0) = 0, which means that the corners of the plate
moves along the z direction. The solution remains exact because no other terms are needed to balance the
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equations, even for the more general laminate. This boundary condition will be designated in the following
by globally simply supported (GSS).

This particular set of boundary conditions is kept, in our study, for the search of natural frequencies.
We shall see that each order (m,n) is associated with two distinct natural frequencies. The mode shapes
associated with these two frequencies are like cylindrical bending in the ±45◦ directions. These laminates
have different bending stiffnesses in the ±45◦ directions, which explains the splitting of frequencies.

However, for the static case, it is possible to simulate an equivalent of the simply supported condition
if a bi-cosine term with amplitude p is added to the loading. The above system is changed in the following
way: p, which is prescribed to 0 in the classical cases is now an unknown, and the equation C`ref9 = 0 is
added to equations (10) and (12). This added equation forces wa(0) to be null. Indeed, for the layer(s) `ref
which contains the reference plane, setting z = 0 in equation (8) shows that wa(0) = C`ref9 . This solution
will be designated in the following by simulated simply supported (SSS). For dynamic purposes, it is possible
to search for a value of p for each frequency of a response curve, but the meaning of such results is quite
poor.

2.2. Dynamic behavior
We shall restrain here the study to harmonic solicitations, although state methods have been used for

general time response [19]. For harmonic solicitations, one can search for the response to a load at a given
frequency or search for natural frequencies. The response to a given frequency to a bi-sine load is computed
using the same procedure as the static case, the only difference is the non null value for ω in matrices

[
A`
]
.

The search for natural frequencies is a more difficult task. Several works [9, 20] have described an exact
procedure, for undamped structures, which consists in searching for roots of the determinant of a matrix.
This procedure has been successfully used for matrices of size 6 × 6, but we have been unable to make it
work for our 12× 12 matrices. Let us summarize the method: it starts with the transfer matrix which links
the upper face to the bottom face according to:

{
X(h2 )

}
= [Λ(ω)]

{
X(−h2 )

}
=

1∏
`=N

e[A
`]h` {

X(−h2 )
}

(14)

A natural frequency for an undamped plate corresponds to non null displacements u, v, and w for a null
load q. Hence the sub-matrix formed with the lines (1,2,3,7,8,9) and the columns (4,5,6,10,11,12) of the
matrix [Λ(ω)] must have a null determinant.

This equation is transcendental with respect to ω and leads to an infinite number of natural frequencies
for each couple (m,n). In some works, authors [3] have noticed that each of these natural frequencies
corresponds with a specific transverse mode, and the lower of them corresponds to the bending natural
frequency of the mode (m,n).

All the data in
[
A`
]
can be replaced with their corresponding values except the angular frequency ω

which remains the unknown. Unfortunately, because of the size of 12× 12 of the matrices
[
A`
]
in our case,

we have been unable to compute analytically their exponential, and so unable to obtain the matrix [Λ(ω)].
Hence, the natural frequencies are searched with an iterative procedure. It can be noticed that other

authors [21] have also proposed to search natural frequencies by means of an iterative process. A bi-
sine load of order (m,n) is applied and the complex input power is computed. This complex power is
Pinc = abq

8 (ws(h2 )− ws(−h
2 ))j. It has been shown, for example in reference [22], that the imaginary part of

this input power is related to the Lagrangian of the plate, when the real part corresponds to the dissipated
power. Hence, the frequency is varied in order to find the one which gives a null value of the Lagrangian,
which corresponds to the searched mode(s). The process is:

• for a given (m,n), a (low) starting frequency ω0 is set, the system is solved for a bi-sine load of order
(m,n), and the Lagrangian is computed;

• at each following iteration, frequency is multiplied by k so ωi+1 = kωi, and the corresponding La-
grangian is computed until a change on the sign is detected, say for i = ι;
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• a final step consists in a dichotomic search between ωι and ωι−1 to find the natural frequency, the
process being stopped for a required precision.

This process is easy to implement, and gives excellent results. The value for k can be set to 1.8 for laminates
but attention should be paid:

• for sandwiches, especially if the core have very low mechanical characteristics compared to the skins.
In these cases, different transverse modes may have close frequencies, hence the value for k must be
diminished to avoid the “jump” of two frequencies,

• for general laminates, because, as told in section 2.1, two modes exist for each value of (m,n). A
straightforward modification of the process previously described can help to manage these cases.

3. Finite element simulations

Three dimensional finite element simulations have been performed for most of the examples presented in
section 4. This was initially done in order to verify the solutions of the analytical method, and these results
were not scheduled to figure in the paper. However, the task was not as easier than expected, especially the
choice of boundary conditions. In addition, results for general laminates cannot be compared with data of
the literature. It is the reason why these results have been finally given, and the specific 3D finite element
boundary conditions are detailed in this section.

Let us start with the general form of the displacement functions : u(x, y, z) = us(z) cos(ξx) sin(ηy) + ua(z) sin(ξx) cos(ηy)
v(x, y, z) = vs(z) sin(ξx) cos(ηy) + va(z) cos(ξx) sin(ηy)
w(x, y, z) = ws(z) sin(ξx) sin(ηy) + wa(z) cos(ξx) cos(ηy)

(15)

This general form works for all laminates, but three cases should be distinguished: the cross-ply case, the
antisymmetric angle-ply case and the general case.

3.1. The cross-ply case
For this class of problems, the ua(z), va(z), and wa(z) functions are found to be null functions when the

present method is applied. All the previous studies which have treated cross-play laminates have ignored
the corresponding terms in formula (15). Let us examine what happens at boundaries x = 0, a and y = 0, b: u(x, 0, z) = u(x, b, z) = 0

v(0, y, z) = v(a, y, z) = 0
w(x, 0, z) = w(x, b, z) = w(0, y, z) = w(a, y, z) = 0

(16)

These particular simply supported conditions are generally applied for this class of problem, they permit to
a laminate which exhibits a membrane-bending coupling to bend with no membrane constraint. Further,
they are easy to apply to a finite element simulation. They are also compatible with the study of a quarter
of the plate, with the help of appropriate symmetry boundary conditions applied to the cut edges.

3.2. The antisymmetric angle-ply case
For this class of problems, the ua(z), va(z), and wa(z) functions are no longer null functions, hence, at

boundaries x = 0, a, and y = 0, b, we have now:
u(x, 0, z) = ua(z) sin(ξx) and u(x, b, z) = −ua(z) sin(ξx)
v(0, y, z) = va(z) sin(ηy) and v(a, y, z) = −va(z) sin(ηy)
w(x, 0, z) = wa(z) cos(ξx) and w(x, b, z) = −wa(z) cos(ξx)
w(0, y, z) = wa(z) cos(ηy) and w(a, y, z) = −wa(z) cos(ηy)

(17)
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In this form, these conditions are no longer useful for finite element simulation, but we can also write them:
u(x, 0, z) + u(x, b, z) = 0
v(0, y, z) + v(a, y, z) = 0
w(x, 0, z) + w(x, b, z) = 0
w(0, y, z) + w(a, y, z) = 0

(18)

This particular set of conditions is clearly more complex than the previous one. In fact it is also a more
general one, because, as one could see, the previous set is included into this one. Further, this set could
also be applied to cross-ply laminates and it will work perfectly. Fortunately, many finite element softwares,
like Cast3M [23] used in this study, permit to apply such boundary conditions. However, they are not
compatible with the study of a quarter of the plate. It is also interesting to notice that when applying
this set to antisymmetric cross-ply laminates, the wa(z) function verifies wa(z) = −wa(−z) which implies
wa(0) = 0. That means that the plate remains supported on its edges, the wa(z) function only permit non
null ε33(z) on the edges. We shall also notice that there is no need to prescribe the wa(0) = 0 condition to
the finite element problem, the antisymmetry of the laminate is sufficient to give the good result.

3.3. The general case
As told in section 2.1, the previous boundary conditions, which works for both cross-ply and antisym-

metric angle-ply laminates, leads, for the general laminate, to the globally simply supported condition (GSS).
The plate is no longer strictly supported on its edges. To be more precise, it is supported in a particular way
which corresponds to the last two relations of (18), but the antisymmetry of the wa(z) function which was
encountered in the previous case does not appear in the general case. That means that the plate could have
a non null deflection on its edges, with respect of an antisymmetry with the opposite edge. Applying this
set of boundary conditions to the finite element simulation of a general laminate will give the same solution
than the analytical process.

However, for the static case, another approach has been chosen in this study. As described in section 2.1,
the simulated simply supported (SSS) condition is prescribed for a single order loading (of order (1,1) in our
case) with the help of a supplementary cos(ξx) cos(ηy) term added to the loading. The amplitude of this
term, p, which appears in formula (12), must be adapted to each case (laminate, length-to-thickness ratio,
order of the loading. . . ). This is straightforward for the analytical solving procedure because p becomes an
unknown of the system as well as those of equation (13), but for the finite element method, it necessitates
two computations. The first is done with p = 0 and the second with p = p0 giving two different values for
the deflection of a corner of the plate. Then the value of p that gives a null value of the deflection of this
corner is calculated and the deflection can be found accounting to the linearity (a third computation is not
necessary).

3.4. Mesh considerations
For studies involving composite materials, finite element computations have been made with a regular

24× 24× 24 20-nodes hexaedron mesh, except for the computation of the transverse stresses in the case of
a length-to-thickness ratio a/h of 100. In this case, because elements have a high length-to-thickness ratio,
the stresses are not properly evaluated. A local refinement of the mesh at the points where the stresses are
computed, with elements four times smaller than those at the corners of the plate, have been necessary to
obtain correct results that can been seen in figures 3, 4 and 5. Note that even for a/h = 100, transverse
displacements and natural frequencies presented in the tables have been computed with the regular mesh,
and they are in very good agreement with the analytical solution. However, one can notice that for the
higher value of a/h, deflections and natural frequencies are a little less good than for other values of a/h,
this is also due to the bad shape of the elements for a/h = 100.

For the first study, the viscoelastic behavior is considered. The use of complex numbers leads to a system
of double size. Hence, the number of elements along a side of the plate has been limited to 16. However,
due to symmetry considerations which does not apply for the other presented studies, it is possible here
to consider only a quarter of the plate. That permits to have approximatively the same precision than for
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the other studies. The mesh has been made with 20-nodes hexaedrons and 15-nodes pentaedrons with a
refinement at the location where the stresses are evaluated. The small elements are 4 times smaller than the
biggest. This plate has 3 layers, the number of elements in the z direction has been set to 18 = 12 + 3 + 3.

4. Results

In this section, laminates made of different materials are studied. First, an isotropic unsymmetrical
sandwich is considered. Although this laminate belongs to the cross-ply family, the reason why it is presented
here is mainly to show how viscoelastic behavior for an harmonic solicitation is effectively handled by the
present method. The sandwich is made of aluminum alloy and viscoelastic polymer which properties are:

• aluminum alloy: E = 72.4 GPa, ν = 0.34, ρ = 2780 kg.m−3, η = 0.005.

• viscoelastic material: E = 2.30 MPa, ν = 0.45, ρ = 1015 kg.m−3, η = 1.

where η is the damping ratio.
All the other studies involve laminates made of plies of equal thicknesses. Each ply is made up of

transversely isotropic composite material which characteristics are:

• composite material: EL = 25ET , ET = 106, νLT = 0.25, νTT = 0.25, GLT = 0.5ET , GTT = 0.2ET ,
ρ = 1500.

To cover the anti-symmetrical case, a study of a [-15/15] laminate is performed. Static and dynamic
behavior are considered and transverse stresses are plotted for various length-to thickness ratios. Finally,
the same study is performed for both [0/30/0] and [-10/0/40] laminates, showing the ability of the method
for the most general case.

Nondimensionalized values are obtained with formulas:

Displacements : ui = 100
E2h

3

(−q)a2b2ui

Stresses : σij = 10
h

qa
σij

Frequencies : ω = ab

√
ρ

E2h2
ω;

(19)

4.1. Damped dynamic behavior of an unsymmetrical sandwich
The sandwich plate is made of three layers which materials are aluminum alloy for the skins and vis-

coelastic material for the core. The plate is a square with sides of length a = b, and with length-to-thickness
ratio a/h = 10. The layers have corresponding thicknesses 5h/7, h/7, and h/7. The first natural bending
frequency has been found to be ω0 = 3.73157. Figure 1 shows the variation through the thickness of the
nondimensionalized displacements u and w and stresses σ13 and σ33 when the plate is excited by a (1,1)
bi-sine load at the fundamental frequency. Note that this does not correspond to a modal shape because the
method used in this paper to find natural frequencies is based on the search of null values for the Lagrangian
for an given load. This is the reason why values for σ33(±h/2) are not null. Figure 2 shows the variation
through the thickness of the nondimensionalized displacements u and the stresses σ13 when the plate is
excited by a (1,1) bi-sine load at various frequencies around the fundamental frequency.

4.2. Static and dynamic behavior of a [-15/15] laminate
We reproduce here a study which has been done in reference [13]. A square composite plate with stacking

sequence [-15/15] and boundary conditions described in section 3.2 is loaded with a bi-sine load of order
(m,n) = (1, 1). Four length-to-thickness ratios are considered, a/h = 2, 4, 10, 100. Figure 3 shows the
dimensionless transverse shear stresses at points A(a/2, 0) and B(0, b/2). Two of these four plots have
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Figure 1: Variation of the dimensionless displacements u and w and the dimensionless stresses σ13 and σ33 through the thickness
of the sandwich plate excited at the dimensionless fundamental frequency of ω0 = 3.73157 by an unitary (1,1) bi-sine load
equally distributed on the upper and bottom faces.
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Figure 2: Variation of the dimensionless displacements u and the dimensionless stresses σ13 through the thickness of the
sandwich plate at various frequencies around the dimensionless fundamental frequency of ω0 = 3.73157.

also been given in the reference [13]. In addition, finite element computations have been performed with
a 24 × 24 × (2 × 12) 20-nodes hexaedron mesh. Values of dimensionless deflection, transverse stresses and
fundamental frequency are reported in table 1. Values from reference [13] are compared with values from
this study, including the analytical ones and those obtained by FEM analysis. Results of the present study
agree perfectly with those of reference [13], except for a sign on some shear stresses. Table 1 also presents a
relative error which is the relative difference between analytical and FEM values. This relative error shows
that the particular boundary conditions used in the 3D FEM model are suitable to this type of study. Other
set of boundary conditions have been tested but this is the only one that gives so good results.

4.3. General laminates
The same study than the one of the [-15/15] laminate is done for two laminates that are neither of

cross-ply type nor of antisymmetric angle-ply type. The first of them has a [0/30/0] stacking sequence.
It is a symmetric laminate, hence it is not properly speaking a general laminate, but it necessitates the
same process than the second laminate which stacking sequence is [-10/0/40]. As described in section 3.3,
the SSS condition is prescribed for a single order loading ((m,n) = (1, 1) in our case) with the help of a
supplementary cos(ξx) cos(ηy) term added to the loading.

Deflections and fundamental frequencies for the [0/30/0] laminate with various length-to-thickness ratios
can be seen in table 2 and transverse shear stresses are plotted in figure 4. For the [-10/0/40] laminate,
results can be seen in table 3 and figure 5. The comparison with finite element computations shows that
the boundary conditions are adequate. Hence it is possible to have an exact solution for static and dynamic
problems even for the most general stacking sequences, but with special boundary conditions.

5. Conclusion

The state-space method has been written in a general form that permits to obtain 3D exact solutions
for static deflection, and for undamped and damped harmonic responses of laminates. After the choice of
trigonometric basis functions for the in-plane variations of displacements u, v, w and stress components
σ13, σ23, σ33, the 3D equilibrium equations are reformulated as a 12 × 12 first order differential system of
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Figure 3: Distribution of the dimensionless transverse shear through the thickness of the [-15/15] composite plate for various
length-to-thickness ratios. For clarity, only one FEM curve per plot is presented, for a different length-to-thickness ratio in
each plot.
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a/h source w(a2 ,
a
2 , 0) σ13(a2 , 0, z1) σ13(0, a2 , z2) σ23(0, a2 , z2) σ23(a2 , 0, z3) ω0

2 present 4.55480 2.71950 −0.569460 −0.382364 1.10746 4.46950
3D FEM 4.55474 2.72202 −0.570113 −0.382882 1.11078 4.46952
rel. err. -13 ppm 0.93 h 1.2 h 1.4 h 3.0 h 4.5 ppm

4 ref. [13] 1.7059 3.1447 0.84091 0.39883 0.96037
present 1.70585 3.14472 −0.840910 −0.398830 0.960372 7.45479

3D FEM 1.70584 3.14789 −0.841323 −0.399478 0.964838 7.45482
rel. err. -5.9 ppm 1.0 h 0.49 h 1.6 h 4.7 h 4.0 ppm

σ13(a2 , 0, z4) σ13(0, a2 , z5) σ23(0, a2 , z5) σ23(a2 , 0, z6)

10 ref. [13] 0.80272 3.4209 0.99113 0.41169 0.81378
present 0.802721 3.42088 −0.991131 −0.411688 0.813781 11.0265

3D FEM 0.802716 3.43544 −0.995506 −0.415081 0.820914 11.0265
rel. err. -6.2 ppm 4.3 h 4.4 h 8.2 h 8.8 h 0.0 ppm

100 present 0.622318 3.49589 −1.02916 −0.416318 0.770810 12.6740
3D FEM 0.622236 3.54552 −1.01019 −0.428656 0.783020 12.6748
rel. err. -130 ppm 14 h 18 h 30 h 16 h 63 ppm

Table 1: Values of dimensionless deflection and shear stresses for the [-15/15] laminate, with z1 = 0.145, z2 = −0.280,
z3 = 0.125, z4 = 0.140, z5 = −0.255, z6 = 0.150 for the static load of order (m,n) = (1, 1), and values of the fundamental
frequency.

a/h source wGSS(a2 ,
a
2 , 0) wSSS(a2 ,

a
2 , 0) p ω1

0 ω2
0

2 present 4.76247 4.67167 −0.138083 4.13153 4.65351
3D FEM 4.76241 4.67160 −0.138084 4.13154 4.65354
rel. err. -13 ppm -15 ppm 2.4 ppm 6.4 ppm

4 present 1.72351 1.70511 −0.103337 7.13721 7.83090
3D FEM 1.72350 1.70510 −0.103337 7.13722 7.83091
rel. err. -5.8 ppm -5.9 ppm 1.4 ppm 1.3 ppm

10 present 0.656135 0.653369 −0.0649254 11.8979 12.6786
3D FEM 0.656132 0.653366 −0.0649256 11.8979 12.6786
rel. err. -4.6 ppm -4.6 ppm 0.0 ppm 0.0 ppm

100 present 0.425176 0.423984 −0.0529466 14.9442 15.7575
3D FEM 0.425135 0.423944 −0.0529420 14.9448 15.7582
rel. err. -96 ppm -94 ppm 40 ppm 44 ppm

Table 2: Values for the [0/30/0] laminate.
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Figure 4: Distribution of the dimensionless transverse shear through the thickness of the [0/30/0] composite plate for various
length-to-thickness ratios. For clarity, not all of the FEM curves are plotted.
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Figure 5: Distribution of the dimensionless transverse shear through the thickness of the [-10/0/40] composite plate for various
length-to-thickness ratios. For clarity, not all of the FEM curves are plotted.
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a/h source wGSS(a2 ,
a
2 , 0) wSSS(a2 ,

a
2 , 0) p ω1

0 ω2
0

2 present 4.64839 4.57996 −0.121332 4.18178 4.70179
3D FEM 4.64831 4.57987 −0.121337 4.18180 4.70183
rel. err. -17 ppm -20 ppm 4.8 ppm 8.5 ppm

4 present 1.79519 1.76831 −0.122380 6.87796 7.66547
3D FEM 1.79518 1.76829 −0.122381 6.87797 7.66549
rel. err. -5.6 ppm -11 ppm 1.5 ppm 2.6 ppm

10 present 0.907571 0.897511 −0.105286 9.89646 10.8833
3D FEM 0.907566 0.897505 −0.105286 9.89648 10.8833
rel. err. -4.4 ppm -5.6 ppm 2.0 ppm 0.0 ppm

100 present 0.732640 0.726210 −0.0936478 11.1703 12.2682
3D FEM 0.732526 0.726103 −0.0936345 11.1711 12.2690
rel. err. -156 ppm -147 ppm 72 ppm 65 ppm

Table 3: Values for the [-10/0/40] laminate.

equations with respect of the z coordinate. Using the exponentiation of the corresponding 12 × 12 matrix
permits to obtain the 12 functions that describe the variation through the thickness of these quantities,
leading to the complete knowledge of all the fields.

This process permits to treat both class of laminates which are generally considered separately in such
studies: cross-ply and anti-symmetrical angle-ply laminates. Further, the same process has been applied
to general lamination sequences, and it has been shown that 3D solutions exist for the most general cases,
but for special boundary conditions or for special loadings. It is possible to formulate simply supported
boundary condition that works for the cross-ply, the anti symmetrical angle-ply and the general classes of
laminates. However, for the last case, a deflection of the corners of the plate occurs. It is possible to avoid
this deflection if an additional term is added to the loading. Both approaches have been considered for static
studies. For the harmonic response, the additional term has not been considered. It has been shown that,
for each order of the loading, it exists two natural frequencies with associated mode shapes.

The use of complex stiffnesses lead, with no supplementary effort, to solutions of the damped harmonic
response of laminates. Although no values have been given in this paper, it is easy, from there, to obtain
exact values for the dissipated power and the loss factor for a given load and a given frequency.

Most of the results of this study have been compared to finite element simulations. The specific boundary
conditions that are applied have been presented and discussed. The presented results, especially the plots
describing the variations of quantities through the thickness leave no doubt about the pertinence of applied
boundary conditions, and about the exactness of the given solutions.
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Appendix A. Matrix A`

For a given layer `, the matrix A` of equation (8) is of the form:

A` =

[
A`

1 A`
2

A`
3 A`

4

]
(A.1)

where:

A`
1 =



0 0 −ξ 4S`1313 0 0

0 0 −η 0 4S`2323 0

C`1133
C`3333

ξ
C`2233
C`3333

η 0 0 0
1

C`3333

ξ2Q`1111 + η2Q`1212 − ρ`ω2 ηξ
(
Q`1122 +Q`1212

)
0 0 0 −C

`
1133

C`3333
ξ

ηξ
(
Q`1122 +Q`1212

)
ξ2Q`1212 + η2Q`2222 − ρ`ω2 0 0 0 −C

`
2233

C`3333
η

0 0 −ρ`ω2 ξ η 0


(A.2)
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A`
2 =



0 0 0 0 4S`1323 0

0 0 0 4S`1323 0 0

C`3312
C`3333

η
C`3312
C`3333

ξ 0 0 0 0

2ηQ`1112ξ ξ2Q`1112 + η2Q`2212 0 0 0
C`3312
C`3333

η

ξ2Q`1112 + η2Q`2212 2ηQ`2212ξ 0 0 0
C`3312
C`3333

ξ

0 0 0 0 0 0



(A.3)

A`
3 =



0 0 0 0 4S`1323 0

0 0 0 4S`1323 0 0

−C
`
3312

C`3333
η −C

`
3312

C`3333
ξ 0 0 0 0

2ηQ`1112ξ ξ2Q`1112 + η2Q`2212 0 0 0 −C
`
3312

C`3333
η

ξ2Q`1112 + η2Q`2212 2ηQ`2212ξ 0 0 0 −C
`
3312

C`3333
ξ

0 0 0 0 0 0



(A.4)

A`
4 =



0 0 ξ 4S`1313 0 0

0 0 η 0 4S`2323 0

−C
`
1133

C`3333
ξ −C

`
2233

C`3333
η 0 0 0

1

C`3333

ξ2Q`1111 + η2Q`1212 − ρ`ω2 ηξ
(
Q`1122 +Q`1212

)
0 0 0

C`1133
C`3333

ξ

ηξ
(
Q`1122 +Q`1212

)
ξ2Q`1212 + η2Q`2222 − ρ`ω2 0 0 0

C`2233
C`3333

η

0 0 −ρ`ω2 −ξ −η 0



(A.5)
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