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LARGE TIME BLOW UP FOR A PERTURBATION OF THE CUBIC SZEGŐ

EQUATION

HAIYAN XU

Abstract. We consider the following Hamiltonian equation on a special manifold of rational functions,

i∂tu = Π(|u|2u) + α(u|1), α ∈ R,
where Π denotes the Szegő projector on the Hardy space of the circle S1. The equation with α = 0

was first introduced by Gérard and Grellier in [6] as a toy model for totally non dispersive evolution

equations. We establish the following properties for this equation. For α < 0, any compact subset of

initial data leads to a relatively compact subset of trajectories. For α > 0, there exist trajectories on

which high Sobolev norms exponentially grow in time.

1. Introduction

The study on the long time behavior of solutions of Schrödinger type Hamiltonian equations is a

central issue in the theory of dispersive nonlinear partial differential equations. For instance, Collian-

der, Keel, Staffilani, Takaoka and Tao studied the following cubic defocusing nonlinear Schrödinger

equation in [3],

(1.1) i∂tu + △u = ±|u|2u , (t, x) ∈ R×T2 .

In that paper, they constructed solutions with small Hs norm at the initial moment, which present

a large Sobolev Hs norm at a sufficiently long time T . Guardia and Kaloshin improved this result

by refining the estimates on the time T [5]. Zaher Hani studied a version of nonlinear Schrödinger

equation obtained by canceling the least resonant part, and showed the existence of unbounded tra-

jectories in high Sobolev norms [11]. Recently, Hani, Pausader, Tzvetkov and Visciglia studied the

nonlinear Schrödinger equation (1.1) on the spatial domain R×Td, and obtained global solutions to

the defocusing and focusing problems on (for any d ≥ 2) with infinitely growing high Sobolev norms

Hs [12].

There is another related result by Gérard and Grellier [8]. They considered the following degener-

ate half wave equation on the one dimensional torus,

(1.2) i∂tu − |D|u = |u|2u .

They found solutions with small Sobolev norms at initial time which become much larger as time

grows. More precisely, there exist sequences of solutions un and tn such that ‖un
0
‖Hr → 0 for any r,

but

‖un(tn)‖Hs ∼ ‖un
0‖Hs

(
log

1

‖un
0
‖Hs

)2s−1

, s > 1 .

In fact, the above result is a consequence of the studies on the so-called cubic Szegő equation which

is introduced by Gérard and Grellier as a model of non-dispersive dynamics [6, 7],

(1.3) i∂tu = Π(|u|2u) .
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The above equation turns out to be the resonant part of the half wave equation (1.2). The operator Π,

which is the so-called Szegő operator, is defined as a projector onto the non-negative frequencies. If

u ∈ D′(S1) is a distribution on the circle S1
= {z ∈ C : |z| = 1}, then

(1.4) Π(u) = Π
(∑

k∈Z
û(k)eikθ)

=

∑

k≥0

û(k)eikθ .

Notice that, on the Hilbert space L2(S1) endowed with the inner product

(1.5) (u | v) =
1

2π

∫ π

−π
u(eix)v(eix)dx ,

Π is the orthogonal projector on the subspace L2
+(S1) defined by the conditions

∀k < 0, û(k) = 0 .

Gérard and Grellier studied the Szegő equation on the space H
1
2 (S1) ∩ L2

+(S1) := H
1
2
+ (S1) and

displayed two Lax pair structures for this completely integrable system [6, 7]. Moreover, they estab-

lished an explicit formula of every solution with rational initial data [9] and illustrated the large time

behavior of Sobolev norms of the solutions, for instance,

Theorem 1.1. [6] Every solution u of (1.3) on

M̃(1) :=

{
u =

a + bz

1 − pz
: 0 , a ∈ C, b ∈ C, p ∈ C, |p| < 1, a + bp , 0

}

satisfies

∀s >
1

2
, sup

t∈R
‖u(t)‖Hs < ∞.

However, there exists a family of Cauchy data uε
0

in M̃(1) which converges in M̃(1) for the C∞(S1)

topology as ε→ 0, and K > 0 such that the corresponding solutions of (1.3) uε satisfy

∀ε > 0, ∃tε > 0, ‖uε(tε)‖Hs ≥ K(tε)2s−1 as tε → ∞, ∀s >
1

2
.

Another result on this Szegő equation was obtained by Pocovnicu [14, 15], who studied this equa-

tion by replacing the circle S1 with the real line and got a polynomial growth of high Sobolev norms

(Corollary 4, [15]), which says that there exists a solution u of the Szegő equation and a constant

C > 0 such that ‖u(t)‖Hs ≥ C|t|2s−1 for sufficiently large |t|.
The aim of this manuscript is to study the properties of global solutions for the following Hamil-

tonian equation on L2
+(S1), which is the cubic Szegő equation with a linear perturbation,

(1.6)


i∂tu = Π(|u|2u) + α(u | 1), α ∈ R ,
u(0, x) = u0(x) ,

Recall that, in view of the above definition (1.5),

(u | 1) =
1

2π

∫ π

−π
u(eix)dx

is the average of u on S1.
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The equation (1.6), called the α−Szegő equation, inherits three formal conservation laws:

mass: Q(u) :=

∫

S
1
|u|2 dθ

2π
= ‖u‖2

L2 ,

momentum: M(u) := (Du | u), D := −i∂θ = z∂z ,

energy: Eα(u) :=
1

4

∫

S
1
|u|4 dθ

2π
+

1

2
α|(u|1)|2 .

Slight modifications of the proof of the well-posedness result in [6] lead to the result that the

α−Szegő equation is globally well-posed in Hs
+(S1) = Hs(S1) ∩ L2

+(S1) for s ≥ 1
2

as follows:

Theorem 1.2. Given u0 ∈ H
1
2
+ (S1), there exists a unique global solution u ∈ C(R; H

1
2
+ ) of (1.6) with u0

as the initial condition. Moreover, if u0 ∈ Hs
+(S1) for some s > 1

2
, then u ∈ C∞(R; Hs

+). Furthermore,

if u0 ∈ Hs
+(S1) with s > 1, the Wiener norm of u is bounded uniformly in time,

(1.7) sup
t∈R
‖u(t)‖W := sup

t∈R

∞∑

k=0

|û(t)(k)| ≤ Cs‖u0‖Hs .

Now, we present our main results. In our case with a perturbation term, we gain the following

statement that for the case α < 0 the Sobolev norm stays bounded uniformly in time, while for α > 0,

it may grow exponentially fast.

Theorem 1.3. Let u0 = b0 +
c0z

1−p0z
, c0 , 0, |p0| < 1.

For α < 0, the Sobolev norm of the solution will stay bounded,

(1.8) ‖u(t)‖Hs ≤ C, C does not depend on time t, s ≥ 0 .

For α > 0, the solution u of the α−Szegő equation (1.6) has a Sobolev norm growing exponentially

in time,

(1.9) ‖u(t)‖Hs ≃ eCα,s |t|, s >
1

2
, Cα,s > 0, |t| → ∞ ,

if and only if

(1.10) Eα =
1

4
Q2
+
α

2
Q .

Remark 1.1. Here are several remarks:

(1) Together with the results in [6, 7], we now have a complete picture for the high Sobolev norm

of the solutions to the α-Szegő equation. For α < 0, it stays bounded (uniformly on time), for

α > 0, it turns out to have an exponential growth for some initial data satisfying the condition

in the Theorem 1.3. Finally, for α = 0, the trajectories of the Szegő equation with rational

initial data are quasiperiodic with instability of the Hs norm as in Theorem 1.1.

(2) Our result is in strong contrast with Bourgain’s and Staffilani’s results for the dispersive

equations in [2, 16], which say that the dispersive equations admit polynomial upper bounds

on Sobolev norms. Here, we give an example of exponential growth of Sobolev norms for a

non dispersive model.

(3) The solutions to the α-Szegő equation admit an exponential upper bound of the Sobolev

norms. Assume s > 1, it is easy to solve (1.6) locally in time. More precisely, one has to

solve the integral equation

u(t) = u0 − i

∫ t

0

(
Π(|u|2u) + α(u|1)

)
dt′ .

3



Thus

‖u(t)‖Hs ≤ ‖u0‖Hs + c

∫ t

0

(
1 + ‖u(t′)‖2W

)
‖u(t′)‖Hs dt′ ,

since by Theorem 1.2, the Wiener norm is uniformly bounded, then by Gronwall’s inequality,

we have

‖u(t)‖Hs ≤ ‖u0‖Hsect .

This shows that estimate (1.9) is the worst that can happen.

This paper is organized as follows. In section 2, we prove that there exists a Lax pair for the

α−Szegő equation based on Hankel operators. Then we define the manifolds L(k) :=
{
u : rk(Ku) =

k, k ∈ Z+
}

with the shifted Hankel operator Ku. These manifolds are proved to be invariant by

the flow and can be represented as sets of rational functions. In this paper we will just consider the

solutions u ∈ L(1). We plan to address the other cases in a forthcoming work. In section 3, we

prove the large time blow up result and the boundedness of the Wiener norm to show that our result

is optimal. Furthermore, we provide an example which describes the energy cascade. Finally, we

present some perspectives in section 4.

2. The Lax pair structure

For u ∈ E ⊂ D′(S1), we define E+ by canceling the negative Fourier modes of u,

E+ =
{
u ∈ E : ∀k < 0, û(k) = 0

}
.

In particular, L2
+ is the Hardy space of L2 functions which extend to the unit disc D =

{
z ∈ C : |z| < 1

}
as holomorphic functions

u(z) =
∑

k≥0

û(k)zk,
∑

k≥0

|û(k)|2 < ∞ .

An element of L2
+ can therefore be seen either as a square integrable function u = u(eiθ) on the circle

with only nonnegative Fourier modes, or a holomorphic function u = u(z) on the unit disc with square

summable Taylor coefficients.

Using the Szegő projector defined as (1.4), we first introduce two important classes of operators on

L2
+(S1), namely, the Hankel and Toeplitz operators.

Given u ∈ H
1
2
+ (S1), a Hankel operator Hu : L2

+ → L2
+ is defined by

Hu(h) = Π(uh) .

Notice that Hu is C−antilinear and symmetric with respect to the real scalar product Re(u|v). In fact,

it satisfies

(Hu(h1) | h2) = (Hu(h2) | h1) .

Moreover, Hu is a Hilbert-Schmidt operator with

Tr(H2
u) =

∞∑

n=0

(n + 1)|û(n)|2 .

Given b ∈ L∞(S1), a Toeplitz operator Tb : L2
+ → L2

+ is defined by

Tb(h) = Π(bh) .

Tb is C−linear, bounded, and is self-adjoint if and only if b is real-valued.

The cubic Szegő equation was proved to admit two Lax pairs as follows:
4



Theorem 2.1 ([6], Theorem 3.1). Let u ∈ C(R,Hs(S1)) for some s > 1
2
. The cubic Szegő equation

(2.11) i∂tu = Π(|u|2u)

has two Lax pairs (Hu, Bu) and (Ku,Cu), namely, if u solves (2.11), then

(2.12)
dHu

dt
= [Bu,Hu] ,

dKu

dt
= [Cu,Ku] ,

where

Bu =
i

2
H2

u − iT|u|2 , Ku := T ∗z Hu , Cu =
i

2
K2

u − iT|u|2 .

Corollary 2.1. The perturbed Szegő equation (1.6) with α , 0 still has one Lax pair (Ku,Cu).

Proof. The proof is based on the following identity ([9], Lemma 1),

(2.13) HΠ(|u|2u) = T|u|2 Hu + HuT|u|2 − H3
u .

Using equation (1.6) and (2.13),

dHu

dt
= H−iΠ(|u|2u)−iα(u|1) = −i(T|u|2 Hu + HuT|u|2 − H3

u) − iα(u | 1)H1 .

Using the anti-linearity of Hu, we deduce that

(2.14)
dHu

dt
= [Bu,Hu] − iα(u | 1)H1 ,

which means that (Hu, Bu) is no longer a Lax pair. Fortunately, we have T ∗z H1 = 0, which leads to the

following identity

(2.15)
dKu

dt
= [Cu,Ku] .

�

An important consequence of this Lax pair structure is the existence of finite dimensional subman-

ifolds of L2
+(S1) which are invariant by the flow of (1.6). To describe these manifolds, Gérard and

Grellier (Appendix 4, [6]) proved a Kronecker-type theorem that, the Hankel operator Hu is of finite

rank k if and only if u is a rational function of the complex variable z, with no poles in the unit disc,

and of the form u(z) =
A(z)
B(z)

with A ∈ Ck−1[z], B ∈ Ck[z], B(0) = 1, deg(A) = k − 1 or deg(B) = k, A

and B have no common factors and B(z) , 0 if |z| ≤ 1. In fact, we can prove a similar theorem for our

case.

Definition 2.1. Let k be a positive integer, we define

(2.16) L(k) :=

{
u ∈ H

1
2
+ (S1) : rk(Ku) = k

}
.

Due to the Lax pair structure, the manifolds L(k) are invariant by the flow.

Theorem 2.2. u ∈ L(k) if and only if u is a rational function satisfying

u(z) =
A(z)

B(z)
with A, B ∈ Ck[z], A ∧ B = 1, deg(A) = k or deg(B) = k, B−1({0}) ∩ D = ∅ ,

where A ∧ B = 1 means A and B have no common factors.
5



Proof. The proof is based on the results by Gérard and Grellier (see Appendix 4, [6]), they proved

that

M(k + 1) = {u : rk(Hu) = k + 1}

=



u(z) =
A(z)

B(z)
: A ∈ Ck[z], B ∈ Ck+1[z], B(0) = 1, deg(A) = k

or deg(B) = k + 1, A ∧ B = 1, B−1(0) ∩ D = ∅


.

For u ∈ M(k + 1), dim ImHu = k+ 1, then u, T ∗z u, · · · , (T ∗z )k+1u are linearly dependent, i.e, there exist

Cℓ, not all zero, such that
k+1∑
ℓ=0

Cℓ(T
∗
z )ℓu = 0. We get

k+1∑

ℓ=0

Cℓû(ℓ + n) = 0 , ∀n ≥ 0 .

This is a recurrent equation for sequence û. It can be solved by means of elementary linear algebra.

Define

P(X) =

k+1∑

ℓ=0

CℓX
ℓ
= C

∏

p∈P
(X − p)mp ,

where P = {p ∈ C : P(p) = 0} and mp is the multiplicity of p.

(û(n))n≥0 is a linear combination of the following sequences:

nℓpn−ℓ, p , 0, 0 ≤ ℓ ≤ mp − 1 ,

δnm, p = 0, 0 ≤ m ≤ m0 − 1 .

Recall that

u(z) =
∑

n≥0

û(n)zn for |z| < 1 ,

then u is a linear combination of 1
(1−pz)ℓ+1 with 0 < |p| < 1 for 0 ≤ ℓ ≤ mp − 1, and of zℓ for

0 ≤ ℓ ≤ m0 − 1.

Consequently, u(z) =
A(z)
B(z)

with

deg(A) ≤ k, deg(B) = k + 1, if p , 0, p ∈ P ,
deg(A) = k, deg(B) ≤ k, if 0 ∈ P .

Note that

0 ∈ P
is equivalent to

1 ∈ ImHu

or to

ker Ku ∩ ImHu , {0} ,
since Ku = T ∗z Hu, rk(Hu) − 1 ≤ rk(Ku) ≤ rk(Hu). For u ∈ L(k), rk(Ku) = k, then u =

A(z)
B(z)

with

deg(A) ≤ k − 1, deg(B) = k, if rk(Hu) = rk(Ku) = k ,

deg(A) = k, deg(B) ≤ k, if rk(Hu) = rk(Ku) + 1 = k + 1 .
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The proof of the converse is similar. So

L(k) = {u : rk(Ku) = k + 1}

=



u(z) =
A(z)

B(z)
: A ∈ Ck[z], B ∈ Ck[z], B(0) = 1, deg(A) = k

or deg(B) = k, A ∧ B = 1, B−1(0) ∩ D = ∅


.

The proof is completed. �

3. The proof of the main theorem

In this section, we will prove that the α−Szegő equation (1.6) admits the large time blow up as in

Theorem 1.3, we will also give an example to describe this phenomenon in terms of energy transfer

to high frequencies. Before the proof of the main theorem, let us prove the boundedness of Wiener

norm as in Theorem 1.2.

Proposition 3.1. Assume u0 ∈ Hs
+(S1) with s > 1, let u be the corresponding unique solution of (1.6).

Then

‖u(t)‖W ≤ Cs‖u0‖Hs , ∀t ∈ R .

Proof. By Peller’s theorem [13], the regularity of u ensures that Hu is trace class and the trace norm

of Hu is equivalent to the B1
1,1

norm of u. Recall the definition of Bs
p,q(S1).

Let χ ∈ C∞(R+) satisfy χ|t<1(t) = 1, χ|t>2(t) = 0, 0 ≤ χ ≤ 1. Set ψ as ψ0(t) = 1 − χ(t),

ψ j(t) = χ(2− j+1t) − χ(2− jt). Define the operator ∆ j for f ∈ D′(S1) as

∆ j f =
∑

k∈Z
ψ j(k) f̂ (k) eikθ .

Then the Besov space is defined as

Bs
p,q(S1) :=

{
u ∈ D′(S1) : 2 js‖∆ j f ‖Lp ∈ l

q

j
, 1 ≤ p, q ≤ +∞, 0 ≤ j ≤ +∞

}
,

with the norm ‖u‖Bs
p,q(S1) =

(
+∞∑
j=0

(2 js‖∆ j f ‖Lp)q

) 1
q

.

Observe that there exist C, Cs > 0, such that

‖u‖B1
1,1
=

+∞∑

j=0

2 j‖∆ ju‖L1 ≤ C

+∞∑

j=0

2 j‖∆ ju‖L2

≤ C


+∞∑

j=0

22 js‖∆ ju‖2L2



1
2

+∞∑

j=0

22 j(1−s)



1
2

≤ Cs‖u‖Hs , ∀s > 1 .

(3.17)

So for u ∈ Hs with s > 1, Hu is trace class, and

Tr(|Hu|) ≤ Cs‖u‖Hs .

Since Ku = T ∗z Hu, then

K2
u = H2

u − (· | u)u ,

then

Tr(|Ku|) ≤ Tr(|Hu|) .
Due to the Lax pair structure, we get Ku(t) is isospectral to Ku0

, then

Tr(|Ku(t) |) = Tr(|Ku0
|) ,

7



so

Tr(|Ku(t)|) ≤ Cs‖u0‖Hs .

Since ‖u‖W = |û(0)| + ∑
n≥1
|û(n)| and |û(0)| ≤ ‖u‖L2 , we just need to show that

∑

n≥1

|û(n)| ≤ CTr(|Ku|) .

Let en as the orthonormal basis of L2
+

, then for any bounded operator B,

∑

n

∣∣∣∣(Kuen | Ben)
∣∣∣∣ ≤ Tr(|Ku|)‖B‖.

Then we gain that
∑

n≥1
|û(2n)|+ ∑

n≥1
|û(2n+ 1)| ≤ Tr(|Ku|), by taking B = Tz and B = Id. This completes

the proof. �

Remark 3.1. In fact, to prove the global wellposedness, it is natural to use the Brezis-Gallouët type

estimate (Appendix 2, [6]), for s > 1
2

‖u‖W ≤ Cs‖u‖
H

1
2

[
log(1 +

‖u‖Hs

‖u‖H1/2

)

] 1
2

,

which leads to a double exponential on time growth for the Sobolev norm of u. Fortunately, by the

estimate in Proposition 3.1, we know the Hs norm of the solutions will admit an exponential on time

upper bound for s > 1 (see Remark 1.1).

Now, let us start the large time blow up theorem.

Theorem 3.1. For α > 0, we consider the solution of the Szegő equation (1.6) with initial data

u0 ∈ L(1).

(1) If the trajectory issued from u0 is not relatively compact in L(1), then

(3.18)

∣∣∣∣∣∣b +
pc

1 − |p|2

∣∣∣∣∣∣ =
√
α ,

or equivalently

(3.19) Eα =
1

4
Q2
+
α

2
Q .

(2) If (3.18) holds, then

(3.20) ‖u(t)‖Hs ≃ eCα,s |t|, s >
1

2
, Cα,s > 0, |t| → ∞ .

Remark 3.2. From the theorem, the equality (3.19), which is invariant by the flow, is a necessary and

sufficient condition to cause the large time blow up.

Proof. First, since the trajectory of the solution is not relatively compact inL(1), the level set L(u0) :=

{u ∈ L(1) : Q(u) = Q(u0), M(u) = M(u0), Eα(u) = Eα(u0)} is not compact in L(1).

We rewrite u ∈ L(1) as

u = b +
cz

1 − pz
,

8



then the conservation laws under the coordinates b, p, c are given as

Q = ‖u‖2
L2 =

|c|2
1 − |p|2

+ |b|2 ,

M = (Du | u) =
|c|2

(1 − |p|2)2
,

Eα =
1

4
‖u‖4

L4 +
α

2
|(u|1)|2

=
1

4

[
|b|4 + 4|b|2|c|2

1 − |p|2
+
|c|4(1 + |p|2)

(1 − |p|2)3
+

4|c|2Re(bpc)

(1 − |p|2)2

]
+
α

2
|b|2 .

If u ∈ L(1) stays in a compact of L(1) if and only if |b| ≤ C, 1
C
≤ |c| ≤ C and |p| ≤ k < 1 with some

constant C and k. Otherwise, due to the formulas of mass Q and momentum M, there exist tn → ∞
such that |c(tn)| and 1 − |p(tn)|2 tend to 0 at the same order. Using the formula of Q and Eα, we have

|b(tn)|2 → Q,
1

4
|b(tn)|4 + α

2
|b(tn)|2 → Eα .

Since the limit should be unique,

Eα =
1

4
Q2
+
α

2
Q .

Using the formula of mass and energy, (3.19) can be rewritten under coordinates of b, p, c as

|b|2 + |c|2|p|2

(1 − |p|2)2
+ 2Re

(
bpc

1 − |p|2

)
= α ,

simplify the left hand side, we get

∣∣∣∣b +
pc

1 − |p|2
∣∣∣∣ =
√
α .

Now, we turn to prove that (3.18) is sufficient to cause the exponential growth of Sobolev norms.

Writing as before

u(t) = b(t) +
c(t)z

1 − p(t)z
,

then the terms ∂tu, Π(|u|2u), (u|1) can be represented as linear combinations of 1, z
1−pz

and z2

(1−pz)2 ,



∂tu = ∂tb + ∂tc
z

1 − pz
+ ∂t p

z2

(1 − pz)2
,

Π(|u|2u) = |b|2b +
2b|c|2

1 − |p|2
+
|c|2cp

1 − |p|2

+

[
2|b|2c +

2b|c|2 p

1 − |p|2
+

1 + |p|2

1 − |p|2
|c|2c

]
z

1 − pz

+

[
c2b +

|c|2cp

1 − |p|2

]
z2

(1 − pz)2
,

(u | 1) = b .
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then (1.6) reads

(3.21)



i∂tb = |b|2b +
2b|c|2

1 − |p|2
+
|c|2cp

(1 − |p|2)2
+ αb ,

i∂tc = 2|b|2c +
2b|c|2 p

1 − |p|2
+

|c|2c

(1 − |p|2)2
,

i∂t p = cb +
|c|2 p

1 − |p|2
.

Using the second equation of (3.21), we gain

(3.22)
d|c|
dt
=

2|c|
1 − |p|2

Im(bpc) ,

The equality together with (3.18) gives us

(
d|c|
|c|dt

)2

=
4(Im(bpc))2

(1 − |p|2)2

=
4|bpc|2

(1 − |p|2)2
− 4(Re(bpc))2

(1 − |p|2)2

=
4|bpc|2

(1 − |p|2)2
−

[
α − |b|2 − |c|2|p|2

(1 − |p|2)2

]2

=
4|bpc|2

(1 − |p|2)2
−

[
α − |b|2 − |c|2

(1 − |p|2)2
+
|c|2

1 − |p|2

]2

=
4|bpc|2

(1 − |p|2)2
−

[
α − Q − M + 2

|c|2
1 − |p|2

]2

=
4|bpc|2

(1 − |p|2)2
− 4|c|4

(1 − |p|2)2
− 4|c|2

1 − |p|2

[
α − |b|2 − |c|2

(1 − |p|2)2
− |c|2

1 − |p|2

]
− (α − Q − M)2

=
4|b|2|c|2

(1 − |p|2)2
+

4|c|4

(1 − |p|2)3
− α 4|c|2

1 − |p|2
− (α − Q − M)2

= 4

(
|b|2 + |c|2

1 − |p|2

)
|c|2

(1 − |p|2)2
− α 4|c|2

1 − |p|2
− (α − Q − M)2

= 4QM − 4α
√

M|c| − (α − Q − M)2 .

Thus (
d log |c|

dt

)2

= −4α
√

M|c| + 4QM − (α − M − Q)2 .

Since 0 ≤ |c| ≤ 1, then cα,M,Q ≤ (
d|c|
|c|dt

)2 ≤ Cα,M,Q, which leads to an exponential decay in time for

|c|,
|c|(t) ≃ |c(0)|e−C|t| ,

with the positive constant C depending on α and M, Q.

Notice that û(k, t) = cpk−1 for k ≥ 1, using Fourier expansion, we obtain, as |p| approaches 1,

‖u‖2Hs ≃
|c|2

(1 − |p|2)2s+1
.
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Since M(u) =
|c|2

(1−|p|2)2 = constant, we get ‖u‖2
Hs ≃ |c|−(2s−1) ≃ eC(2s−1)|t| , which has an exponential

growth as s > 1
2
. The proof is complete.

�

Corollary 3.1. We do not have the growth of Hs norms for small data in L(1). In other words, if

‖u(0)‖
H

1
2
+

<<
√
α, the higher Sobolev norm will never grow to infinity.

Proof. ‖u(0)‖
H

1
2
+

<<
√
α, then

∣∣∣∣∣∣b +
cp

1 − |p|2

∣∣∣∣∣∣ ≤
√

Q +
√

M . ‖u(0)‖
H

1
2
+

<<
√
α .

According to the necessary and sufficient condition (3.18), there is no norm explosion. �

Remark 3.3. Consider a family of Cauchy data given by

uε0 = z + ε, ε ∈ C and ε ,
√
α .

For the case α = 0, Gérard and Grellier got the following instability of Hs norms

‖uε(tε)‖Hs ≃ ε−(2s−1), s >
1

2
.

However, we do not have such an instability result for α > 0. In fact, using the theorem 3.1, we know

there exists a constant C = C(α) such that,

sup
ε,
√
α

sup
t∈R
‖uε(t)‖Hs < C .

Now, we give an example to display the energy cascade in Theorem 3.1.

Theorem 3.2. Given α > 0.

(3.23)


i∂tu = Π(|u|2u) + α(u | 1) ,

u|t=0 = z +
√
α, z ∈ S1 .

For all s > 1
2
, the above equation is globally well-posed in Hs and the solution satisfies

‖u(t)‖Hs ≃ e(2s−1)
√
αt, t → ∞ .

Proof. Firstly, since u0 = z +
√
α, the conserved quantities are

Q = 1 + α, M = 1, Eα =
1

4
(1 + α)(1 + 3α) ,

then u0 ∈ L(1). So by the proof of Theorem 3.1,
(

d

dt
|c|

)2

= 4α|c|2(1 − |c|) .

Together with the initial condition |c|(0) = 1, we get for t > 0 (same strategy for t < 0),

(3.24)
d

dt
|c| = −2

√
α|c|

√
1 − |c| .

|c|(t) = 4e2
√
αt

(1 + e2
√
αt)2

.

By (3.18), we can get

Re(bpc) = |c|2 − |c| ,
11



and by (3.22) and (3.24), we have

Im(bpc) = −
√
α|c|

√
1 − |c| ,

so

bpc = Re(bpc) + iIm(bpc) = |c|2 − |c| − i
√
α|c|

√
1 − |c| .

The second equation of (3.21) can be simplified as follows,


i∂tc =

(
1 + 2α − 2i

√
α
√

1 − |c|
)
c ,

c(0) = 1 .

Then

(3.25) c(t) =
4e2
√
αt

(1 + e2
√
αt)2

e−i(1+2α)t .

Now, we turn to calculate b and p, in fact, we only need to calculate their angles. Let us denote

b = |b|eiθ(t)
=

√
1 + α − |c|eiθ(t) , p = |p|eiσ(t)

=

√
1 − |c|eiσ(t) ,

then using the differential equation on p, we get

∂tσ|p| = |c||p| + Re
(
cbe−iσ

)
= |c||p| + Re


cbp

|p|

 = |c||p| +
1

|p| (|c|
2 − |c|) = 0 ,

which means

σ(t) = σ(0) .

Since

bp =
c(bpc)

|c|2
= (|c| − 1 − i

√
α
√

1 − |c|)e−i(1+2α)t

=

√
(1 + α − |c|)(1 − |c|)

(
−
√

1 − |c|
√

1 + α − |c|
− i

√
α

√
1 + α − |c|

)
e−i(1+2α)t ,

ei(θ+σ)
=

(
−
√

1 − |c|
√

1 + α − |c|
− i

√
α

√
1 + α − |c|

)
e−i(1+2α)t ,

and eiθ(0)
= 1, thus we get

eiσ(t)
= eiσ(0)

= ei(σ(0)+θ(0))
= −i ,

then

eiθ(t)
=

(
−i

√
1 − |c|

√
1 + α − |c|

+

√
α

√
1 + α − |c|

)
e−i(1+2α)t .

Finally, we have

p(t) = −i
√

1 − |c| = −i
e2
√
αt − 1

e2
√
αt + 1

,

b(t) =


√
α − i

e2
√
αt − 1

e2
√
αt + 1

 e−i(1+2α)t .

(3.26)
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Now, we get the explicit formula for the solution u(t) = b(t) +
c(t)z

1−p(t)z
,

(3.27)



b(t) =


√
α − i

e2
√
αt − 1

e2
√
αt + 1

 e−i(1+2α)t

c(t) =
4e2
√
αt

(1 + e2
√
αt)2

e−i(1+2α)t ,

p(t) = −i
e2
√
αt − 1

e2
√
αt + 1

.

In this case, M(u) =
|c|2

(1−|p|2)2 = 1 and we get for t → +∞,

‖u(t)‖2Hs ≃ |c|−(2s−1) ≃ Ce2(2s−1)
√
αt .

�

Remark 3.4. One can illustrate this instability of Sobolev norms from the viewpoint of transfer of

energy to high frequencies. The Fourier coefficients for u = b + cz
1−pz

are

û(k) = c(t)p(t)k−1, ∀k ≥ 1 .

Then

M(u) = 1 =
∑

k≥1

|k||û(k)|2 =
∑

k≥1

|k||c(t)|2 |p(t)|2(k−1) .

With (3.27), we have

∑

k≥1

∣∣∣∣∣∣∣
1 − e−2

√
αt

1 + e−2
√
αt

∣∣∣∣∣∣∣

2k
16|k|

|(1 + e−2
√
αt)(1 − e−2

√
αt)|2

= 1 .

As t → ∞, we get ∑

k≥1

4|k|e−2
√
αt exp (−4|k|e−2

√
αt) ∼ 1

4
,

so the main part of the summation is on the ks satisfying

|k| ∼ e2
√
αt .

So as time becomes larger, the main part of the energy concentrates on the Fourier modes as large as

e2
√
αt.

On the other hand, from the viewpoint of the space variable, we find that as time grows to infinity,

the energy will concentrate on one point. In fact, rewrite z = eix, then∣∣∣∣∣∣∣
u(t, x) −

√
α − i

1 − e−2
√
αt

1 + e−2
√
αt

∣∣∣∣∣∣∣
=

|c(t)|
|1 − p(t)z| =

1 − |p(t)|2
|1 − p(t)z| ∼

1 − |p(t)|
|1 − p(t)z|

∼ 1√
2(e4

√
αt − 1)(1 − sin x) + 4

→ 0 if and only if x ,
π

2
, t → ∞ .

Therefore, as time tends to infinity, the value of |u| will concentrate on the point i ∈ S1.

Moreover, this example shows that the radius of analyticity of the solution of equation (1.6) may

decay exponentially. This shows the optimality of the result in the recent work [10].

Now, let us turn to the case α < 0.
13



Theorem 3.3. In the case α < 0, for any given initial data u0 ∈ L(1), let u = az+b
1−pz

be the correspond-

ing solution of (1.6). Then there exist a constant C = C(α), such that

∀t, ‖u(t)‖Hs < C, s ≥ 1

2
,

the constant C > 0 is uniform for u0 in a compact subset of L(1).

Proof. We prove this theorem by contradiction. If u(tn) would leave any compact subset of L(1), then

the Theorem 3.1 would lead to (3.19), or equivalently to the following equality,

‖u0‖4L2 − ‖u0‖4L4 = 2α
(
|(u0 | 1)|2 − ‖u0‖2L2

)
.

Via the Cauchy-Schwarz inequality and α < 0, we get

‖u0‖L2 = ‖u‖L4 and |(u0 | 1)| = ‖u0‖L2 ,

then u0 should be a constant, which contradicts the fact that u0 ∈ L(1). �

4. Further studies and open problems

In this paper, we just considered the data on the 3-(complex) dimensional manifold

L(1) :=
{
u : rkKu = 1

}
.

It is of course natural to consider the higher dimensional case, which will be probably much more

complicated. Since we have also got enough conservation laws for the case rkKu = 2, we have a

conjecture that the system stays completely integrable for rkKu ≥ 2. It would be interesting to know

how the results of this paper extend to this bigger phase space. In particular, do small data generate

large time blow up of high Sobolev norms?
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