Let H be a Schrödinger operator

H = -∆ + U
with a potential U (x), on R N , decaying at infinity. The potential U is called a von Neumann-Wigner potential if H has a positive eigenvalue with an eigenfunction from L 2 (R N ), i.e. there is a point of discrete spectrum which is embedded into the absolutely continuous spectrum.

The very first example of such a potential was constructed by von Neumann and Wigner [START_REF] Von Neumann | Über merkwürdige diskrete Eigenwerte[END_REF]. They found a three-dimensional rotation-symmetric nonsingular potential U (r) with the following asymptotic behavior (a computational mistake in [START_REF] Von Neumann | Über merkwürdige diskrete Eigenwerte[END_REF] reported later is corrected here):

U (r) = - 8 sin 2r r + O(r -2 ) as r = |x| → ∞, x ∈ R 3 .
The Schrödinger operators with U (x) = o(1/|x|) as x → ∞ have no positive eigenvalues [START_REF] Kato | Growth properties of solutions of the reduced wave equation with a variable coefficient[END_REF].

In the present note we construct multiparametric families of explicit twodimensional potentials which decay as 1/|x| and have a multiple positive eigenvalue. To our knowledge these are the first examples of such potentials.

We use the method introduced in [START_REF] Taimanov | Two-dimensional Schrödinger operators with fast decaying rational potential and multidimensional L 2kernel[END_REF][START_REF] Taimanov | Two-dimensional rational solitons and their blowup via the Moutard transformation[END_REF] where two-dimensional Schrödinger operators with fast decaying potentials and multidimensional kernels were constructed. This method is based on the Moutard transformation, of two-dimensional Schrödinger operators, which is as follows: let ω be a formal solution of the equation

Hω = -∆ + U (x, y) ω = 0, ∆ = ∂ 2 ∂x 2 + ∂ 2 ∂y 2 . (1) 
The Moutard transformation corresponding to H and ω gives a new Schrödinger operator

H = -∆ + U , U = U -2∆ log ω
such that if ϕ satisfies Hϕ = 0, then a function θ determined modulo const ω by the consistent system

(ωθ) x = -ω 2 ϕ ω y , (ωθ) y = ω 2 ϕ ω x , (2) 
satisfies Hθ = 0.

So there are maps

U → M ω (U ) = U -2∆ log ω, ϕ → S ω (ϕ) = {θ + C ω , C ∈ C}.
Let us consider an operator H and a pair of solutions to (1): ω 1 and ω 2 . For every θ 1 ∈ S ω1 (ω 2 ) there is a function (a result of double iteration of the Moutard transformation)

U = M θ1 M ω1 (U ) -U = -2∆ log(θ 1 ω 1 ). ( 3 
)
The result of this iteration depends on the choice of θ 1 ∈ S ω1 (ω 2 ), i.e., on the integration constant C in [START_REF] Kato | Growth properties of solutions of the reduced wave equation with a variable coefficient[END_REF]. Moreover the functions

ψ 1 = 1 θ 1 , ψ 2 = ω 2 ω 1 θ 1 satisfy the equation (-∆ + M θ1 M ω1 (U ))ψ = 0.
In contrast to [START_REF] Taimanov | Two-dimensional Schrödinger operators with fast decaying rational potential and multidimensional L 2kernel[END_REF][START_REF] Taimanov | Two-dimensional rational solitons and their blowup via the Moutard transformation[END_REF] where such a double iteration was applied to the case U = 0, we apply it to the constant potential U = -k 2 , k ∈ R. Therewith ω 1 and ω 2 have to satisfy to the Helmholtz equation

-∆ω = k 2 ω.
A large set of solutions to this equation is given by functions of the form

Re ∂ m ∂λ m e i k 2 (λz+ z λ ) , λ ∈ C, m = 0, 1, 2, . . . , (4) 
and their linear combinations.

For simplicity we consider the case k 2 = 1 and demonstrate the method by one explicit example.

Theorem 1 Let U = -1 and ω 1 = x 2 cos y -y sin y + y 2 sin x + x cos x, ω 2 = 4(y cos x + x sin y), x, y ∈ R.

Then the two-dimensional potential U takes the form

U = P Q 2
where Q = ω 1 θ 1 = -x 4 -y 4 -4x 2 y sin x sin y + x 2 -8 cos y sin x -2 sin 2 y -1 + +4xy 2 cos x cos y -16xy cos x sin y + 2x cos x -8 cos y -sin x + +y 2 -8 cos y sin x + 2 sin 2 x -3 + 2y sin y cos y + 8 sin x + +16 cos y sin x + sin 2 x -sin 2 y + 4 C + 1, and P is a polynomial in x, y and in sines and cosines of x and y: P = 16 x 6 y sin x sin y -x 5 y 2 cos x cos y+ +x 2 y 5 sin x sin y -xy 6 cos x cos y + (. . . )

where by dots we denote lower order terms in x and y. The functions ψ 1 and ψ 2 take the form

ψ 1 = ω 1 Q , ψ 2 = ω 2
Q and satisfy the equation

Hψ = ψ with H = -∆ + U .
Let us assume that C is negative and |C| is sufficiently large, then Q has no zeroes and therefore the potential U and the functions ψ 1 and ψ 2 are smooth. We have

U = O 1 r , ψ 1 = O 1 r 2 , ψ 2 = O 1 r 3 , as r = x 2 + y 2 → ∞. (5) 
and therefore ψ 1 and ψ 2 lie in L 2 (R 2 ) and are linearly independent eigenfunctions of the operator H = -∆ + U with the eigenvalue E = 1.

Using various linear combinations of the solutions (4) one can easily construct multiparametric families of similar two-dimensional potentials U with the asymptotics (5) and solutions ψ i at the energy level E = k 2 and moreover to improve the decay of the eigenfunctions ψ i . It is impossible to improve the decay of potentials due to already mentioned Kato's theorem [START_REF] Kato | Growth properties of solutions of the reduced wave equation with a variable coefficient[END_REF].

We guess that by applying multiple iterations one may obtain such potentials with positive eigenvalues with higher multiplicity.
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