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The Moutard transformation and
two-dimensional multi-point delta-type potentials

R.G. Novikov * I.A. Taimanov T

Let H be a two-dimensional Schrédinger operator H = —A+U = —400+U,

where 0 = % (% — ia%) ,z,y € R, and let w be a formal solution to the equation

Hw=0. (1)
The Moutard transformation corresponds to H and w the operator
H=—400+ U = —400 + U — 899 logw (2)

such that for every ¢ meeting the equation Hy = 0 a function 6 satisfying the
system
.o (P L2 (P
(wh), = —iw (w)z’ (wh)z = iw (w)z’ (3)
satisfies H9 = 0. The function 6 is defined modulo % due to the integration
constant in the right-hand sides of (3).

Recently the Moutard transformation which originates in the surface the-
ory was used for constructing special types of two-dimensional potentials and
blowing up solutions of the Novikov—Veselov equation [1, 2].

In difference with [1] which concerns with regular potentials in the present
note we deal with multi-point delta-type potentials. We consider also the Fad-
deev eigenfunctions [3] of the corresponding operators H on the zero energy
level. These eigenfunctions are defined by conditions

Hy =0, (2,2 )\ =e*(1+0(1)) asz— o0, A€ C\{0}.
In addition,
d}:eM(HMHtzMH(ﬁ» as 2 o0,
z z z

where a,b are the Faddeev generalized ”scattering” data on the zero energy
level.
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Theorem 1 A formal application of the Moutard transformation to the zero
potential U = 0 by using a polynomial in z function w = P(z) = Hivzl(z — 2k)
leads to the milti-point delta-type potential

N N
U(z) = —8#25(2 — Zk).
k=1

For this potential the Faddeev eigenfunctions on the zero energy level take the

form
2 L (—1)FPR) (2
w:€AZ<1+F;%>’ (4)

where P (2) = 9¥P(2). In addition, for these eigenfunctions a = —2N/\ and
b=0.

The proof of this theorem is based on solving system (3) with respect to
Y = 0 for w = P(z) and ¢ = ie**, and on straightforward computations.
However we need to clarify the meaning of Schrédinger operators with such
potentials.

Actually in this case we consider the Moutard system (3) with w = P(z)
as the appropriate regularization of the Schrédinger equation HO = 0 with the
potential U of Theorem 1. In addition, for V = 1, the Schrédinger equation
(A 4+ U)y =0 with U and ¢ from Theorem 1 is formally fulfilled under the
following conventions:

5(&2(1)2) :exzzg(g) _ 2mei(s)

We remark that the functions ¢ of (4) essentially differ from the Faddeev
eigenfunctions found in [4, 5] for the Schrédinger operators with multi-point
delta-type potentials. The reason is that in [4, 5] the operator with such a po-
tential is replaced by its regularization going back to [6], whereas in the present
note we work formally with the original potentials considering the regulariza-
tion, of the equation Hf = 0, given by the Moutard system (3).

In addition, in view of the property b = 0 for ¢ of (4) the potentials of
theorem 1 may be considered as "reflectionless” in the sense of the Faddeev
generalized ”scattering” data a, b. In this sense the functions 1 of (4) are similar
to the Faddeev eigenfunctions found in [9] for some regular potentials.

In [1, 8] the Moutard transformation is extended to a transformation of
solutions of the Novikov—Veselov equation [7]

Uy =0°U+0°U +30(UV) +30(UV) =0, —49V =9U. (5)

This equation has the Manakov form H; = HA + BH where A and B are
differential operators. If U satisfies (5) and w meets (1) and the equation

(0 + A)w =0, (6)



then the extended Moutard transformation of U has the same form (2) and gives
a new solution of (5). For the zero potential U = V = 0, we have A = 9% + 93
and w(z,t) = P(z,t) = H]kvzl(z — z(t)) satisfies (6) if and only if

or _op
ot 923

The latter equation describes an algebraic dynamics of the zeroes of P(z,t) (such
a dynamics for another reason was considered in [1]). A formal application of
the extended Moutard transformation leads to the potential

N
U(z,t) = =81 Y 6(2 — 2k(t))
k=1

which apparently may be considered as a formal solution to (5).
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