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The Moutard transformation and

two-dimensional multi-point delta-type potentials

R.G. Novikov ∗ I.A. Taimanov †

Let H be a two-dimensional Schrödinger operatorH = −∆+U = −4∂̄∂+U ,

where ∂ = 1
2

(
∂
∂x

− i ∂
∂y

)
, x, y ∈ R, and let ω be a formal solution to the equation

Hω = 0. (1)

The Moutard transformation corresponds to H and ω the operator

H̃ = −4∂̄∂ + Ũ = −4∂̄∂ + U − 8∂̄∂ logω (2)

such that for every ϕ meeting the equation Hϕ = 0 a function θ satisfying the
system

(ωθ)z = −iω2
(ϕ
ω

)

z
, (ωθ)z̄ = iω2

(ϕ
ω

)

z̄
, (3)

satisfies H̃θ = 0. The function θ is defined modulo 1
ω

due to the integration
constant in the right-hand sides of (3).

Recently the Moutard transformation which originates in the surface the-
ory was used for constructing special types of two-dimensional potentials and
blowing up solutions of the Novikov–Veselov equation [1, 2].

In difference with [1] which concerns with regular potentials in the present
note we deal with multi-point delta-type potentials. We consider also the Fad-
deev eigenfunctions [3] of the corresponding operators H on the zero energy
level. These eigenfunctions are defined by conditions

Hψ = 0, ψ(z, z̄, λ) = eλz(1 + o(1)) as z → ∞, λ ∈ C \ {0}.

In addition,

ψ = eλz

(
1 +

a(λ, λ̄)

z
+ eλ̄z̄−λz b(λ, λ̄)

z̄
+ o

(
1

|z|

))
as z → ∞,

where a, b are the Faddeev generalized ”scattering” data on the zero energy
level.
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Theorem 1 A formal application of the Moutard transformation to the zero

potential U = 0 by using a polynomial in z function ω = P (z) =
∏N

k=1(z − zk)
leads to the milti-point delta-type potential

Ũ(z) = −8π

N∑

k=1

δ(z − zk).

For this potential the Faddeev eigenfunctions on the zero energy level take the

form

ψ = eλz

(
1 +

2

P

N∑

k=1

(−1)kP (k)(z)

λk

)
, (4)

where P (k)(z) = ∂kP (z). In addition, for these eigenfunctions a = −2N/λ and

b ≡ 0.

The proof of this theorem is based on solving system (3) with respect to
ψ = θ for ω = P (z) and ϕ = ieλz, and on straightforward computations.
However we need to clarify the meaning of Schrödinger operators with such
potentials.

Actually in this case we consider the Moutard system (3) with ω = P (z)

as the appropriate regularization of the Schrödinger equation H̃θ = 0 with the
potential Ũ of Theorem 1. In addition, for N = 1, the Schrödinger equation
(−∆ + Ũ)ψ = 0 with Ũ and ψ from Theorem 1 is formally fulfilled under the
following conventions:

∂̄

(
eλz

(
1

z

)2)
= eλz 2

z
∂̄

(
1

z

)
=

2πeλzδ(z)

z
.

We remark that the functions ψ of (4) essentially differ from the Faddeev
eigenfunctions found in [4, 5] for the Schrödinger operators with multi-point
delta-type potentials. The reason is that in [4, 5] the operator with such a po-
tential is replaced by its regularization going back to [6], whereas in the present
note we work formally with the original potentials considering the regulariza-
tion, of the equation H̃θ = 0, given by the Moutard system (3).

In addition, in view of the property b ≡ 0 for ψ of (4) the potentials of
theorem 1 may be considered as ”reflectionless” in the sense of the Faddeev
generalized ”scattering” data a, b. In this sense the functions ψ of (4) are similar
to the Faddeev eigenfunctions found in [9] for some regular potentials.

In [1, 8] the Moutard transformation is extended to a transformation of
solutions of the Novikov–Veselov equation [7]

Ut = ∂3U + ∂̄3U + 3∂(UV ) + 3∂̄(UV̄ ) = 0, −4∂̄V = ∂U. (5)

This equation has the Manakov form Ht = HA + BH where A and B are
differential operators. If U satisfies (5) and ω meets (1) and the equation

(∂t +A)ω = 0, (6)
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then the extended Moutard transformation of U has the same form (2) and gives
a new solution of (5). For the zero potential U = V = 0, we have A = ∂3 + ∂̄3

and ω(z, t) = P (z, t) =
∏N

k=1(z − zk(t)) satisfies (6) if and only if

∂P

∂t
=
∂3P

∂z3
.

The latter equation describes an algebraic dynamics of the zeroes of P (z, t) (such
a dynamics for another reason was considered in [1]). A formal application of
the extended Moutard transformation leads to the potential

Ũ(z, t) = −8π

N∑

k=1

δ(z − zk(t))

which apparently may be considered as a formal solution to (5).
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