The Moutard transformation and two-dimensional multi-point delta-type potentials 

Hω = 0. ( 1 
)
The Moutard transformation corresponds to H and ω the operator

H = -4 ∂∂ + U = -4 ∂∂ + U -8 ∂∂ log ω (2) 
such that for every ϕ meeting the equation Hϕ = 0 a function θ satisfying the system (ωθ

) z = -iω 2 ϕ ω z , (ωθ) z = iω 2 ϕ ω z , (3) 
satisfies Hθ = 0. The function θ is defined modulo 1 ω due to the integration constant in the right-hand sides of (3).

Recently the Moutard transformation which originates in the surface theory was used for constructing special types of two-dimensional potentials and blowing up solutions of the Novikov-Veselov equation [START_REF] Taimanov | Two-dimensional rational solitons and their blow-up via the Moutard transformation[END_REF][START_REF] Taimanov | Blowing up solutions of the Novikov-Veselov equation[END_REF].

In difference with [START_REF] Taimanov | Two-dimensional rational solitons and their blow-up via the Moutard transformation[END_REF] which concerns with regular potentials in the present note we deal with multi-point delta-type potentials. We consider also the Faddeev eigenfunctions [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF] of the corresponding operators H on the zero energy level. These eigenfunctions are defined by conditions

Hψ = 0, ψ(z, z, λ) = e λz (1 + o(1)) as z → ∞, λ ∈ C \ {0}.
In addition,

ψ = e λz 1 + a(λ, λ) z + e λz-λz b(λ, λ) z + o 1 |z| as z → ∞,
where a, b are the Faddeev generalized "scattering" data on the zero energy level.

Theorem 1 A formal application of the Moutard transformation to the zero potential U = 0 by using a polynomial in z function ω = P (z) = N k=1 (z -z k ) leads to the milti-point delta-type potential

U (z) = -8π N k=1 δ(z -z k ).
For this potential the Faddeev eigenfunctions on the zero energy level take the form

ψ = e λz 1 + 2 P N k=1 (-1) k P (k) (z) λ k , (4) 
where

P (k) (z) = ∂ k P (z).
In addition, for these eigenfunctions a = -2N/λ and b ≡ 0.

The proof of this theorem is based on solving system (3) with respect to ψ = θ for ω = P (z) and ϕ = ie λz , and on straightforward computations. However we need to clarify the meaning of Schrödinger operators with such potentials.

Actually in this case we consider the Moutard system (3) with ω = P (z) as the appropriate regularization of the Schrödinger equation Hθ = 0 with the potential U of Theorem 1. In addition, for N = 1, the Schrödinger equation (-∆ + U )ψ = 0 with U and ψ from Theorem 1 is formally fulfilled under the following conventions:

∂ e λz 1 z 2 = e λz 2 z ∂ 1 z = 2πe λz δ(z) z .
We remark that the functions ψ of (4) essentially differ from the Faddeev eigenfunctions found in [START_REF] Grinevich | Faddeev eigenfunctions for point potentials in two dimensions[END_REF][START_REF] Grinevich | Faddeev eigenfunctions for multipoint potentials[END_REF] for the Schrödinger operators with multi-point delta-type potentials. The reason is that in [START_REF] Grinevich | Faddeev eigenfunctions for point potentials in two dimensions[END_REF][START_REF] Grinevich | Faddeev eigenfunctions for multipoint potentials[END_REF] the operator with such a potential is replaced by its regularization going back to [START_REF] Berezin | Remark on Schrödinger equation with singular potential[END_REF], whereas in the present note we work formally with the original potentials considering the regularization, of the equation Hθ = 0, given by the Moutard system (3).

In addition, in view of the property b ≡ 0 for ψ of (4) the potentials of theorem 1 may be considered as "reflectionless" in the sense of the Faddeev generalized "scattering" data a, b. In this sense the functions ψ of (4) are similar to the Faddeev eigenfunctions found in [START_REF] Taimanov | Faddeev eigenfunctions for twodimensional Schrödinger operators via the Moutard transformation[END_REF] for some regular potentials.

In [START_REF] Taimanov | Two-dimensional rational solitons and their blow-up via the Moutard transformation[END_REF][START_REF] Heng-Chun | Darboux transformation and variable separation approach: the Nizhnik-Novikov-Veselov equation[END_REF] the Moutard transformation is extended to a transformation of solutions of the Novikov-Veselov equation [START_REF] Novikov | Finite-zone, two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations[END_REF] 

U t = ∂ 3 U + ∂3 U + 3∂(U V ) + 3 ∂(U V ) = 0, -4 ∂V = ∂U. (5) 
This equation has the Manakov form H t = HA + BH where A and B are differential operators. If U satisfies (5) and ω meets (1) and the equation

(∂ t + A)ω = 0, (6) 
then the extended Moutard transformation of U has the same form (2) and gives a new solution of ( 5). For the zero potential U = V = 0, we have A = ∂ 3 + ∂3 and ω(z, t) = P (z, t) = N k=1 (z -z k (t)) satisfies ( 6) if and only if ∂P ∂t = ∂ 3 P ∂z 3 .

The latter equation describes an algebraic dynamics of the zeroes of P (z, t) (such a dynamics for another reason was considered in [START_REF] Taimanov | Two-dimensional rational solitons and their blow-up via the Moutard transformation[END_REF]). A formal application of the extended Moutard transformation leads to the potential

U (z, t) = -8π N k=1 δ(z -z k (t))
which apparently may be considered as a formal solution to (5).
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