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Abstract

In this paper we try to generalize the Iyengar’s result in dimension 3. We prove that the method of
images used in dimension 2 leads us to a tiling 3 dimensional space problem. A such a problem has
only some particular solutions.
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1. Introduction

First passage time problems have been the subject of great interest in different fields of research
such as micro-biology or finance. In a multivariate setting, computing analytical expressions for the
distribution of hitting times is a very challenging task even in the case of low-dimensional correlated
Brownian motions. In dimension 2, the result is due to Iyengar [3]. In this paper, we investigate the
problem in dimension 3, i.e., we consider a 3-dimensional correlated Brownian motion starting form
x ∈ R3 and we denote by τi = inf{t ≥ 0 : Bi

t > ai} the first time its i-th components hits a constant
barrier ai. In some financial applications, computing the density of multivariate brownian motions
before to exit the domain is of crucial importance. Muirhead [4] provides a general expression but
tractable solutions are only obtained in dimension 2 and for a single particular case in dimension 3.
The application of his work mainly concerns the pricing of multi-asset barrier options whose payoff
is conditional on the trajectory of some underlying stock price processes and their ability to hit or
avoid pre-specified barriers. In dimension 3, another example of application would be the assessment
of bilateral counterparty risk for credit default swaps where default and spread risks of the three
market participants ( the protection buyer, the protection seller and the reference entity) could be
described in a three-dimensional structural model. The CDS unilateral counterparty risk problem
has been investigated by Blanchet-Scalliet and Patras [1] in a bivariate structural credit risk model.
The distribution of the underlying process before exiting the domain is given as the solution of a
heat equation which can be solved by using the method of image. In dimension 3, this problem is
equivalent to find a way to fill the space with a trihedron. This question has a long and somehow
complicated history. Cite (Sommerville et co). Therefore, it only exists few solutions to do this. In
this paper, after recalling how to obtain the expression of density in the general setting, we show that
the method of image used by Iyengar [3] in dimension 2 can only lead in dimension 3 to analytical
expressions for 4 particular cases.
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2. Notations and Assumptions

Let (Xt)t≥0 a three dimensional correlated Browninan motion starting from (0, 0, 0) with E(Xt) =
0R3 and V ar(Xt) = tΣ where the correlation matrix is given by

Σ =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 .

We define the following stoping times τi = inf{t ≥ 0 : Xi
t = ai}, ai > 0, where Xi

t is the i-th
component of Xt, i = 1, 2, 3. Let a = (a1, a2, a3) and τ = τ1 ∧ τ2 ∧ τ3.

Since Σ is a symmetric matrix, then Σ is diagonalizable. Let consider that the eigenvalues of the
matrix Σ are λ1, λ2, λ3. Let A be the matrix of the eigenvectors

A =

 v11 v21 v31
v12 v22 v32
v13 v23 v33

 .

We also introduce the following matrix D such that

D1/2 =

 √λ1 0 0
0

√
λ2 0

0 0
√
λ3

 .

The matrix A is real orthogonal, so A−1 = A′ (where the transpose of matrix A is written A’).

• det(Σ) 6= 0

Let define Zt = D−1/2A′(a − Xt). Then (Zt)t≥0 is a three dimensional uncorrelated brownian
motion starting from â = D−1/2A′a. For i ∈ {1, 2, 3} the stopping time τi is now the first hitting
time of Pi by (Zt)t≥0 where

P1 = {(x, y, z) : v11
√
λ1x+ v21

√
λ2y + v31

√
λ3z = 0},

P2 = {(x, y, z) : v12
√
λ1x+ v22

√
λ2y + v32

√
λ3z = 0},

P3 = {(x, y, z) : v13
√
λ1x+ v23

√
λ2y + v33

√
λ3z = 0}.

Remark that
cos(P̂1, P2) =

(ADA′)12√
(ADA′)11(ADA′)22

= |ρ12|

where (M)ij is the (i, j) entry of the matrixM . Similary one has cos(P̂2, P3) = |ρ13| , cos(P̂3, P1) =
|ρ23|.

Let W be the boundary domain delimited by P1, P2 and P3 and such as â = (x0, y0, z0) ∈ W ,
W = {(x, y, z) such that sgn(Pi(x0, y0, z0)) = sgn(Pi(x, y, z)), i = 1, 2, 3}. Remark that W is a
trihedron and τ is the first hitting time of ∂W by (Zt)t≥0.

• det(Σ) = 0

Suppose that a single eigenvalues of Σ is null (say λ1). Then P1∩P2∩P3 = (Ox). In this case
W is not trihedron, it is a domain delimited by two of the three planes (the two planes are choosen
according to the starting point position).

Remark that if two eigenvalues are null, then W is a half-space.
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3. Density of the Brownian motion in the domain W

Let f a positive bounded function defined on W , and which vanishes on ∂W , then the function

u(t,x) = Exf(Zt∧τ ) =

∫
W
f(y)Px(τ > t, Zt ∈ dy)

satisfies the partial differential equation

∂u

∂t
=

1

2
∆u in W, u(0,x) = f(x),x ∈W, u(t,x) = 0,x ∈ ∂W. (1)

Suppose that it is possible to tile the three-dimensional Euclidean space using our domain W only
by plane symetry. As in [3], we can solve (1) by the method of images. We denote by Sk, k = 0, ...,K
the sequence of the symmetries. Let T0 = I3, Tk = Sk ◦ Tk−1 and f̃(y) = (−1)kf

(
T−1k (y)

)
,y ∈

Tk(W ) Then our initial problem is to solve

∂ũ

∂t
=

1

2
∆ũ in R3, ũ(0,x) = f̃(x),x ∈ R3.

Using clasical technique of Fourier transform, the solution is

ũ(t,x) =

∫
W
f(y)

K∑
k=0

(−1)k
1

(2πt)3/2
exp

(
−(x− Tk(y))(x− Tk(y))′

2t

)
dy.

Then, it follows that

Px(τ > t, Zt ∈ dy) =
1

(2πt)3/2

K∑
k=0

(−1)k exp

(
−(x− Tk(y))(x− Tk(y))′

2t

)
dy. (2)

A similar formula is obtained in [4], but Muirhead writes it in dimension n. Even if this result
seems to be very general, it is difficult to use it in practice. Indeed, to obtain an explicit solution,
we need to identify the sequence of symetries and all symetric domains (Muirhead gives a single
example). The problem is now a space-filling trihedra. It is not even easy to decompose R3 into
symetric trihedra.

4. Simple cases

We give here the explicit solution of some simple cases.

• Correlation coefficients (ρ, 0, 0)
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Here our domain W (trihedron) can be delimited by the planes P1 : x = 0, P2 : z = 0 and
P3 : cos(α)x+ sin(α)y = 0, where cos(α) = ρ. Let consider now that the departure point â ∈W .

First suppose that α = π
m . Using the cylindrical coordinates it is easy to write the 4m-symmetries

that we need to fill the space. Let y = (r, θ, z), then the sequence of the images of y is Tk(y) =
(r, θk, z) where

θ2k = 2kα+ θ, θ2k+1 = (2k + 2)α− θ if 0 ≤ k ≤ m− 1

and Tm+k(y) = (r, θ̃k,−z) if 0 ≤ k ≤ 2m− 1 where

θ̃0 = θ2m−1, θ̃k = θk−1, if 0 ≤ k ≤ 2m− 2.

Hence

P(r0,θ0,z0)(τ ′ > t, Zt ∈ (dr, dθ, dz)) =

1

(2πt)3/2
e−

r20+r2

2t

(
e−

(z0−z)2

2t

2m−1∑
k=0

(−1)ke
r0r
t
cos(θ0−θk) − e−

(z0+z)2

2t

2m−1∑
k=0

(−1)ke
r0r
t
cos(θ0−θk)

)
rdrdθdz.

Using the same argument as in Iyengar [3], we obtain that

P(r0,θ0,z0)(τ > t, Zt ∈ (dr, dθ, dz)) =

2r√
2παt3/2

(
e−

(z0−z)2

2t − e−
(z0+z)2

2t

)
e−

r20+r2

2t

∞∑
n=0

(−1)k sin
nπθ

α
sin

nπθ0
α

Inπ/α

(rr0
t

)
drdθdz.

We remark that the expression is still valid for any α.
This formula can be obtained directly using the Iyengar’s result. Indeed as the Browian motion

Z3 is independant of (Z1, Z2), one has

P(r0,θ0,z0) (τ > t, Zt ∈ (dr, dθ, dz)) = P(r0,θ0)
(
τ1 ∧ τ2 > t, (Z1

t , Z
2
t ) ∈ (dr, dθ)

)
P(z0)

(
τ3 > t, Z3

t ∈ dz
)
.

• Null eigenvalues

If a single eigenvalue is null (say λ3 = 0), then

P(r0,θ0,z0)(τ > t, Zt ∈ (dr, dθ, dz)) =

2r√
2παt3/2

e−
(z0−z)2

2t e−
r20+r2

2t

∞∑
n=0

(−1)k sin
nπθ

α
sin

nπθ0
α

Inπ/α

(rr0
t

)
drdθdz.

If two eignevalues are null ((say λ1 = λ2 = 0), then

P(x0,y0,z0)(τ > t, Zt ∈ (dx, dy, dz)) =
1

(2πt)3/2
e−

(x0−x)2+(y0−y)2

2t

(
e−

(z0−z)2

2t − e−
(z0+z)2

2t

)
dxdydz.
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5. Explicit calculus

Let imagine that the three-dimensional Euclidean space is reduced to a cube, then our domainW
(trihedron) is reduced to a tetrahedron. The problem is now to find all symmetries which allow to our
tetrahedron to fill the entire cube. Note that all the symmetric tetrahedra need to have a commun
point and S0 ∗ S1 ∗ ... ∗ SK = I3. It is a particular problem of space-filling tetrahedra. Sommerville
[5] discovered a list of exactly four tilings (up to isometry and re-scaling) and Edmonds [2] proves
that this classification of tetrahedra that can tile the 3-dimensional space in a proper, face-to-face
manner is completed. One of these four tilings needs two neighboring cubes for its construction and
all the tetrahedra don’t have a commun point. Another case doesn’t allow to apply the method of
images because the boundary conditions of (1) are not satisfied. Hence since, there exists only a few
tetrahedra which can till the space, then we have only 2 particular cases where we can identify the
explicit symmetries and compute the explicit form of (2).

We give the details for the first case, but a similar reasoning is used for the others.

• Correlation coefficients
(
1
2 ,

1
2 , 0
)
,
(
−1

2 ,−
1
2 , 0
)
or
(
1
2 ,−

1
2 , 0
)
.

Let consider now that the departure point â is in the tetrahedron 0ADM where M = 1
2 [BD].

Let denote by S1 the symmetry when the plane of symmetry is (ODB), S2 the symmetry when
the plane of symmetry is (OAC), S3 the symmetry when the plane of symmetry is (OAD) and
S4 the symmetry when the plane of symmetry is (OCD), S5 the symmetry when the plane of
symmetry is (OAB) and S6 the symmetry when the plane of symmetry is (OCB). By the follow-
ing sequence of symmetries, the tetrahedron 0ADM tills the entire cube and returns to the inital
position: S1, S2, S6, S5, S4, S5, S2, S6, S3, S6, S5, S2, S1, S2, S6, S5, S4, S5, S2, S6, S3, S6, S5, S2.
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In this case we have

(2πt)3/2

dxdydz
P(x0,y0,z0)(τ ′ > t, Zt ∈ (dx, dy, dz)) = e−

1
2t
[(x0−x)2+(y0−y)2+(z0−z)2] − e−

1
2t
[(x0−y)2+(y0−x)2+(z0−x)2]

+ e−
1
2t
[(x0+x)2+(y0+y)2+(z0−z)2] − e−

1
2t
[(x0+x)2+(y0+z)2+(z0−y)2] + e−

1
2t
[(x0+z)2+(y0+x)2+(z0−y)2]

− e−
1
2t
[(x0−x)2+(y0−z)2+(z0−y)2] + e−

1
2t
[(x0−z)2+(y0−x)2+(z0−y)2] − e−

1
2t
[(x0−z)2+(y0+y)2+(z0+x)2]

+ e−
1
2t
[(x0−y)2+(y0+z)2+(z0+x)2] − e−

1
2t
[(x0+z)2+(y0−y)2+(z0+x)2] + e−

1
2t
[(x0+y)2+(y0−z)2+(z0+x)2]

− e−
1
2t
[(x0+y)2+(y0−x)2+(z0+z)2] + e−

1
2t
[(x0−x)2+(y0+y)2+(z0+z)2] − e−

1
2t
[(x0−y)2+(y0+x)2+(z0+z)2]

+ e−
1
2t
[(x0+x)2+(y0−y)2+(z0+z)2] − e−

1
2t
[(x0+x)2+(y0−z)2+(z0+y)2] + e−

1
2t
[(x0+z)2+(y0−x)2+(z0+y)2]

− e−
1
2t
[(x0−x)2+(y0+z)2+(z0+y)2] + e−

1
2t
[(x0−z)2+(y0+x)2+(z0+y)2] − e−

1
2t
[(x0−z)2+(y0−y)2+(z0−x)2]

+ e−
1
2t
[(x0−y)2+(y0−z)2+(z0−x)2] − e−

1
2t
[(x0+z)2+(y0+y)2+(z0−x)2] + e−

1
2t
[(x0+y)2+(y0+z)2+(z0−x)2]

− e−
1
2t
[(x0+y)2+(y0+x)2+(z0−z)2].

• Correlation coefficients
(
1
2 ,
√
2
2 , 0

)
,
(
−1

2 ,
−
√
2

2 , 0
)
,
(
−1

2 ,
√
2
2 , 0

)
or
(
1
2 ,−

√
2
2 , 0

)

We consider the case where we cut the tedrahedron 0ADM in half : so we suppose that the
departure point â is in OAUM where U = 1

2 [AD]. This tedrahedron can still by 48 symmetries till
the cube. Let introduce the following symmetries : S1 the symmetry when the plane of symmetry is
(OAD), S2 the symmetry when the plane of symmetry is (OCD), S3 the symmetry when the plane of
symmetry is (OBB′) and S4 the symmetry when the plane of symmetry is (OZF ) (where Z = 1

2 [DD′]
and F = 1

2 [CC ′]) , S5 the symmetry when the plane of symmetry is (OBC), S6 the symmetry when
the plane of symmetry is (OAB), S7 the symmetry when the plane of symmetry is (OXI) (where
X = 1

2 [DC] and I = 1
2 [D′C ′]) , S8 the symmetry when the plane of symmetry is (OAC) and

S9 the symmetry when the plane of symmetry is (OUV ) where V = 1
2 [BC]. The sequences of the

symmetries is S1, S2, S3, S4, S3, S6, S5, S3, S6, S7, S6, S8, S9, S3, S7, S8, S5, S2, S4, S6, S1, S8, S6, S1, S4,
S5, S7, S1, S4, S5, S6, S3, S5, S6, S4, S2, S9, S6, S8, S4, S8, S2, S5, S8, S2, S7, S2, S3.

To find P(x0,y0,z0)(τ ′ > t, Zt ∈ (dx, dy, dz)), it is enough to replace the sequence Tk, k ∈ 0, ..., 47
in (2) by : T0(x, y, z) = (x, y, z), T1(x, y, z) = (x,−z,−y), T2(x, y, z) = (−z, x,−y), T3(x, y, z) =
(−z, y,−x), T4(x, y, z) = (z, y,−x), T5(x, y, z) = (z, x,−y), T6(x, y, z) = (x, z,−y), T7(x, y, z) =
(x, y,−z), T8(x, y, z) = (y, x,−z), T9(x, y, z) = (y, z,−x), T10(x, y, z) = (−y, z,−x), T11(x, y, z) =
(−y, x,−z), T12(x, y, z) = (x,−y,−z), T13(x, y, z) = (−x,−y,−z), T14(x, y, z) = (−y,−x,−z),
T15(x, y, z) = (y,−x,−z), T16(x, y, z) = (−x, y,−z), T17(x, y, z) = (−x, z,−y), T18(x, y, z) =
(z,−x,−y), T19(x, y, z) = (−z,−x,−y), T20(x, y, z) = (−x,−z,−y), T21(x, y, z) = (−x, y, z), T22(x, y, z) =
(y,−x, z), T23(x, y, z) = (y,−z, x), T24(x, y, z) = (−z, y, x), T25(x, y, z) = (z, y, x), T26(x, y, z) =
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(y, z, x), T27(x, y, z) = (−y, z, x), T28(x, y, z) = (z,−y, x), T29(x, y, z) = (−z,−y, x), T30(x, y, z) =
(−y,−z, x), T31(x, y, z) = (−y,−x, z), T32(x, y, z) = (−x,−y, z), T33(x, y, z) = (−x,−z, y), T34(x, y, z) =
(−z,−x, y), T35(x, y, z) = (z,−x, y), T36(x, y, z) = (−x, z, y), T37(x, y, z) = (x, z, y), T38(x, y, z) =
(z, x, y), T39(x, y, z) = (z,−y,−x), T40(x, y, z) = (−z,−y,−x), T41(x, y, z) = (−z, x, y), T42(x, y, z) =
(x,−z, y), T43(x, y, z) = (x,−y, z), T44(x, y, z) = (−y, x, z), T45(x, y, z) = (−y,−z,−x), T46(x, y, z) =
(y,−x,−z) and T47(x, y, z) = (y, x, z).
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