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A dynamical analysis applied to a reduced resistive magnetohydrodynamics model is shown to explain the
chronology of the nonlinear destabilization of modes observed in tokamak sawteeth. A special emphasis
is put on the nonlinear self-consistent perturbation of the axisymmetric m = n = 0 mode that manifests
through the q-profile evolution. For the very low fusion-relevant resistivity values, the q-profile is shown to
remain almost unchanged on the early nonlinear timescale within the central tokamak region, which supports
a partial reconnection scenario. Within the resistive region, indications for a local flattening or even a local
reversed-shear of the q-profile are given. The impact of this ingredient in the occurrence of the sawtooth
crash is discussed.

PACS numbers: 52.30.Cv,52.35.Py,52.35.Mw,52.55.Tn

I. MOTIVATIONS

One still largely open problem in tokamak plasmas is
the generic “sawtooth” phenomenon. Sawteeth manifest
e.g. with respect to the plasma temperature indicator
in the following fashion: the core plasma temperature
suddenly crashes when attaining some limit value be-
fore progressively increasing further up to the next saw-
tooth crash on a periodic basis, so that the resulting
time trace of the central temperature resembles the edge
of a saw. Despite an increasing phenomenological and
theoretical knowledge, acquired since their first observa-
tion in the early 1970s1, as well as some very recent ex-
perimental successfully tested procedure to control their
pace2, aimed at containing their deleterious effects on
the plasma, it is widely admitted by the magnetic fusion
community that the phenomenon of sawteeth is not fully
understood yet.
This issue is of special concern in the perspective of

ITER. Actually, whereas small sawteeth may even be
beneficial in preventing the accumulation of impurities
and helium ash in the plasma center, large sawteeth with
mixing radii of 50% or more of the plasma minor radius
and temperature drops of one or more keV represent a
serious threat to ITER operation, since these large saw-
tooth events may couple to neoclassical tearing modes
and to edge-localized modes, resulting in a serious loss
of plasma energy and confinement degradation3. More-
over, from a fusion perspective, the central temperature
in ITER should be as large as possible. The best perfor-
mance is just before the plasma crashes. Understanding
the nature of sawteeth should help in finding a way to
delay the time between crashes and therefore sustain the
hot temperature and get more fusion from ITER. Im-

proving solely the modeling of sawteeth would be also
useful for studying many effects occurring in the saw-
teeth regime such as the behavior of alpha particles4,5. In
this respect, relying on a purely numerical approach may
not be the most relevant approach or, at least, should be
taken with care. Indeed the numerical modeling of saw-
teeth is well known to be a considerably difficult task.
In particular, MHD based codes, even the most sophis-
ticated ones, repeatedly predict a complete reconnection
at each sawtooth cycle (in the absence of ad-hock tricks)
whereas experiments have almost always reported an in-
complete reconnection6.

It is widely admitted that the occurrence of sawteeth
in tokamak plasmas is related to the existence of some
q = 1 internal magnetic surface and to some magneto-
hydrodynamic (MHD) activity triggered by the subse-
quent destabilization of m = n = 1 internal modes. Igo-
chine and ASDEX’s coworkers7,8 were recently able to
extract the dominant MHD activity during a sawtooth
cycle. They observed that the whole cycle is dominated
by an m = n = 1 mode that survives the sawtooth crash,
that is whose amplitude does not vanish as a result of
the crash, which is consistent with an incomplete recon-
nection. During the sawtooth cycle, some m = n = 2
mode is also present and grows from an almost negligible
amplitude just after the crash up to one fourth of the
m = n = 1 amplitude7. An m = n = 3 mode is also
detected just before the sawtooth crash at a much lower
amplitude. The crash phase was then interpreted as a
consequence of the stochastization of the magnetic field
lines.

One objective of the present article is to propose an ex-
planation for the chronology of the onset of these m = n
modes. This is addressed in Section II through a reduced
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MHD approach. Section III then focuses on the ques-
tion of the nonlinear development of the axisymmetric
m = n = 0 magnetic component or, equivalently, of the
nonlinear evolution of the q-profile. Finally, the previous
analytical results obtained in a simplified framework are
connected to experimental measurements in Section IV.
The role played by the local flattening of the q-profile
around the q = 1 surface is emphasized.

II. DEVELOPMENT OF m = n MODES INTO THE

NONLINEAR REGIME

A. Principles of the analysis

As it is well known, the toroidal geometry induces a
coupling between all the m-numbers for a given n. Con-
sequently, in the linear regime, the instability of the in-
ternal m = n = 1 mode goes along, in particular, that of
the m = 2, n = 1 secondary mode. In this Section, we
shall however focus only on the development of them = n
modes that are the dominant modes and, for the descrip-
tion of which, the cylindrical approach is sufficient.
Let us then study the development of MHD internal

m = n modes into the nonlinear regime starting from
a linearly unstable m = n = 1 mode. Defining by A
the amplitude of the m = n = 1 mode, one can address
this problem through an amplitude expansion. Looking
back at the literature on this approach, it happens to
have been first considered in fluid mechanics by Stuart
in a seminal study of the nonlinear mechanics of insta-
bilities in plane Poiseuille flow and Taylor-Couette flow9.
More recently, Dahlburg applied similar techniques to
determine the nonlinear evolution of some linearly un-
stable magnetohydrodynamic settings10. Independently,
a comparable amplitude expansion approach was used
later11–13 to study the onset of the nonlinear regime of
the internal resistive m = n = 1 mode including the issue
of the generation of higher harmonics of the disturbance
that was left apart in Refs. 9,10. This question will be
reconsidered more carefully now.
To address the issue of the development into the non-

linear regime of internal m = n modes, one shall natu-
rally proceeds through the following steps:
i) Only the m = n = 1 mode is linearly unstable. Due

to unavoidable nonideal effects, the plasma domain di-
vides in two regions: an ideal region away from the q = 1
surface in which nonideal effects are negligible and a thin
current sheet region in the critical layer in the vicinity
of the q = 1 surface, in which nonideal effects deeply
modify the local plasma dynamics and are responsible
for the instability. The linear eigenfunction will result
then from the matching between an outer ideal solution
and an inner solution valid inside the critical layer.
ii) Then one injects this linear solution into MHD equa-

tions and look at the outcome on the various m = n
modes. Typically quadratic nonlinear terms may con-
tribute to the m = n = 0 and m = n = 2 modes but do

not affect the m = n = 1 mode that will be only affected
at the next order.

iii) There are two ways to consider step ii): one may
assume that the critical layer is fixed or not. If the po-
sition of the critical layer is fixed, or assumed to be so,
one can practically restrict to the critical layer equations
and apply step ii) within the critical layer. This would
practically correspond to the setting imposed in many
slab numerical MHD simulations studying the behavior
of e.g. tearing modes into the nonlinear regime. One may
then refer to Stuart’s approach9 for an analytic method
to study the nonlinear evolution of the m = n = 1 mode.
Otherwise, one has to deal with a free layer problem and
take into account the impact of the motion and possible
modifications of the critical layer as time proceeds. This
becomes an obviously more intricate problem which is a
priori closer to the reality of the internal mode dynamics
in tokamak plasmas. The later case will be considered
in the following. Then nonlinear mode couplings will be
shown to come into play in the first place due to the terms
appearing as a result of the motion of the layer whereas
the basic linear structure of the critical layer equations
shall be conserved.

B. The reduced MHD framework

Practically, we consider cases relevant to hot tokamak
plasmas operating close to the ideal MHD stability limits
so that the m = n = 1 internal kink mode is marginally
stable against ideal MHD. Non-ideal effects, such as re-
sistivity, may however turn it unstable. In order to ex-
plain the development ofm = n modes into the nonlinear
regime, a prototypical relevant framework to consider is
the reduced MHD system given by

∂U

∂t
= [φ,U ] + [J, ψ] , (1)

∂ψ

∂t
= [φ, ψ] + η(J − J0), (2)

where the standard definitions have been used. In the
cylindrical geometry considered, the (1, 1) internal mode
is ideally marginally stable.

In Eqs. (1)-(2), helical symmetry is assumed: The
poloidal and toroidal angles, respectively θ and ϕ, only
come in through the helical angle α = ϕ − θ. φ and ψ
are the plasma velocity and helical magnetic field poten-
tials: the velocity is v = ϕ̂ × ∇⊥φ and the magnetic
field B = B0ϕϕ̂ + ϕ̂ × ∇⊥

(

ψ − r2/2
)

. U = ∇2
⊥φ is the

vorticity and J = ∇2
⊥ψ the helical current density, with

∇2
⊥ ≡ r−1∂rr∂r+r

−2∂2α. Poisson brackets are defined by
[φ,U ] = −ϕ̂ · (∇⊥φ ×∇⊥U) = r−1(∂rφ∂αU − ∂rU∂αφ).
Eqs. (1)-(2) are dimensionless: Time has been normal-
ized to the poloidal Alfvén time, the radial variable r
to the minor radius, and η is the inverse of the mag-
netic Reynolds number S, and is given by the ratio of
the poloidal Alvén time to the resistive one. In high-
temperature fusion plasmas, η is typically much smaller
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than one (of the order 10−8). Note that in this Sec-
tion, modes will be labeled by their sole helical number
m, which is equivalent to the usual notation in terms of
poloidal and toroidal numbers (m,n) with the restriction
|m| = |n|.
Consider equilibria such that, for some internal radius

rs0 < 1, q(rs0) = 1, that is ψ′
0(rs0) = 0. Then, due

to the Ohm’s law (2), plasma volume divides in two
region. Far from the q = 1 surface (outer domain),
plasma behaves ideally whereas, in the vicinity of rs0
(inner region), resistivity plays a crucial, destabilizing,
role. Linear theory14 uses asymptotic matching analysis
to providem = 1 eigenfunctions in the form A(t)fL(r)e

iα

valid in the whole domain. In the outer (ideal) domain,
this solution is valid, that is nonlinear effects are negli-
gible, as long as A ≪ 112. Injecting the linear solutions
ψ1(r, α, t) = A(t)ψL(r)e

iα and φ1(r, α, t) = A(t)φL(r)e
iα

into (1)-(2) calls for an amplitude expansion. The pro-
cedure has been given in Refs. 11,12. The particularity
of the linear radial eigenfunctions ψL(r) and φL(r), that
needs a careful consideration, is that they have strong
gradients inside the critical layer. More precisely, their
radial derivatives are of the order of the inverse of the
critical layer width, that is O(η−1/3).

C. Linear solution

1. Linear solution in the outer domain

In the linear regime, the helical magnetic field in the
outer domain, namely out of the resistive critical layer,
reads

ψout(r, α, τ) =

{

ψ0(r) +A(τ)ψL(r)e
iα + c.c. for r < rs0

ψ0(r) for rs0 < r ≤ 1
(3)

where the radial part ψL(r) is a solution of the Newcomb
equation

∇2
⊥f = f ′′ +

1

r
f ′ − f

r2
=
dJ0
dr

(

dψ0

dr

)−1

f (4)

for r < rs0 with the boundary condition ψ′
L(r

−
s0) = 1.

Considering the outer MHD equations, the outer solution
(3) is valid as long as nonlinear effects may be neglected,
namely as long as the m = 1 mode amplitude A is small
compared to 1. This outer linear solution provides then
the matching boundary conditions for the following crit-
ical layer analysis as long as A(τ) is small (compared to
one).

2. Linear solution within the resistive critical layer

The linear theory of the resistive mode was first derived
by Coppi et al. in Ref. 14. A scaling analysis was given in
Ref. 12 and the main results will be summarized below.

Let us define the stretched critical layer coordinate
x = η−1/3(r − rs0) and the rescaled time τ = η1/3t
and denote by w = η1/3 the (order of) the width of
the critical layer. Noting that J1 ∼ η−2/3∂2ψ1/∂x

2 and
U1 ∼ η−2/3∂2φ1/∂x

2, one obtains at leading order the
linear system of equations

∂

∂τ

∂2φ1
∂x2

+
ψ′′
0 (rs0)

rs0
x
∂3ψ1

∂α∂x2
= 0 (5)

∂ψ1

∂τ
+
ψ′′
0 (rs0)

rs0
x
∂φ1
∂α

=
∂2ψ1

∂x2
(6)

where we used ∂ψ0/∂x ∼ η2/3xψ′′
0 (rs0). We define

κ0 ≡ ψ′′
0 (rs0)

rs0
. (7)

Looking for solutions of the form φ1 ∼ φ1(x)e
iα−iωτ and

ψ1 ∼ ψ1(x)e
iα−iωτ , one unstable solution is found, the

m = 1 resistive mode, with growth rate

−iω = γ̂L = κ
2/3
0 =

[

ψ′′
0 (rs0)

rs0

]2/3

= q′(rs0)
2/3. (8)

The variable x enters the equations through the rescaled

variable κ
1/3
0 x/

√
2. In real space, the perturbed poten-

tials are

ψ1(x, α, τ) = A0 exp(γ̂Lτ)gL

(

κ
1/3
0 x√
2

)

cosα (9)

φ1(x, α, τ) = −A0√
2
exp (γ̂Lτ) g

′
L

(

κ
1/3
0 x√
2

)

sinα (10)

where gL is the function

gL(s) =
s

2
erfc(s)− 1

2
√
π
exp(−s2). (11)

This solution was chosen to satisfy the asymptotic match-
ing conditions, giving g′L (−∞) = 1 and g′L (+∞) = 0.

These linear equations (5)-(6) are the dominant equa-
tions provided the nonlinear terms are effectively negli-
gible. The validity of the linear system (5)-(6) breaks
when the amplitude A is no longer small compared to
η2/3, that is when the nonlinear terms, such as [φ1, U1]
going like η−1A2, begin to dominate the linear ones, scal-
ing as κ0η

1/3x∂αJ1 ∼ Aη−1/3. Alternatively, the end of
validity of the linear regime for A & η2/3 coincides with
the instantaneous location of the critical layer rs(α, τ),
or with the width of the m = 1 magnetic island, going
out the initial critical layer centered on rs0.

D. Onset of nonlinearities

In writing down the critical layer equations, the in-
stantaneous surface rs(α, t), defined as the surface of
vanishing transverse magnetic field by ∂rψ [rs(α, t)] = 0,
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is important as the location where dynamical equations
turn singular and non-ideal (resistive) effects come into
play. Let us now estimate the location of the critical re-
gion at the end of validity of the linear stage. Writing
rs(α, τ) = rs0 + rs1(α, τ), we get

drψ0 (rs0 + rs1(α, τ)) + ∂rψ1 (rs0 + rs1(α, τ)) = 0 (12)

giving the first order correction rs1(α, τ) ∼
A(τ)/η1/3 cosα. This relates to the first order shift of
the core plasma inside the q = 1 surface as a result of
the kink instability.
Mode couplings do not affect the second order m = 1

dynamics, so that one can keep the linear m = 1 radial
structure but introduce the corrections due to the motion
of the ∂rψ = 0 surface. Mode couplings only affect the
m = 0 and m = 2 modes. The dynamical equations
along the m = 0 and m = 2 components were derived
in Ref. 12. Let us first focus on the evolution of the
m = 2 perturbation and define y = (r− rs(α, τ))/w with
w = η1/3. At leading order in w, the dynamical equations
projected on this component are

∂

∂τ

∂2φ(2)

∂y2
+ 2iκ(0)y

∂2ψ(2)

∂y2
= w

∂r
(1)
s1

∂τ

∂U
(1)
1

∂r
, (13)

∂ψ(2)

∂τ
+ 2iκ(0)yφ(2) − ∂2ψ(2)

∂y2
= w−1 ∂r

(1)
s1

∂τ

∂ψ
(1)
1

∂r
.(14)

Due to the motion of the critical layer, the linear opera-
tors now involve the m = 0 time-dependent average

κ(0)(τ) ≡ 1

2π

∫ 2π

0

ψ′′ [rs(α, τ)]

rs(α, τ)
dα (15)

instead of κ0. The system (13)-(14) consists in a lin-
ear kernel forced by convective terms. As the m 6= 1
components of the perturbations have amplitudes that
are assumed to be initially almost vanishing, it will be
valid to neglect their importance in front of the m = 1
mode. Following Eqs. (13)-(14), the qualitative time be-
havior of the forcing term due to the motion of the layer
is AdA/dτ . Therefore the approximation for the time
behavior of the m = 2 mode will be qualitatively given
by A2

0γ̂Lτ exp (2γ̂Lτ). Consequently, the m = 1 mode is
dominant in the early nonlinear regime over the nonlin-
early triggered m = 2 mode as long as τ ≪ τs with

γ̂Lτs = − lnA0 − ln (γ̂Lτs) .

This will typically be the case during many e-folding
times provided that the initial perturbation amplitude
A0 is low enough. Let us note that conversely, in the
case where the initial m = 1 mode amplitude is not suf-
ficiently small, the linear regime may not be observed at
all.
Once the m = 2, and possibly also the m = 0, modes

are nonlinearly destabilized, this gives way to the non-
linear cascade of mode couplings: the m = 3 mode is
nonlinearly triggered through mode couplings involving
the m = 2 and m = 1 modes as well as cubic m = 1
terms, and so on. Let us now investigate the evolution
of the m = 0 mode as a result of nonlinearities.

III. THE M=N=0 MODE: EVOLUTION OF THE

q-PROFILE

A. Critical layer equations for the m=n=0 perturbation

Following continuously the linear regime through the
introduction of the instantaneous critical surface rs(α, τ),
we can now write down the dynamical equations in the
corresponding moving critical layer projected on them =
0 component as

∂

∂τ

∂2δφ(0)

∂y2
= w

∂r
(−1)
s1

∂τ

∂U
(1)
1

∂r
+ c.c., (16)

∂δψ(0)

∂τ
− ∂2δψ(0)

∂y2
= w−1

(

∂r
(−1)
s1

∂τ

∂ψ
(1)
1

∂r
+
i

r

∂φ
(−1)
1

∂r
ψ
(1)
1

)

+ c.c..(17)

Here the m = 0 fields, δφ(0) and δψ(0), have to be con-
sidered as second order perturbations to their respective
equilibrium fields. As we are specifically interested into
the q-profile evolution, we shall just consider Eq. (17).
One should be careful that the first order terms ψ1 and
U1 correspond to the linear solution previously derived
and do not have large derivatives outside the linear crit-
ical layer centered on rs0.

The right-hand side of Eq. (17) involves the sum of two
quadratic convective terms, the first one of which being
due to the motion of the critical layer. It is easy to realize
that this one dominates the other one when w−1dA/dτ ≫
A which is clearly the case in the early nonlinear regime
for which A ≃ A0 exp(γ̂Lτ). This ordering legitimates
the moving layer analysis. Eq. (17) then reads

∂δψ(0)

∂τ
−∂

2δψ(0)

∂y2
= w−2A(τ)√

2
g′L

(

κ
1/3
0 y√
2

)

κ
1/3
0

1

2π

∫ 2π

0

∂rs (α, τ)

∂τ

(18)
One recognizes a diffusion equation with sources for
δψ(0). Putting s = 0 would yield a simple diffusion equa-
tion with vanishing boundary conditions yielding an iden-
tically vanishing δψ(0). The α-dependence of the critical
radius when A > η2/3, due to the m = 1 perturbation
breaking the radial symmetry, is the main ingredient that
triggers nonlinearly the onset of the m = 0 perturbation.
Therefore the moving critical layer model is consistent
enough to avoid any invocation of some prescribed back-

ground turbulence that would feed m = 0 and m = 2
components. The only necessary assumption is the exis-
tence at time zero of some infinitesimal amplitude of the
m = 1 resistive internal mode.
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FIG. 1. (left panel) Time evolution of the amplitude A of the m = 1 resistive mode derived from the nonlinear model11–13;

the dashed line indicates the threshold for the onset of cubic nonlinearities (A ∼ η1/2), and (central panel) corresponding time
evolution of the perturbation of the axisymmetric toroidal magnetic flux obtained from the solution (19) of the critical layer
diffusion equation with (right panel) a zoom on the early evolution.

B. Time evolution of the m=n=0 perturbation within the

resistive internal layer

Eq. (18) is solved for δψ(0)(y, τ = 0) = 0, with −∞ <
y <∞, and homogeneous boundary conditions, as

δψ(0) (y, τ) =

τ
∫

0

∞
∫

−∞

s(z, ι)
√

4π (τ − ι)
exp

[

− (y − z)
2

4(τ − ι)

]

dιdz.

(19)
In Eq. (19), the sources term scales as A2w−2, so that the
m = 0 perturbation of the helical magnetic flux within

the moving critical layer becomes of order one for A ∼
w = η1/3. This corresponds to the threshold predicted
for nonlinear saturation in Refs. 11,12.
Before turning to the numerical evaluation of the δψ(0)

evolution, it is important to note that δψ(0) is not the
m = 0 perturbation of the magnetic helical flux in the
cylinder variables. It is so relative to the instantaneous
critical layer and with respect to the reduced coordinate
y that depends on α. This would have to be taken into
account for the final evaluation.
The right plot of Figure 1 presents the numerical evalu-

ation of the perturbation of ψ(0) for some special case. It
has been estimated by plugging for ψ1 the linear eigen-
function inside the critical layer, so that the result re-
mains correct as long as A is not too large but overesti-
mates the true result in the late times. Initial conditions
are the same as in Aydemir’s paper15. The chosen q-

profile is qR(r) = q0

√

1 +

[

(

qa
q0

)2

− 1

]

r4, with q0 = 0.9

and qa = 3. Correspondingly, the radius of the location
of the q = 1 surface is initially rs0 = 0.39. The magnetic
Reynolds number is S = η−1 = 107. The initial m = 1
mode amplitude is 1.2× 10−5.
The left side of Figure 1 displays for reference the so-

lution for the m = 1 amplitude of the generalized critical

layer dynamical equations projected on the m = 1 com-
ponent, namely the solution of

1

κ(0)(τ)

1

A

dA

dτ
=
γL
κ0

= κ
−1/3
0 (20)

with the instantaneous critical layer average

κ(0)(τ) =
1

2π

∫ 2π

0

ψ′′
0 (rs(α, τ))

rs(α, τ)
dα. (21)

From the computations of the m = 0 helical magnetic

0.375 0.38 0.385 0.39 0.395 0.405
r

0.985

0.99

0.995

1.005

1.01

1.015

q

FIG. 2. Prediction for the early q-profile modification within
the resistive critical layer obtained from Eq. (19) for the same
parameters as in Fig. 1. The plain curve represents the initial
reference equilibrium q-profile and the bold curve the q-profile
computed at time γLt = 1.

perturbation in the inner resistive layer displayed in Fig-
ure 1, it is then possible to derive the early nonlinear
modification of the q-profile. This is indicated in Figure
2. We have here used the following definition for the in-
stantaneous q-profile given by dψ0/dr = r(1/q(r, τ)− 1),
with ψ0 = ψ0R + δψ(0)(r, τ) and dψ0R/dr ≡ r(1/qR(r)−
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1). The q-profile then just translates the fate of the
axisymmetric magnetic component. From this follows
that the plateau associated to the intrinsically non-
axisymmetric m = n = 1 magnetic island in Figure 2
is associated to a value of q (slightly) smaller than one
and not equal to one.

C. Outer q-profile evolution

Outside the critical resistive layer, in the approx-
imately ideal domain, the Ohm’s law projected on
the m = 0 mode amounts to the diffusion equation
∂δψ(0)/∂t = ηδJ (0), namely

∂δψ(0)

∂τ
=
w2

r

[

∂

∂r

(

r
∂δψ(0)

∂r

)]

. (22)

This equation has to be solved in both radial do-
mains I− ≡ [0; r−s (τ)] and I+ ≡ [r+s (τ); 1]. In I−,
the solution should satisfy limr→0

∣

∣δψ(0) (r, τ)
∣

∣ < ∞
and should match the critical layer solution through

δψ(0)(r−s (τ), τ) = limy→−∞ δψ
(0)
in (τ) ≡ g−(τ). In

I+, the boundary conditions are δψ(0)(r+s (τ), τ) =

limy→+∞ δψ
(0)
in (τ) ≡ g+(τ) and δψ(0)(r = 1, τ) = 0.

In both cases, the initial condition is δψ(0)(r, 0) = 0.
Therefore, the present problem to solve is that of a diffu-
sion equation in cylindrical coordinates with time depen-
dent boundary conditions in which one of the boundaries
is moving. The latter requirement makes the problem
clearly non-standard. In order to get a physical insight
of the solution, one can however neglect in the first place
the motion of the boundaries and retain solely in the in-
ner domain δψ(0)(r−s0, τ) = g−(τ).
The features of the solution of Eq. (22) are easy to de-

rive. Compared to the timescale of the critical layer dy-
namics, the timescale of the diffusion of δψ(0) is typically
much larger, so that, provided η is small enough, δψ(0)

should remain vanishingly small except in the vicinity of
the inner border of the critical layer boundary where it
decreases to match the inner solution.
Let us now solve Eq. (22) and denote by δψ̂(0)(r, s) the

Laplace transform of the function δψ(0)(r, t). Proceeding
to the Laplace transform of the diffusion equation Eq.
(22) and boundary conditions yields

w2

r

[

∂

∂r

(

r
∂δψ̂(0)

∂r

)]

− sδψ̂(0)(r, s) = 0, (23)

for 0 ≤ r < r−s0, with

lim
r→0

∣

∣

∣
δψ̂(0) (r, s)

∣

∣

∣
<∞, (24)

and

δψ̂(0)
(

r−s0, s
)

= ĝ−(s). (25)

It is obviously very important that the physical condition
(24) be satisfied, a fact that may not be fulfilled by some
(bad) parabolic partial differential equation solvers.

The solution to this boundary-value problem in cylin-
drical geometry is (see e.g. Ref. 16)

δψ̂(0) (r, s) = ĝ−(s)
I0

(

r
√
s

w

)

I0

(

r−
s0

√
s

w

) . (26)

Then it remains to proceed to the inverse Laplace trans-

form of δψ̂(0) (r, s) given in Eq. (26) to obtain δψ(0)(r, τ)
and the associated q-profile.

0.1 0.2 0.3
r

0.9

0.95

1.05

1.1
q S=4.104

FIG. 3. Predicted q-profile time evolution in the core plasma
given by the numerical solution of the diffusion equation (22)
for a fixed maximal boundary and a moderate Lundquist num-
ber, namely S ≡ η−1 = 4.104. The plain curve represents
the initial equilibrium q-profile, the dashed curve the q-profile
computed at time γLt = 7, and the bold curve the q-profile
computed at time γLt = 14. The parts of the q-profile above
one may be irrelevant since, correspondingly to the growth
of the magnetic island width, the boundary r−s (τ) diminishes
and shifts towards the axis.

Figure 3 shows the predicted early time evolution of
the q-profile corresponding to the numerical integration
of the diffusion equation (22) for a moderate value of the
Lundquist number, namely S ∼ 4 × 104, similar to the
one used in Ref. 17. Inverse Laplace transforms of Eq.
(26) were numerically computed using a Gaver-Wynn-
Rho algorithm18. As expected from Section III B, the
overestimation of the boundary value g−(τ) in the late
second order regime may explain the overestimation of
the q-profile close to the critical layer border. More-
over, one should not forget that, in order to simplify the
problem, we have solved here the diffusion equation in
the inner core plasma by assuming a fixed boundary at
r = rs0 which is certainly not valid as time increases due
to the growth of the magnetic island. The effect of this
growth of the magnetic island will be to lower the effec-
tive boundary r−s (τ) as time increases so that, at time
τ , one may discard the results in the computational zone
[r−s (τ), rs0] in which the obtained q values are typically
larger than one.
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Having said that, one can now interpret this computa-
tion of the q-profile evolution. This is important because
this gives in particular the time evolution of the central
value, q0, of the q-profile, the behavior of which being a
well-known indicator of the complete or incomplete char-
acter of the magnetic reconnection. Only for moderate
S values possibly relevant to describe sawteeth in small
tokamaks does one observe the slow progressive growth
of q0 as in Figure 3. It is interesting to mention that in
Ref. 17, Watanabe et al. observed the progressive, and
eventually complete, flattening of the core current profile
in the course of the nonlinear development of the resis-
tive kink mode for the resistivity value considered in this
Figure. However, for the realistically large values of S ex-
pected in fusion-relevant tokamak plasmas, one predicts
on the basis of the solution (26) that q0 should remain
practically unchanged and equal to its initial equilibrium
value in the early nonlinear regime. This favors an in-
complete reconnection.

D. Summary and comments on the results

In the present case, only the m = n = 1 mode has
been considered to be linearly unstable. In the linear
regime, its amplitude is of the form A(t) = A0e

γLt. This
is obviously valid as long as A is small enough. Inject-
ing this linear solution into the full (nonlinear) resistive
MHD equations, it can be seen that the first dominant
nonlinear terms obtained are quadratic in A and affect
the modes m = 1 ± 1, namely the modes m = 0 and
m = 2. Later the cubic terms will affect the modes 0± 1
and 2±1, namely the modes m = 1 and m = 3. At small
enough amplitudes (here for A ≪ 1), the outer plasma
can be treated linearly. This means that nonlinearities
will at first only affect the critical layer in which resistive
effects are important, driving the dynamics of the whole
plasma by providing the boundary conditions that must
be satisfied by the outer fields. This has been exempli-
fied in Section III C through the computation of the time
evolution of the q-profile in the plasma center.
We expect the scenario of the successive nonlinear

switching-on of modes as A increases to be very general.
Here the mode cascade proceeds as A crosses thresholds
in the resistivity η. This can be viewed as the entrance
door into the later turbulent regime where a large num-
ber of modes have been activated. The limitation of the
present perturbative approach lies in the fact that the
nonlinear width of the critical layer is assumed to be
equal to w, namely the linear one. This continuity argu-
ment is fine to describe the early nonlinear regime. Later,
the derived critical layer equations should remain valid
only in some α domain close to the x-point of the m = 1
island. Practically, as long as the m = 1 island width is
not much larger than w, the assumption is correct. This
is the case in the computation of the q-profile nonlinear
modification within the resistive layer presented in Fig.
2.

IV. IMPLICATIONS

A. Connection to the experimental measurements during

a sawtooth cycle

The mode amplitude analysis predicts that, at later
times, when the magnitude of the m = n = 1 mode am-
plitude becomes larger than η1/3, cubic nonlinearities will
become no longer negligible. In the cylindrical approach
considered here, the cubic nonlinearities will destabilize
the m = 3 mode and affect the dynamics of the m = 1
component but will affect the evolution equations for the
m = 0 and m = 2 modes only through boundary condi-
tions.

Let us observe that this is fully consistent with the
picture of the sawtooth cycles reported e.g. in Refs. 7,8.
Their experimental diagnostics reveal that a cycle begins
with a non-negligible (m,n) = (1, 1) mode. As the ampli-
tude of this mode grows, the (m,n) = (2, 2) mode starts
to appear. Just before the crash, the (m,n) = (3, 3)
mode is also observed although at a very small amplitude.
Just after the very abrupt crash, the (m,n) = (1, 1) mode
is detected, which suggests an incomplete reconnection,
and the cycle repeats. This phenomenology is consis-
tent with the previous mode amplitude analysis of the
onset of the nonlinear regime that does predict the same
chronology in the mode appearance.

Igochine et al. only report the existence ofm = n inter-
nal modes19, as would be predicted by a purely cylindri-
cal approach. However, in toroidal geometry, the linear
regime is more complex. In particular, the m = 2, n = 1
andm = 0, n = 1 sideband modes are also linearly unsta-
ble but their amplitude may remain small in front of the
m = n = 1 one. One would then expect the generic realis-
tic toroidal picture of the onset into the nonlinear regime
to be more complex with the emergence of modes non-
linearly triggered due to mode couplings between the lin-
early unstable modes. Yet, the contribution from m = n
modes should remain dominant. Nevertheless, in order
for the magnetic field lines to be stochastic, let us ob-
serve that it is necessary that modes having m 6= n, i.e.
modes with different helicities, be present as exposed in
the Appendix.

B. Impact of the q-profile evolution on sawteeth

The previous analysis (see Sec. III B) gives indica-
tion that the nonlinear development of the m = 1 mode
should be accompanied by a self-consistent perturbation
of the q-profile inside the q = 1 surface, so that the q-
profile is no longer a strictly monotonous function but
locally flattens or becomes reversed-shear. Such an indi-
cation is consistent with experimental observations. In
particular, recent Alcator C-Mod experiments focusing
on Alfvén eigenmodes in the current flattop phase of the
discharge have discovered reversed shear Alfvén eigen-
modes (RSAEs) near the q = 1 surface between sawtooth
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crashes20. RSAEs are known to exist near the minimum
of the q profile in a reversed shear equilibrium and are
driven unstable by the spatial gradient of the fast ion
density from neutral beams, fusion born alpha particles,
or in the case of Alcator C-Mod, an ICRH driven minor-
ity ion species.

It happens that the impact of the q-profile time vari-
ation has been neglected in most theoretical models of
sawteeth. This may however be an important ingredi-
ent to explain the onset of the sawtooth crash, as will be
briefly discussed below.

As it is well-known, because the magnetic field is glob-
ally divergence-free, its field lines can be identified with
the phase-space trajectories produced by a magnetic field
line Hamiltonian21, the derivation of which is sketched
in the Appendix. The stochastic theory of the sawtooth
crash proposed by Lichtenberg et al.22,23 relies on this
formulation. As time proceeds, the magnetic islands as-
sociated to some modes with different helicities overlap
and the magnetic phase space dynamics turns chaotic.
In this picture, the sawtooth crash phase is associated to
the sudden emergence of large scale chaos in the magnetic
structure. In Refs. 24,25, it was shown that the local
vanishing of the magnetic shear, namely due to a local
flattening or reversed-shear q-profile, may have deleteri-
ous impact on the magnetic confinement if it takes place
for a q value in the vicinity of a small rational. Indeed
this creates a double separatrix configuration24 that pos-
sesses a lower resilience to chaos than the ordinary single
separatrix case: the emergence of chaos is facilitated by
the merging of the two stochastic layers associated to
the separatrices. We shall conclude this article by briefly
illustrating this point.

Figure 4 shows two Poincaré plots of the magnetic field
lines in a ”pre-crash”, low chaotic, situation for the same
magnetic perturbations but two different q-profiles. In
the left plot, the q-profile is a strictly monotonously in-
creasing function with q0 = 0.8 and q(ψ = 0.25) = 1. In
the right plot, the q-profile is identical except that it is
taken to be flat in a ψ region of width 0.1 around ψ = 0.25
for which it is taken equal to one. The resulting q-profile
is made continuous and derivable. For simplicity, the ra-
dial dependence of the modes were chosen to correspond
to the ideal MHD eigenmodes except for the nonlinearly
triggered (2, 2) mode for which a phenomenological form
was retained as in Refs. 4,5. The comparison between the
left and right Poincaré plots of Figure 4 shows the impact
of the local flattening of the q-profile in the q = 1 region.
In the case of the flattening at right, a slightly stochastic
double separatrix configuration is discernable: a small
crescent shaped island is visible in the outer vicinity of
the traditional m = 1 magnetic island which is absent
in the left case of the strictly monotonously growing q-
profile. This is the seed for the facilitation of chaos at
larger mode amplitudes in the right case. This will be
studied more closely in a forthcoming paper.
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Appendix: Hamiltonian representation of magnetic field

lines

An arbitrary magnetic field in a toroidal device can be
written in the canonical representation

B = ∇ψt×∇θ+∇ϕ×∇Ψp

in which Ψp (ψt, θ, ϕ) is the poloidal flux function26. The
magnetic field lines are defined by

dψt
dϕ

=
B.∇ψt
B.∇ϕ = −∂Ψp

∂θ
, (A.1)

dθ

dϕ
=

B.∇θ
B.∇ϕ =

∂Ψp
∂ψt

. (A.2)

In this representation, the poloidal flux plays the role of
a generically one-and-a-half Hamiltonian system and the
toroidal angle ϕ plays the role of time. Due to the double
periodicity in θ and ϕ, any function Ψp can be written
as

Ψp (ψt, θ, ϕ) = Ψp00(ψt)+
∑

m,n

Ψpmn
(ψt) cos (mθ − nϕ+ χmn) ,

where the equilibrium axisymmetric poloidal flux com-
ponent Ψp00(ψt) relates to the safety profile q(ψt) or to
its inverse, the winding profile w (ψt), through

dψp00(ψt)

dψt
=

1

q (ψt)
= w(ψt).

In order to connect to the previous helical description, let
us now introduce the helical angle α = ϕ−θ and proceed
to a canonical change of variables with the generating
function

F2 (ψ
′, θ, ϕ) = (θ − ϕ)ψ′.

This yields ∂F2/∂θ = ψt = ψ′ and ∂F2/∂ψ = −α = θ−ϕ.
The new Hamiltonian reads

H (ψt, α, ϕ) = Ψp00(ψt)−ψt+
∑

m=n

Ψpmn
(ψt) cos (mα− χmn)+

∑

m 6=
(A.3)

In Eq. (A.3), we made use of the fact that the new
action coordinate, ψ′, is equal to ψt. One recovers the
equilibrium component of the helical magnetic flux ψ0

through

ψ0(ψt) ≡ Ψp00(ψt)− ψt =

∫ ψt
(

1

q (s)
− 1

)

ds,

so that, coming back to the radial coordinate through the
cylindrical relation ψt = r2/2, one obtains the relation
used in Sec. II B

dψ0

dr
= r

(

1

q(r)
− 1

)

.

From Eq. (A.3), one directly checks that the Hamiltonian
of the magnetic field lines would be integrable in the ab-
sence of modes with different helicities. In this way, one
may say that toroidal effects, together with non-ideal ef-
fects, are responsible for the generic non-integrability of
magnetic field lines in tokamak plasmas. This represen-
tation is valid at any given time.


