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 
Abstract— State estimation of stochastic discrete-time linear 

systems subject to persistent unknown inputs has been widely 

studied but only few works have been dedicated to the case where 

unknown inputs may be simultaneously or sequentially active or 

inactive. In this paper, a Kalman filter approach is proposed for 

state estimation of systems with unknown intermittent inputs. The 

design is based on the minimisation of the trace of the state 

estimation error covariance matrix under the constraint that the 

state estimation error is decoupled from the unknown inputs 

corrupting the system at the current time. The necessary and 

sufficient stability conditions are established considering the 

upper bound of the prediction error covariance matrix. 

 
Index Terms— Kalman filter, intermittent unknown inputs, 

linear system, covariance matrices. 

 

I. INTRODUCTION 

ALMAN filtering plays an essential role in systems 

theory and has found a wide range of applications [19] 

and [29]. The problem of optimal state filtering in the presence 

of persistent unknown inputs, representing unknown 

disturbances or unmodeled dynamics, has received 

considerable attention in the last three decades. The most 

common approach consists in representing the unknown inputs 

as a deterministic or stochastic bias model, augment the state 

of the system with the bias, and apply the Kalman filter to the 

augmented state model of the system and finally reduce the 

computational time requirement [10], [1], [20], [17], [18] and 

[23]. When no prior information about the unknown input is 

available, an optimal recursive state filter is presented in [24] 

so that the state estimation error is decoupled from unknown 

inputs. Another approach which consists in transforming a 

standard system with unknown inputs into a singular system 

without unknown inputs was introduced in [6]. Other optimal 

filters closer to the standard Kalman filter have been derived 

by minimising the estimation error covariance matrix with 

respect to a reduced state feedback gain representing the 
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degrees of freedom in the design [5], [7] and [15]. The closely 

related problem of joint input and state estimation for linear 

discrete-time systems, which are of great importance for Fault 

Tolerant Control (FTC) when each component of the unknown 

inputs vector represents actuator or component faults [2], has 

been recently studied in [11], [12] and [8]. Note that the 

unknown inputs decoupling constraint used in [24] can be 

viewed as a limit case of a more general assignment taken into 

account in the design of stochastic detection filters [26], [22] 

and [21] for Fault Detection and Isolation (FDI). 

Recent technological advances are revolutionizing our 

ability to build massively distributed Networked Control 

Systems (NCS). They present challenging problems arising 

from the fact that sensors, actuators and controllers exchange 

information via a digital communication network. The most 

common network effect can be categorized into additional 

network induced delays, packets losses, jitters,… In the 
framework of this paper, we are mainly concerned by packets 

losses, leading to intermittent data transmission. The state of 

the art on design control systems that take into account the 

effects of packet loss and packet delay in networked control 

systems have been surveyed in [16]. In particular, Kalman 

filtering with random lost of observations represented by 

Markovian or Bernoulli processes has been studied in [9] and 

[30], extended later to include both packet loss and random 

delay [27], [28] and more recently in [31] when the arrival of 

observations is driven by a semi-Markov chain. 

This paper proposes a state filtering strategy for discrete-

time linear stochastic systems in the case where the arrival of 

unknown inputs is described by a known binary sequence. 

Instead of using the parameterized approach proposed in [7] 

which requires to pre-compute off-line the structure of the 

state feedback gain for each combinatorial situation of the 

binary sequence, the intermittent unknown inputs decoupling 

constraint will be parameterized from two constant size 

matrices, called the free part and the constrained part of the 

filter gain. The constrained gain, structurally dependent on the 

binary sequence, will be linked to the intermittent unknown 

inputs estimator. From a two-stage optimisation strategy very 

similar to those described in [10], the free gain and the 

constrained gain will be both used to minimize the trace of the 

state estimation error covariance matrix and the trace of the 

unknown inputs estimation error covariance matrix. The 

obtained filter, called the Intermittent unknown Input Kalman 

Filter (IIKF), will take the form of a standard Kalman filter 

Kalman filter for discrete-time stochastic linear 

systems subject to intermittent unknown inputs 
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updated online from the intermittent unknown inputs 

estimation. The stability of the IIKF will be studied on the 

upper bound of the prediction error covariance matrix via the 

stability and convergence conditions established for the 

Unknown Input Kalman Filter (UIKF) designed under 

persistent unknown inputs.  

The paper is organised as follows: Section 2 explains the 

state filtering problem in the presence of intermittent unknown 

inputs. Section 3 solves the state filtering problem and studies 

the filter’s stability before conclusions in Section 4. 
 

II. PROBLEM STATEMENT 

Let us consider the following linear discrete-time stochastic 

systems 

kkkkk wFdBuAxx  
1  (1.a) 

kkk vCxy   (1.b) 

where n
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kd   are the state, 

control, measurement and unknown input vectors with mq  . 

Matrices A , B , C  and F  are of appropriate dimensions with 

qFrankCFrank  )()( . The process and sensor noises n
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m
kv   are zero mean uncorrelated Gaussian random 
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with 0W  (1.c) 

The initial state 0x , assumed to be uncorrelated with kw  and 

kv , is a Gaussian random variable with   00 xxE   and   0))(( 00000  TxxxxEP .  

The term 
k

Fd  in (1.a) is used to describe additive unknown 

inputs as for example interconnecting external inputs in the 

context of large scale NCS. It is further assumed that 
k

d , due 

to possible unreliable data transmissions, is an intermittent 

unknown inputs vector 
T

q
k

q
k

i
k

i
kkkk

dddd   ....11

 
(1.d) 

depending on the known binary variables  q
k

i
kkk  ,..,,..,1

 
(1.e) 

where 1i
k

  when the ith component of 
k

d  is active and 0i
k

  

otherwise.  

 

As illustrated by Fig. 1, ku  represents the control signals 

sent by the local controller to the plant and 
k

d  the control 

signals sent by remote controller with 1i
k

  when i
k

d  is 

received by the plant or 0i
k

  when i
k

d  is lost through the 

unreliable network. The unreliable network is a multichannel 

network where each component of 
k

d  may be lost 

independently from the others. The acknowledgement signals 

k  indicating the status of reception/delivery (TCP for 

example) and the distribution matrix F  of 
k

d  are both 

assumed known to the local controller. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Intermittent unknown inputs in NCS. 

 

The arrival sequence   1

0

k
j  of unknown inputs is considered 

as deterministic in the design of the following state filter 

)ˆ(ˆˆ 1/1//
   kkkkkkkk xCyKxx

 
(2.a) 

T
kk

T
kkkkkk

KKCKIPCKIP    )()(
1//

 (2.b) 

kkkkk BuxAx  
//1 ˆˆ

 
(2.c) 

WAAPP T
kkkk
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 (2.d) 

where 
1/

ˆ kk
x  is the state prediction of covariance matrix  T

kkkkkkkk
xxxxEP )ˆ )(ˆ(

1/1/1/
    based on measurements 

available until time 1k  and   1

0

k
j , where 

kk
x

/
ˆ   is the state 

estimate of covariance matrix  T
kkkkkkkk

xxxxEP )ˆ)(ˆ(
///

   based 

on measurements available until time k  and   1

0

k
j . From (1) 

and (2), the state prediction error 
kkkkk

xxe
/11/1

ˆ    and the 

state estimation error 
kkkkk

xxe
//

ˆ  propagate as 

kkkkkk
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//1  
(3.a) 

kkkkkkk
vKeCKIe   1//

)(  (3.b) 
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11/  

kkk
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  qi fffF ....1 , we have     0)(
1//
 

kkkkk
eECKIeE  (and thus   

kkk
FdeE  /1 ) if and only if 

the state feedback gain mn
k

K ,  satisfies the unknown inputs 

decoupling constraint 0)(
1
 

kk
FdCKI  in [24] relaxed under 

(1.d) as 


11  

kkk
FCFK  with   qq

k
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kkk
fffF

11
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11
.... 

  
(4) 

Under qFrankCFrank  )()(  the existence condition 

kkk
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11
  with   q

i

i
kks

1
1

  for a solution to (4) is 

satisfied 1 k . This paper proposes to parameterize the 

solution to equation (4) from constant size matrices as follows 
 
kkkk
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(5) 
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FCKI
 
and mq

k
G , . Substituting (5) 
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zero components, we deduce from (6) that the state feedback 

gain (5) satisfies (4) if and only if 
k

G  satisfies 


11  

kkk
ICFG

 
(7) 

Suggested by the structure of the state feedback gain (5), let 

)ˆ(ˆ
1//1

   kkkkkk xCyGd
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 (8.b) 

with 
1/1/1

ˆ  
kkkkk

dd  where     
11//1
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kkkkkk

deCEGdE  under 

(4) and (7). The state estimator (2) and the intermittent 

unknown inputs estimator (8) will be designed by minimising 

the trace of 
kk

P
/  and 

kk
Q

/1  with respect to 
k

K  and 
k

G  under 

(4) and (7). The necessary and sufficient conditions so that 




kk
k

P
/1

lim  for any sequence  
0j  will be established. 

 

III. KALMAN FILTER FOR STOCHASTIC LINEAR SYSTEM 

SUBJECT TO INTERMITTENT UNKNOWN INPUTS 

The proposed IIKF is described by theorem 3.1. 

Theorem 3.1: The Unbiased Minimum Variance (UMV) 

state estimate 
kk

x
/

ˆ of covariance 
kk

P
/  is generated by the 

following modified Kalman filter 

kkkkkkkkkk
yKdFxCKIx 0
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k

i
kk

ICFG 
11  

 
for qi ,..,1  (18.b) 

where i
k

F
1  and i

k
I

1  represent the ith column of 
1k

F  and 
1k

I .  

The unique solution to (18.a) coincides with the Kalman 

filter’s gain 1
1/1/

0 )(   ICCPCPK T
kkkkk

 . The existence of the ith 
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constraint in (18.b) is conditioned by 1
1
i

k
  and the solution 

to (18.b) can be derived by minimising  

)()(5.0
11

1

i
k

i
kk

q

i

iT
k

T
kkkk

ICFGGHGtr    
 

(19) 

where 1,qi
k

  is the Lagrange parameters vector satisfying 

0i
k
  when 0

1
i

k
  and 0i

k
  when 1

1
i

k
 . The optimality 

conditions of 
k

  gives 

0)(
1

1
  

q

i

Ti
k

i
kkk

k

k CFHG
G


 


 

(20.a) 

0
11


 i
k

i
kki

k

k ICFG 



 

if 1
1
i

k


 
for qi ,..,1  (20.b) 

The solution 1

1
1
)(   


 k

q

i

Ti
k

i
kk

HCFG    to (20.a) substituted in 

(20.b) gives 


11
1

1
)(  

kkk
T

kk
ICFHCF

 
(21) 

where qqq
k

i
kkk

,1     represents the Lagrange 

parameters matrix. The solution to (21), expressed 
  ])[(])[(

1
1

11
1

11

kk

T
kkk

T
kkk

CFHCFCFHCFI  from 
111  

kkk
FIF , 

substituted in 1
1
)(  k
T

kkk
HCFG    gives 

1
11

1
1

)(])[(  k
T

kkk
T

kk
HCFCFHCFG 

 
(22) 

leading to   ])[(
1

1
1/1


kk

T
k

T
kkkkk

CFHCFGHGQ  via   XXXX  

( X  is the unique Moore-Penrose generalized inverse of X ).  

After some manipulations, the IIKF of theorem 3.1 is 

recovered by substituting the inverse transformation 







I

I
T k

k
0

1
  in the optimized filter (14). Its optimality is 

ensured by the invariance property to linear transforms of 

optimal linear filters. The IIKF must be initialized with  0,..,0,..,01   
since 0x   represents the unbiased prediction of the 

initial state 0x .  

End of the proof 

From (9.b) and (10), we derive the IIKF’s Riccati 
Difference Equation (RDE) 

WKKCKAFQFPCKAP
pT
k

p
k

Tp
k

T
kkkkkk

p
kkk

  ))()((
1/111//1

 (23) 

with 1
1/1/

0 )(   ICCPCAPAKK T
kk

T
kkk

p
k

 . 

Theorem 3.2: Under the necessary and sufficient conditions 

1,
0




 
zqn

C

FAIz
rank

 

(24.a) 

   2,0,2/1  wnWAIerank jw

 
(24.b) 

we have 


kk
k

P
/1

lim

 
for any arrival sequence  

0j  of 

unknown inputs.   

Proof. Under persistent unknown inputs i.e.  1,..,1,..,1k  

0k , we have 
T

q
k

i
kkk

dddd  ....1 0k  or FF
k
 0k  and 

(23) gives  

WKKCKAFQFPCKAP
pT
k

p
k

Tp
k

T
kkkk

p
kkk

 


))()((
/11//1  

(25) 

with 1
1/

 k
T

kk
p
k

HCPAK


, 11
/1

])[(   CFHCFQ k
T

kk


,
 

ICPCH T
kkk

 1/


 

and 001/0
 PP


. The RDE (25) can be rewritten 

WKKCKAPCKAP T
kk

T
kkkkkk

 


)()(
1//1  

(26) 

with ))(( 00
kkkk

GFCKIKAK
  , 1

1/1/
0 )(   ICPCCPK T

kk
T

kkk


 and 

111 )(])[(  k
T

k
T

k
HCFCFHCFG


.  

 

The appendix shows that the RDE (26) coincides with the 

time-invariant UIKF’s RDE in [7] described by 

WKKCKAPCKAP T
kk

T
kkkkkk

  )()(
1//1  

(27) 

with )(  FKAK
kk , qmnTT

kk
T

kkk
CPCCNPK   ,1

1/1/
)( , 

 )(CF , CFIN
~ , CC ~

, CC  , )(  CFI  and 

mqm ,  so that qmrank )(  with )(CFrankq  . This result 

also shows that the IIKF’s RDE (23) is equivalent to a time-

varying structure version of (27) with )(
111

  
kkkkk

FKAK , 

1
1/1/

)(   T
kk

T
kkkk

T
kkkkk

CPCCPNK  ,  )(
1


kk

CF , 
kkk

CFIN
~

1
CC

kk
 ~

, CC
kk
  , )(

1
 
kkkk

CFI    
and mksm

k
,  so that 

kk
smrank  )( 

 
where the variable size of the gain ksmn

k
K

 ,  

depends on   q

i

i
kks

1
1


 
(contrary to the time-varying RDE, but 

fixed structure in [7], defined with  kqs
k

 , ). The degrees of 

freedom ksmn
k

K
 ,

 
minimizing )(

/1


kk
Ptr   are always greater 

or equal to the degrees of freedom qmn
k

K  ,

 
minimizing 

)(
/1 kk

Ptr   since qsk  . Without further mathematical 

development, this reasoning leads to kkkk
PP /1/1    for any 

sequence   1

0

k
j . Under 001/0

 PP , the necessary and 

sufficient existence conditions (24) for an unique stabilising 

solution 0P  to the following Algebraic Riccati Difference 

Equation (ARDE) 

WKKKCAPKCAP TT  )()(
 

(28) 

associated to the time-invariant RDE (27) (all the modes 

of KCA  inside the unique circle) have been established in [7]. 

Under (24), we conclude that  PP
kk

k


/1

lim

 
for any sequence 

 
0j . 

End of the proof 

When the arrival sequence of each component of the 

unknown inputs vector follows a Bernoulli process with   10]1Pr[  i
k

 , the rank relations (24) ensure that there 

exists no critical value for the unknown inputs occurrence rate   

  above which the estimation error covariance becomes 

unbounded. 

 

IV. CONCLUSION 

In this paper a Kalman Filter for discrete-time stochastic 

linear systems subject to intermittent unknown inputs has been 

presented. The decoupling constraint linked to the binary 

sequence describing the arrival of unknown inputs has been 

parameterized from constant size matrices in order to allow a 

two-stage optimisation strategy. The obtained filter has been 

presented as a standard Kalman filter updated online from the 
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intermittent unknown inputs estimation. When the arrival 

sequences of unknown inputs follow binary state Markov 

chains or Bernoulli processes, the study of less conservative 

stochastic stability conditions is currently under consideration 

by the authors. 

 

Appendix: The RDE (26) coincides with the standard 

UIKF’s RDE (27) i.e. kk
KK 

 
when 1/1/  

kkkk
PP


: Define the 

non singular output transformation matrix 

 mm

k
k

IJ

I
Z ,0 








 


   (A.1) 

with 1
1/

~  k
T

kkk
HCPCJ


 and TT

kkk
CPCH  1/


 ( k

J


 is called the 

adaptive noise canceller gain in [21]) so that 











 
k

kT
k

T
kkkk

H

H
ZICPCZY 




~
0

0
)(

1/

 

(A.2) 

with TT
kkk

HHCSCH  ~~~
/


 and 

1/
1

1/1//  
kkk

T
kkkkkk PCHCPPS


. The 

constrained gain  111 )(])[(  k
T

k
T

k
HCFCFHCFG


 can be equivalently 

expressed 

    

































kk

k

k

k

k

kk
T

kkk
T

kk

JZ
H

H
I

IH

H
I

ZYCFZCFZYCFZG












ˆ
~

0

0
0)

0
)~

0

0
0(

ˆ)()ˆ)((

1

11

111

 

(A.3) 

By the same way, the free gain 1
1/1/

0 )(   ICPCCPK T
kk

T
kkk


  

can be equivalently expressed 










 






k
k

T
k

TT
k

T
kk

kk
T
k

T
kkk

J
HJCCHCP

ZYZCPK






11
1/

1
1/

0

~
)

~
(

 

(A.4) 

The gain ))(( 00
kkkk

GFCKIKAK
   is rewritten 

)())((0  kkkk
JHAFJHCFIKAK


 
and from (A.3) and (A.4), 

we derive the following expression 

)(

))((
~

)
~

( 11
1/











  

k

k
k

k
T
k

TT
k

T
kkk

JAF

JCFI
JH

HJCCHCPAK








(A.5) 

From  0CF  and  ICF  ,  we have  )]([ kJCFI


 and 

0)()(

)()()()]()[(



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kkkkk

JJH

JCFJHJHJCFIJH

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(A.6) 

leading to 
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

 

  )(
0

~ 1

1/




  

 k
kT

k
TTT

kk
JAF
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(A.7) 

We conclude that kk
KK 

 when 1/1/  
kkkk

PP


 
and thus 

1/1/  
kkkk

PP


0k   when  1/01/0   PP


. 
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