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Operating mode recognition: Application in continuous casting

Loı̈c Bazart1, Didier Maquin1, Ahmed Khelassi2, Bertrand Bèle2 and José Ragot1

Abstract— System often has several operating modes that are
controlled by the operator to follow a desired change or not in
the case of fault occurrence or change due to the environment
of the system. The challenge is to be able to know the current
operating mode in order to apply the appropriate controls.
The aim of this work is to recognise the active mode at any
time, and to estimate the switching time between modes. The
proposed method is able to detect mode changes without the
knowledge of the model parameters characterising each mode.
An application in continuous casting illustrates the ability to
detect a variation of a friction coefficient.

I. INTRODUCTION

This communication addresses the problem of operating

mode recognition for systems represented by switched re-

gression models. These different models can either charac-

terise normal or abnormal (e.g. when the system is subject

to parametric fault) situations. Indeed, to get rid of the

model complexity, a widely used modeling strategy consists

to represent the system behaviour using a set of models with

a simple structure, each model describing the behaviour of

the system in a particular operating zone. Switched regres-

sion models characterise systems governed by continuous

differential (continuous time) or difference (discrete time)

equations and discrete variables. The system is described by

several operating regimes, called modes, and the transition

from one mode to another is governed by a discrete event

which occurrence depends on the system variables (input,

output, state) or external variables (human operator, fault).

If the operating mode change results from a controlled or

measured event, at any time, the operating mode is directly

known. If the models are not a priori known, based on the

knowledge of the inputs/outputs of the system acquired when

it operates in a given mode, it is then possible to implement

some identification algorithm [1], [2], [3] for identifying

the parameter of the corresponding model. Assuming the

different models are therefore known as well as their number,

the later mode recognition is then easy and can be done

by the analysis of the residuals computed as the difference

between the measured and predicted outputs by the different

models. The reader is referred to [4], [5] for techniques based

on bank of observers or [6], [7] and [8] for the use of multi-

model approach.

The problem becomes more difficult when the event re-

sponsible for the mode change is not known. Indeed, for this
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unsupervised classification problem, if the different models

are unknown, it is necessary to estimate simultaneously

model parameters and data partitioning in order to associate

to each model data that will allow its identification. To this

end, in [9] and [10] the authors used Principal Component

Analysis while [11] and [12] use a least squares method.

The main contribution of the proposed method is to

detect mode changes without knowing the model parameters

characterising each mode. The number of operating modes

(described by so-called local models) as well as the model

structures describing each of these modes are known a priori.

The method relies on the estimation of the parameters of a

“global” model of the system, resulting from a multiplicative

combination of local models. The sensitivity analysis of the

global model with regard the input/output variables then

provides an indicator to detect changes in the operating

mode.

At first, the method is presented using a simple static

model without noise. Then, the noise affecting the output

measurements is taken into account. Finally, the proposed

method is applied on a simplified simulated model of a

continuous casting mold in order to detect the variation of

a friction coefficient. This detection is of prime interest as

the friction coefficient characterises a sticking phenomenon

between the solidified steel and the mold.

II. METHOD PRINCIPLE

A. System model

Let us consider the three following models:







M1 : y(k)− a1u1(k)− b1u2(k) = 0

M2 : y(k)− a2u1(k)− b2u2(k) = 0

M3 : y(k)− a3u1(k)− b3u2(k) = 0

(1)

Depending on the operating conditions, the system be-

haviour is described by one of the three models M1, M2 or

M3, i. e. at every moment, the data triplet (u1(k),u2(k),y(k))
checks one of the three models M1, M2 or M3. A general

model, with decoupled operating modes, can then be written:

M : r(k) =(y(k)− a1u1(k)− b1u2(k))×

(y(k)− a2u1(k)− b2u2(k))×

(y(k)− a3u1(k)− b3u2(k)) = 0

(2)

The model (2) can be rewritten in order to show global
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system parameters:

M :































r(k) = φT (k)θ = 0

φ(k) =
(

y3(k) y2(k)u1(k) y2(k)u2(k) y(k)u2
1(k)

y(k)u2
2(k) y(k)u1(k)u2(k) u3

1(k) u3
2(k)

u2
1(k)u2(k) u1(k)u

2
2(k)

)T

θ = (θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10)
T

(3)

φ(k) is write in order of power decreasing of y(k) then u1(k)
and u2(k).
At any time, the triplet (u1(k), u2(k), y(k)) checks this global

model, so r(k) = 0. Global parameters θi depend on local

model parameters:






























































θ1 = 1

θ2 =−(a1 + a2 + a3)
θ3 =−(b1 + b2 + b3)
θ4 = a1a2 + a2a3 + a1a3

θ5 = b1b2 + b2b3 + b1b3

θ6 = a1b2 + a2b1 + a3b1 + b2a3 + a1b3 + a2b3

θ7 =−a1a2a3

θ8 =−b1b2b3

θ9 =−(a1b2a3 + a2a3b1 + a1a2b3)
θ10 =−(a1b2b3 + a2b1b3 + b1b2a3)

(4)

The set of six unknown parameters ai and bi, i = {1,2,3}
is a solution of a system of nine nonlinear equations. This

system can present some problems of compatibility espe-

cially when measurements are corrupted by noise. However,

here, the objective is to detect the changing of operating

mode and it will be shown that the estimation of the

parameters ai and bi is not necessary. The proposed method

relies on the estimation of the global model parameters θi,

which are estimated using a least squares method from the

knowledge of the input/output signals (u1(k),u2(k),y(k)),
and on the analysis of the time-variation of the sensitivity

vector of the global model.

B. Design of a mode change indicator

Based on a remark of [10], let us evaluate the sensitivity

of r(k) (3) with regard to the system variables:

D(k) =















∂ r(k)

∂u1(k)
∂ r(k)

∂u2(k)
∂ r(k)

∂y(k)















=























y2(k)θ2 + 2u1(k)y(k)θ4 + u2(k)y(k)θ6

+3u2
1(k)θ7 + 2u1(k)u2(k)θ9 + u2

2(k)θ10

y2(k)θ3 + 2u2(k)y(k)θ5 + u1(k)y(k)θ6

+3u2
2(k)θ8 + u2

1(k)θ9 + 2u1(k)u2(k)θ10

3y2(k)θ1 + 2y(k)u1(k)θ2 + 2y(k)u2(k)θ3

+u2
1(k)θ4 + u2

2(k)θ5 + u1(k)u2(k)θ6























(5)

The components of the vector D(k) can be evaluated, at ev-

ery moment k, from the input and output (u1(k),u2(k),y(k))

of the system and the parameters θi without knowing the

active mode at this time and without knowing the parameters

ai and bi characterising each model.

The vector D(k) can be used to detect the active mode.

If the system operates according to model M1, then y(k) =
a1u1(k)+ b1u2(k) and, due to (5), D(k) takes the value:

D1(k) =





−a1

−b1

1



x1(k) (6)

with
x1(k) =((a1 − a2)u1(k)+ (b1 − b2)u2(k))

((a1 − a3)u1(k)+ (b1 − b3)u2(k))
(7)

Let us remark that this value cannot be calculated because

the local parameters ai and bi are unknown. If the system

operates according to model M2, y(k) = a2u1(k) + b2u2(k)
and the vector D(k) expresses:

D2(k) =





−a2

−b2

1



x2(k) (8)

with
x2(k) =((a2 − a1)u1(k)+ (b2 − b1)u2(k))

((a2 − a3)u1(k)+ (b2 − b3)u2(k))
(9)

If the system operates according to model M3, y(k) =
a3u1(k)+ b3u2(k) and the vector D(k) expresses:

D3(k) =





−a3

−b3

1



x3(k) (10)

with
x3(k) =((a3 − a1)u1(k)+ (b3 − b1)u2(k))

((a3 − a2)u1(k)+ (b3 − b2)u2(k))
(11)

Consequently, the vectors D1(k), D2(k) and D3(k) are

equipollent to the vectors:

D̃1 =





a1

b1

−1





, D̃2 =





a2

b2

−1





, D̃3 =





a3

b3

−1



 (12)

and according to the operating mode, the vector D(k) is

collinear to the vector D̃1, D̃2 or D̃3

To get rid of the unknown scalar xi(k) (which sign can

evolve according the time instant k), each mode can be

characterised by a vector issued from the ratios of the

components of D(k). If d j(k) denotes the jth component of

the vector D(k), let us define the vector D̄(k) such that:

D̄(k) =
(

d1(k)
d2(k)

d2(k)
d3(k)

d1(k)
d3(k)

)T

(13)

From (6), (8) and (10), the direction characterising the

modes M1, M2 and M3 can then be expressed as:

D̄1 =
( a1

b1
−b1 −a1

)T
(14)

D̄2 =
( a2

b2
−b2 −a2

)T
(15)
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D̄3 =
(

a3
b3

−b3 −a3

)T

(16)

Vectors (14), (15) and (16) are obtained directly from

D(k) and are independent from x(k) by construction. They

have a constant amplitude and a fixed direction. Notice that

the ability to compute D̄(k) is conditioned by x(k) 6= 0. This

condition corresponds to the discernability of the modes.

For the concerned particular case, the condition xi(k) 6= 0

implies a1 6= a2 6= a3 and b1 6= b2 6= b3.

Therefore, the vector D̄(k), calculated from (13), contains

the necessary information to detect, at each sample time, the

changing of operating mode according to the direction in

which it aligns. More precisely, the vector D̄(k) is equal to

D̄1, D̄2 or D̄3 depending on the operating mode at time k.

C. Angular distance between modes

To highlights the changing operating mode we can calcu-

late the cosine of the angle between tow vectors D(k − 1)
and D(k) by the following expression:

cos(D(k− 1),D(k)) =
DT (k− 1)D(k)

‖D(k− 1)‖‖D(k)‖
(17)

If this angle is zero, there was no mode change between

times k−1 and k. Otherwise, the angle is equal to the angle

between the two vectors that characterising the operating

modes at times k− 1 and k, this means that there has been

a change in operating mode.

The procedure for determining at each time the operating

mode of the system can be sum up as:

• from previously acquired data on a system that covered

all operating modes, estimate the parameters θi with a

least squares method,

• at each time k, evaluate, from the inputs and outputs of

the system, the vector D(k) using (5),

• analyse the potential change in the direction of the

vector D(k) compared to that of D(k−1) and determine

if there was a change in the operating mode.

The addition of a measurement noise e(k) on the output

of the system modifies the local and the global models as

follows:






M1 : y(k)− a1u1(k)− b1u2(k)− e(k) = 0

M2 : y(k)− a2u1(k)− b2u2(k)− e(k) = 0

M3 : y(k)− a3u1(k)− b3u2(k)− e(k) = 0

(18)

M : r(k) =(y(k)− a1u1(k)− b1u2(k)− e(k))×

(y(k)− a2u1(k)− b2u2(k)− e(k))×

(y(k)− a3u1(k)− b3u2(k)− e(k)) = 0

(19)

The expression (5) is still valid and the directions corre-

sponding to the three operating modes are now given by:

D1(k) =





−a1

−b1

1



(x1(k)+ s1(k)e(k))+





θ2

θ3

2θ1



e2(k) (20)

D2(k) =





−a2

−b2

1



(x2(k)+ s2(k)e(k))+





θ2

θ3

2θ1



e2(k) (21)

D3(k) =





−a3

−b3

1



(x3(k)+ s3(k)e(k))+





θ2

θ3

2θ1



e2(k) (22)

with si(k) = (2ai − a j − al)u1(k) + (2bi − b j − bl)u2(k) and

i, j, l ∈ {1,2,3}. Unlike the noise-free case, vectors D1(k),
D2(k) and D3(k) are not collinear to vectors D̃1, D̃2 and D̃3,

but describe a wrap around directions D̃1, D̃2 and D̃3, the

extent of this envelope is directly related to the amplitude of

the noise.

III. NUMERICAL EXAMPLES

A. First example

A first simulation is performed with the model (1) with

a1 = 1, b1 =−1, a2 = 1.3, b2 =−0.8, a3 = 0.8 and b3 =−0.2

on a time horizon of 100 samples. Inputs u1(k) and u2(k)
are bounded random inputs of respective averages −2 and

−3 and bounds [−3.5,−0.5] and [−3.5,−2.5]. Changing of

operating mode occur at random times. With the output y(k)
(Fig. 1), it is difficult to determine the moments of mode

change. Fig. 2 and 3 respectively show the time evolution

of the three components of the vector D(k) and D̄(k). The

changing of operating mode of the system then appears. Fig.

4 shows that the moments of mode change can easily be

located.

0 20 40 60 80 100
−4

−2

0

u1( k )

0 20 40 60 80 100

−3.5

−3

−2.5

u2( k )

0 20 40 60 80 100

−5

0

5

y ( k )

Fig. 1. Inputs/outputs of the system

B. Second example

For the second simulation, noise has been added to the

output. This noise is uniform and equal in magnitude to 3 %

of the maximum amplitude of the signal y(k). The simulation

is performed on 100 samples. Mode changes occur at same

time as in previous example. Fig. 5 shows the time evolution

of the inputs and the noised output of the system while Fig.

6 presents the three components of the vector D(k).
Fig. 7 shows the components of the vector D̄(k) and Fig.

8 shows the cosine of the angle between D(k−1) and D(k),
highlighting the mode changes. We ca remark that the second

operating mode change is less evident than the others because
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0 20 40 60 80 100

−5

0

5

d1( k )

0 20 40 60 80 100

−5

0

5

d2( k )

0 20 40 60 80 100

−5

0

5

d3( k )

Fig. 2. Components of the vector D(k)

0 20 40 60 80 100

−4

−2

0

d1( k )

d2( k )

0 20 40 60 80 100

0

0.5

1

1.5

d2( k )

d3( k )

0 20 40 60 80 100

−1.3

−1

−0.7

d1( k )

d3( k )

Fig. 3. Components of D̄(k)

0 20 40 60 80 100

−1

0

1

Fig. 4. Cosine of the angle between D(k−1) and D(k)

0 20 40 60 80 100

−4

−2

0

u1( k )

0 20 40 60 80 100

−3.5

−3

−2.5

u2( k )

0 20 40 60 80 100

−5

0

5

y ( k )

Fig. 5. Input and output of the system

0 20 40 60 80 100

−5

0

5

d1( k )

0 20 40 60 80 100

−5

0

5

d2( k )

0 20 40 60 80 100

−5

0

5

d3( k )

Fig. 6. Components of the vector D(k) with noise

0 20 40 60 80 100

−7

−5

−3

−1

d1( k )

d2( k )

0 20 40 60 80 100

0

0.5

1

1.5

d2( k )

d3( k )

0 20 40 60 80 100

−1.6

−1.1

−0.6

d1( k )

d3( k )

Fig. 7. Components of D̄(k)

0 20 40 60 80 100

−1

0

1

Fig. 8. Cosine of the angle between D(k−1) and D(k)

the angle between vector characterising this modes is small.

The analysis of the components of D̄(k) using an abrupt

change detection method e.g. the Page-Hinkley test, allows

the changing of mode to be detected.

IV. APPLICATION ON CONTINUOUS CASTING

The previous method can be easily extended to the case

of dynamic systems. In the following, it is applied on a

simplified mechanical model of a continuous casting mold.

A. Mechanical model of casting mold

A simplified mechanical model of a continuous casting

mold can be described by the following equations:






vp(k) =
(

1− τ f
Mp

)

vp(k− 1)+ τ f
Mp

vl(k− 1)+ τ
Mp

T (k− 1)

vl(k) =
τ f
Ml

vp(k− 1)+
(

1− τ f
Ml

)

vl(k− 1)+ τ
Ml

Fl(k− 1)

(23)
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where Mp is the mass of the product, Ml the mass of the mold

and τ the sample time chosen for the discrete representation

of the system. The controls of this system are the traction

T on the product and the force Fl applied to the mold. The

product speed vp and the mold speed vl are measured. The

variation of the friction coefficient f characterises a “sticker”

phenomenon between the solidified steel and the mold which

generated poor quality on product structure. The objective is

to detect as quickly as possible this variation of friction.

Here, we consider three friction coefficients f1, f2 and f3.

We obtain the following models Mi with i = {1,2,3}:

M1 :



































Mp

τ
(vp(k)− vp(k− 1)−T(k− 1))

+ f1(vp(k− 1)− vl(k− 1)) = 0

Ml

τ
(vl(k)− vl(k− 1)−Fl(k− 1))

− f1(vp(k− 1)− vl(k− 1)) = 0

(24)

M2 :



































Mp

τ
(vp(k)− vp(k− 1)−T(k− 1))

+ f2(vp(k− 1)− vl(k− 1)) = 0

Ml

τ
(vl(k)− vl(k− 1)−Fl(k− 1))

− f2(vp(k− 1)− vl(k− 1)) = 0

(25)

M3 :



































Mp

τ
(vp(k)− vp(k− 1)−T(k− 1))

+ f3(vp(k− 1)− vl(k− 1)) = 0

Ml

τ
(vl(k)− vl(k− 1)−Fl(k− 1))

− f3(vp(k− 1)− vl(k− 1)) = 0

(26)

The system 23 presented two equations so we have two

residual rq(k) (with q= I, II) depending on system equations.

Defining:

w1(k) =
Mp

τ (vp(k)− vp(k− 1))−T(k− 1)

w2(k) =
Ml
τ (vl(k)− vl(k− 1))−Fl(k− 1)

w3(k− 1) = vp(k− 1)− vl(k− 1)

(27)

we obtain the global model decoupled from the two operating

modes :

rI(k) =(w1(k)+ f1w3(k− 1))(w1(k)+ f2w3(k− 1))

(w1(k)+ f3w3(k− 1))

=φ1(k)
T θ

rII(k) =(w2(k)− f1w3(k− 1))(w2(k)− f2w3(k− 1))

(w2(k)− f3w3(k− 1))

=φ2(k)
T θ

(28)

with:

θ =









1

f + f1 + f2

f f1 + f f2 + f1 f2

f f1 f2









φ1(k) =









w3
1

w2
1w3

w1w2
3

w3
3









, φ2(k) =









w3
2

−w2
2w3

w2w2
3

−w3
3









(29)

We evaluate the sensitivity of rq(k) with regard to the

variables w1(k), w2(k) and w3(k):

DI(k) =













∂ rI(k)

∂w1(k)

∂ rI(k)

∂w3(k− 1)













(30)

DII(k) =













∂ rII(k)

∂w2(k)

∂ rII(k)

∂w3(k− 1)













(31)

So we obtain a sensitivity vector Dq(k) for each system

equation, q = I, II. We note dq, j the jth component of the

vector Dq(k).

B. Simulation and results

The simulation was performed with the model (23). The

parameter values are Ml = 30t, Mp = 239t, f1 = 173, f2 =
198, f3 = 147 and τ = 0.1s. The simulation is performed on

150 seconds. The switching operating modes are generated

by a function h(k) that is presents in Fig.12. A centred and

uniformly distributed noise with an amplitude equal to 5 %

of the maximum amplitude of each of the output signals has

been added to the measurements. θi are obtained by applying

a less square method.
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0 50 100 150
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0 50 100 150

−0.01

0

0.01

v l( k )

Fig. 9. Inputs/outputs of the system

Fig. 9 does not allow detection of mode changes. Fig. 10

presents dq, j. Fig. 11 presents the ratio of each component of

vector Dq(k). We can see the second equation which permit

to obtain DII(k) is more relevant of mode changes. That is

due to parameters values.
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Fig. 10. Components of D(k)
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Fig. 11. Components of D̄(k)
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Fig. 12. h(k)

V. CONCLUSIONS

The proposed method for the detection of the active system

at each instant and for the estimation of the time of mode

change was applied for different types of model static,

dynamic, mono-output and multi-outputs. Its main interest

is that knowledge of the model parameters of each mode is

not required, only the estimation of global parameters of the

system is used.

This presentation was made under a procedure supervised.

For this, we have a data set to estimate the parameters

of the overall system. It is easy to extend this method to

the case unsupervised. The global parameters of the system

are then estimated at each time using a recursive algorithm

for example and analysis of the gradient vector to discover

the emergence of new modes. The drawback in this case

will be the delay for the characterisation of the new mode.

We must have enough data in the new mode to have a

correct estimation of global parameters. In addition, the

calculation of the angle between the vectors related to each

mode gradient must be extended in the case of a system to

noisy measurements. In this case, it would be possible to

determine the maximum permissible noise amplitude for the

detection of mode changes. Future work is to take in account

the uncertainty about global parameters and their possible

variations and determined the minimum distance between

mode that permit the detection of changing operating mode.
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