
HAL Id: hal-00846179
https://hal.science/hal-00846179

Submitted on 27 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Control for Balanced Timed and
Weighted Event Graphs in Dioids

Bertrand Cottenceau, Laurent Hardouin, Jean-Louis Boimond

To cite this version:
Bertrand Cottenceau, Laurent Hardouin, Jean-Louis Boimond. Modeling and Control for Balanced
Timed and Weighted Event Graphs in Dioids. 2012, pp.x-x. �hal-00846179�

https://hal.science/hal-00846179
https://hal.archives-ouvertes.fr


1

Modeling and Control for Balanced Timed and

Weighted Event Graphs in Dioids

Bertrand Cottenceau, Laurent Hardouin, Jean-Louis Boimond

Abstract

The class of Timed Event Graphs (TEGs) has widely been studied for the last 30 years thanks to an

algebraic approach known as the theory of Max-Plus linear systems. In particular, the modeling of TEGs

via formal power series has led to input-output descriptions for which some model matching control

problems have been solved. In the context of manufacturing applications, the controllers obtained by

these approaches have the effect of regulating material flows in order to decrease internal congestions

and intermediate stocks. The objective of this work is to extend the class of systems for which a similar

control synthesis is possible. To this end, we define first a subclass of timed Petri nets that we call

Balanced Timed and Weighted Event Graphs (B-TWEGs). B-TWEGs can model synchronisation and

delays (B-TWEGs contains TEGs) and can also describe some dynamic phenomena such as batching

and event duplications. Their behavior is described by some rational compositions of four elementary

operators γn, δt, µm and βb on a dioid of formal power series. Then, we show that the series associated

to B-TWEGs have a three dimensional graphical representation with a property of ultimate periodicity.

This modeling allows us to show that B-TWEGs can be handled thanks to finite and canonical forms.

Therefore, the existing results on control synthesis, in particular the model matching control problem,

have a natural application in that framework.

Index Terms

Discrete-Event Systems, Timed and Weighted Event Graphs, Dioids, Formal Power Series, Resid-

uation, Three Dimensional Representation, Controller Synthesis.
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I. INTRODUCTION

Since the beginning of the 80s, it has been known that the class of Timed Event Graphs (TEGs)

can be studied thanks to linear models in some specific algebraic structures called dioids (or

idempotent semirings) [22][5][1][9] [16]. Among different representations, a specific approach

lies on an operatorial description of such systems. By denoting Σ the semimodule of counter

functions1, one can describe the behavior of a TEG by combining two shift operators (see [5])

denoted respectively γ, δ : Σ→ Σ

γ : (γx)(t) = x(t) + 1 δ : (δx)(t) = x(t− 1)

The input-output behavior of a TEG is then described by a matrix the entries of which are

some elements of the rational closure2 of the set {ε, e, γ, δ}, i.e. the transfer matrix of a TEG

can be written with a finite composition of these operators. Moreover, due to some fundamental

equivalences such as γn ⊕ γn
′

= γmin(n,n′) and δt ⊕ δt
′

= δmax(t,t′), a rational expression has

a canonical form which is ultimately periodic [9][18][10]. In other words, we can manipulate

TEG transfer as periodic formal series in two variables γ and δ, with some simplification rules,

within a dioid called Max
in Jγ, δK [5][1]. On the one hand, this fact has made it possible to

elaborate software tools to compute the transfer matrix of any TEG [13] [8]. On the other hand,

such an input-output model is well suited to address some model matching control problems

[7] [20] [17] [15]. By analogy with the classical control theory, controllers are computed in

order to achieve, for the closed-loop system, some prescribed performances. In a manufacturing

production context, the controller describes how to manage the input of raw parts into the

production line in order to achieve some performance. The controllers obtained by this approach

lead to improve the internal flows of products by decreasing internal stocks.

The main objective of this work is to study a class of systems greater than those described

by TEGs, but with similar algebraic tools. We focus here on the class of Timed and Weighted

Event Graphs (TWEGs). They correspond to TEGs the arcs of which are valued by some positive

integers. The arcs valuations express how many tokens the firing events consume/produce in the

graph. The modeling power is greatly increased by the introduction of these valuations since in

1A counter function x : Z→ Z, t 7→ x(t) gives the cumulative number of occurrences of the events labeled x at date t. Such

a function plays the role of signal.
2Where ε (resp. e) is the null (resp. neutral) operator.
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addition to synchronisations and delays, TWEGs can also describe batch constitution (several

successive input events are necessary to release one output event) and duplication (one input

event instantaneously produces several output events). These situations are usual in manufacturing

systems (lot making, batch splitting) and cannot be accurately modeled with ordinary TEGs.

In literature, TWEGs have been studied both as a modeling tool for manufacturing systems

and as a model for computation in the field of concurrent applications. In both domain, TWEGs

can describe the scheduling of tasks with precedence constraints and also parallel executions.

The analysis and the optimization problems associated to TWEGs aim at checking or enforcing

the liveness (can an event be executed an infinite number of times in the model), and also at

evaluating the throughput (number of events/unit of time) of the system, in particular for cyclic

scheduling (see [21] [2]). When applied to concurrent programming, real-time and embedded

systems, an equivalent graphical model called Synchronous Data-Flow (SDF) is generally used

(see [19][24][11]).

In order to adapt the control problems described in [7] and [20] to the context of TWEGs, an

input-output representation (transfer function) is necessary. The model proposed here seems to

be well adapted to that aim. Our work is in the spirit of [4] where a class of Fluid TWEGs is

analyzed thanks to a dioid of formal power series. The authors introduce a multiplier operator

denoted µ that models the effect of the graph valuations. They thus obtain a necessary and

sufficient condition under which a Fluid TWEG can be reduced to a Fluid TEG. This gives a

way to ”linearize” some TWEGs. This work has been extended in several papers, for instance in

[14] where some hybrid Fluid/Discrete TWEGs are considered. In the context of SDF modeling,

the studies developed in [11] and [12] are very close to that approach too.

We focus here on the discrete functioning of TWEGs. As in [5] and [4], one uses the

classical shift operators γn and δt to describe event-shift and time-shift, but we also introduce

two additional ones denoted βb and µm that represent respectively a batch operation (which is

modeled by an integer division3 on a counter variable) and a duplication phenomenon (multiplier

operator), ∀x ∈ Σ

βb : (βbx)(t) = bx(t)/bc µm : (µmx)(t) = x(t)×m.

3bxc denotes the greatest integer less than or equal to x.
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The behavior of a TWEG denoted G can be described by a rational expression on the set of

operators OM,B = {ε, e, γ, δ, µ2, µ3, ..., µM , β2, ..., βB}, where M is the maximal multiplier value

and B the maximal batch value of G. But, it is not clear whether, for the general case, there exists

a canonical form for a rational expression on OM,B: the formal computation of the behavior of a

TWEG does not necessarily lead to a unique expression. In particular, the non unitary TWEGs

seem to be difficult to handle.

We show that for a subclass of TWEGs that we call Balanced Timed and Weighted Event

Graphs (B-TWEGs), the rational expressions generated have a canonical periodic form. The

class of B-TWEGs corresponds to TWEGs such that parallel paths have the same gain4. For

these systems, the transfer relation can be expressed, on a dioid of series denoted EJδK, by

an ultimately periodic power series in one variable δ with coefficients in a dioid E of event

operators5. The construction of EJδK is done so as to include dioid Max
in Jγ, δK [5] [1]. The main

feature is that the graphical representation of series in EJδK is three-dimensional : two dimensions

to describe event operators in E and a third dimension for time shift operators. As inMax
in Jγ, δK,

the graphical representation of series in EJδK helps us to understand the simplification rules

on operators generated by B-TWEGs. Since the input-output behavior of a B-TWEG can be

described by a periodic formal series, the existing results on control synthesis can be directly

applied. It is only necessary to express the residuation of the product by the elementary operators.

The paper is organised as follows. In section 2, the subclass of Balanced Timed and Weighted

Event Graphs is first defined. Then, the modeling via an operatorial description is presented.

Section 3 is devoted to define the dioid of formal series denoted EJδK and to associate a 3D

graphical representation. In section 4, the result concerning the periodicity of B-TWEGs’ transfer

series is stated. Eventually, the question of control synthesis is addressed in section 5 after some

reminders on the residuation theory and its application to dioid EJδK.

II. BALANCED TIMED AND WEIGHTED EVENT GRAPHS (B-TWEGS)

A. Definitions

Weighted Event Graphs (WEGs) constitute a subclass of generalized Petri Nets given by a

set of places P = {p1, ..., pm} and a set of transitions T = {t1, ..., tn} (see [23] for a survey on

4Thus, we also reduce the problems of liveness.
5Operators that act only on the event numbering
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Petri nets). An event graph cannot describe concurrency phenomenon, then every place pk ∈ P is

defined between an input transition ti and an output transition to. The arcs ti → pk and pk → to

are oriented and valued6 by strictly positive integers denoted respectively wi(pk) and wo(pk).

A transition without input (resp. output) place is called a source or input (resp. sink or output)

transition. An initial marking (a set of initial tokens depicted with black dots) denoted M0(pk)

is associated to each place pk ∈ P . A given transition tj is said enabled as soon as each input

place pl contains at least wo(pl) tokens. A transition can be fired only if it is enabled. At each

firing of a transition, wo(pl) tokens are removed from each input place pl, and wi(pk) tokens are

added to each output place pk.

Example 1: For the WEG depicted on Fig. 1, t1 (resp. t3) is an input (resp. output) transition.

The initial marking is given by M0(p1) = 1 and M0(p2) = 2. All arcs are assumed to be 1-valued

except when mentioned, for instance wi(p1) = 2 and wo(p1) = 3. Transition t3 is enabled when

place p1 has 3 tokens and place p2 has two tokens. The firing of transition t1 adds 2 tokens in

place p1.

Figure 1. Weighted Event Graph

Definition 1 (Gain of a path): The gain of an elementary (oriented) path ti → pk → to is

defined as Γ(ti, pk, to) , wi(pk)/wo(pk) ∈ Q. For a general path π passing through places pi,

the gain corresponds to the product of elementary paths, i.e. Γ(π) =
∏

pj∈π wi(pj)/wo(pj).

Definition 2 (Neutral and Balanced WEG): A WEG is said neutral if all its circuits have a

gain of 1. A WEG is said balanced if ∀ti, tj ∈ T , all the paths from ti to tj have the same gain.

6From a graphical point of view, the valuations are depicted directly on the arcs
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Remark 1: A balanced WEG is necessarily neutral. In [21], a WEG which is neutral and

strongly connected is said unitary. It is important to note that the strongly connectedness is not

required for the class of Balanced WEG.

For a WEG, a holding time denoted ∆(pk) ∈ N can be associated to each place pk ∈ P .

Each token entering in a place pk has to wait ∆(pk) time units before contributing to enable

the output transition. A WEG with holding times is called a Timed and Weighted Event Graph

(TWEG). Hereafter, we will only consider Balanced Timed and Weighted Event Graphs (in short

B-TWEGs).

Example 2: For the TWEG depicted on Fig. 2, holding times are attached to some places:

∆(p1) = 2, ∆(p6) = 1, ∆(p4) = 1 and ∆(p5) = 2. This is a Balanced TWEG since it is

neutral and all the parallel paths from t1 to t4 have the same gain equal to 3/2. For instance,

Γ(t1, p1, t2) = 1/2 and Γ(t1, p2, t3) = 3.

Remark 2 (Ordinary TEG): If all the existing arcs are 1-valued, the TWEG is said Ordinary,

or simply Timed Event Graph (TEG). A TEG is obviously a Balanced TWEG.

Figure 2. Balanced Timed and Weighted Event Graph

Definition 3 (Earliest Functioning): The earliest functioning of a B-TWEG consists in firing

transitions7 as soon as they are enabled.

7Except source transitions.
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B. Operatorial representation of B-TWEGs

A dioid (or idempotent semiring) is an algebraic structure with two inner operations, a sum

and a product. The sum is commutative, associative and idempotent (a⊕a = a) and the product

is associative and distributes over the sum. The neutral elements of these operations are usually

denoted ε for the sum, and e for the product. Since the sum is idempotent, a natural order can

be associated to a dioid as a � b ⇐⇒ a = a⊕ b. When the sum of any finite or infinite subset

of a dioid is defined, and the product distributes over infinite sums, the dioid is said complete.

A complete dioid is an ordered set with a complete lattice structure : the inf operator is defined

as a ∧ b =
⊕
{x|x⊕ a = a and x⊕ b = b}.

The operatorial representation of TWEGs requires to associate a counter function xi : Z →

Z∪+∞ to each transition ti. The set of counter functions denoted Σ has a semimodule structure

for the internal operation ⊕ = min and for the scalar operation defined by λ.x(t) = x(t) + λ.

An operator is a map H : Σ→ Σ which is said linear if ∀x, y ∈ Σ, a) H(x⊕y) = H(x)⊕H(y)

and b) H(λ.x) = λ.H(x). An operator is said additive if only a) is satisfied.

Definition 4 (Dioid O of additive operators [22]): The set of additive operators on Σ, with

the operations defined below, is a non commutative complete dioid denoted O : ∀H1,H2 ∈ O

H1 ⊕H2 , ∀x ∈ Σ, (H1 ⊕H2)(x) = min(H1(x),H2(x))

H1 ◦ H2 , ∀x ∈ Σ, (H1 ◦ H2)(x) = H1(H2(x))

The null operator (neutral for ⊕ and absorbing for ◦) is denoted ε : ∀x ∈ Σ, (εx)(t) = +∞ and

the unit operator (neutral for ◦) is denoted e : ∀x ∈ Σ, (ex)(t) = x(t).

For the sequel, we will simply denote by Hx (instead of H(x)) the image of the counter x ∈ Σ

by the additive operator H ∈ O. And we will also often omit the ◦ symbol for the product of

O, H1H2 = H1 ◦ H2. Two additive operators H1,H2 ∈ O are equal if ∀x ∈ Σ,H1x = H2x.

Definition 5 (Operators for B-TWEGs): The operators found in B-TWEGs are generated from

a family of additive operators in O defined by : let x ∈ Σ be a counter,

τ ∈ Z, δτ : ∀x, (δτx)(t) = x(t− τ)

ν ∈ Z, γν : ∀x, (γνx)(t) = x(t) + ν

b ∈ N∗, βb : ∀x, (βbx)(t) = bx(t)/bc

m ∈ N∗, µm : ∀x, (µmx)(t) = x(t)×m.
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On the basis of these operators, we can remark that the unit operator e has several equivalent

expressions : e = γ0 = δ0 = µ1 = β1. Hereafter, operators γν , βb and µm (and their ⊕ and ◦

compositions) are considered as event operators (in short E-operators).
Proposition 1: The next formal equivalences can be stated

γnγn
′
= γn+n

′
δtδt

′
= δt+t

′
(1)

γn ⊕ γn
′
= γmin(n,n′) δt ⊕ δt

′
= δmax(t,t′) (2)

γ1δ1 = δ1γ1 µmδ
1 = δ1µm βbδ

1 = δ1βb (3)

µmγ
n = γm×nµm γnβb = βbγ

n×b (4)

Proof: For all counter x ∈ Σ we have (1) : ∀t, (x(t) + n′) + n = x(t) + (n′ + n) and

x(τ−t−t′) = x(τ−(t+t′)). (2) : ∀t,min(x(t)+n, x(t)+n′) = x(t)+min(n, n′). Since ∀t, x(t) ≥

x(t− 1) (x is monotone non-decreasing), then min(x(τ − t), x(τ − t′) = x(τ −max(t, t′)). (3)

: immediate (4): m× (x(t) + n) = m× x(t) +m× n and bx(t)/bc+ n = bx(t)+n×b
b
c.

Remark 3: We can note that equalities (2) are those expressed by the simplification rules in

Max
in Jγ, δK.

Definition 6 (Kleene star): The Kleene star of an operator in O is defined by : ∀H ∈ O,

H∗ =
⊕
i∈N

Hi = e⊕H⊕H2 ⊕ ...

with Hn = H ◦ ... ◦ H (n times).

Theorem 1: On a complete dioid D, the implicit equation x = ax ⊕ b has x = a∗b as least

solution.

Proof: see [1]

Theorem 2: For all operator H ∈ O, the next equalities are satisfied

H = H(δ−1)∗ = (δ−1)∗H = (γ1)∗H = H(γ1)∗.

Proof: Since a counter function x is monotone, then ∀t, x(t + 1) ≥ x(t) ⇐⇒ δ−1x � x.

For the same reason, ∀t, x(t) + 1 ≥ x(t) ⇐⇒ γx � x. Therefore, ∀x ∈ Σ,∀H ∈ O,

H(γ1)∗x = Hx = (γ1)∗Hx = H(δ−1)∗x = (δ−1)∗Hx.

C. Modeling of B-TWEGs

The B-TWEGs are analysed here with the earliest functioning rule (see Def. 3). We can model

a path of a B-TWEG by a product of operators in O, the synchronization of parallel paths by a
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sum ⊕ of operators, and the circuits by the Kleene star of some operators. Each elementary path

ti → pk → tj of a B-TWEG, where M0(pk) is the initial marking of place pk and τ = ∆(pk)

its holding time, can be described by the relation

xj = βw(pk,tj)γ
M0(pk)µw(ti,pk)δ

τxi, (5)

where xi (resp. xj) is the counter function associated to transition ti (resp. tj).

Example 3 (B-TWEG of Fig. 1): We can link the counter functions xi associated to the tran-

sitions ti of the B-TWEG depicted in Fig. 1 as follows. For the earliest functioning, we have

x3(t) = min(b2×x1(t)+1
3
c, bx2(t)+2

2
c)

= min(b2×x1(t)+1
3
c, bx2(t)

2
c+ 1)

Therefore, the counter functions are linked by

x3 = β3γ
1µ2δ

0x1 ⊕ β2γ2δ0x2
= β3γ

1µ2δ
0x1 ⊕ γ1β2δ0x2

with β3γ1µ2δ
0, γ1β2δ

0 ∈ O.

Example 4 (B-TWEG of Fig. 2): For the B-TWEG depicted in Fig. 2 and for the earliest

functioning, we have
x2(t) = min(bx1(t−2)

2
c, x2(t− 2) + 1)

x3(t) = min(x1(t)× 3, x3(t− 1) + 2)

Therefore, the counter functions are linked by x2 = β2δ
2x1 ⊕ γ1δ2x2 and thanks to Th. 1,

x2 = (γ1δ2)∗β2δ
2x1. Similarly, x3 = (γ2δ1)∗µ3x1. Finally, the counter function associated to the

output transition is x4 = µ3x2 ⊕ β2γ1δ1x3 = (µ3(γ
1δ2)∗β2δ

2 ⊕ β2γ1δ1(γ2δ1)∗µ3)x1. The input-

output behavior (or transfer function) of the B-TWEG is described by the rational expression

µ3(γ
1δ2)∗β2δ

2 ⊕ β2γ1δ1(γ2δ1)∗µ3 in O.

Theorem 3 (Transfer matrix of a B-TWEG): The behavior of a B-TWEG is described by a

matrix the elements of which belong to the rational closure of the set of operators OM,B =

{ε, e, γ1, δ1, µ2, ..., µM , β2, ..., βB} where B = maxiwo(pi) and M = maxiwi(pi) with pi ∈ P .

Proof: For each place pk we associate an operator µmγnβbδt (see (5)). Then, the different

graph compositions (parallel, serial, loop) are expressed by operations in {⊕, ◦, ∗}. Since a

B-TWEG is a finite graph, the rationality is straightforward.
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III. THREE DIMENSIONAL REPRESENTATION OF OPERATORS

According to (3) in Prop. 1, operator δ1 can commute with any simple or composed event

operator. For instance, δ1γ1δ2µ3β2δ
1 = γ1µ3β2δ

4 = δ4γ1µ3β2. Hence, in every finite composition

(product) of elementary operators in {δt, γn, µm, βb}, we can factorize the time-shift operator.

Therefore, the rational expressions on OM,B can be considered as formal power series in one

variable δ where coefficients are some event operators. Moreover, in the particular case of B-

TWEGs, the generated event operators have a canonical form.

A. Bi-dimensional representation of E-operators

1) Event operators: The set of operators generated by sum and composition of operators in

γn, µm and βb has a dioid structure.

Definition 7 (Dioid of E-operators E): We denote by E the dioid of operators obtained by

sums and compositions of operators in {ε, e, γn, µm, βb}, with n ∈ Z, and m, b ∈ N∗. The

elements of E are called E-operators hereafter.

Dioid E is a complete subdioid ofO (additive operators). Since the ◦ operation is not commutative

on E , checking the equality of two E-operators is not immediate. Nevertheless, the comparison of

E-operators is possible thanks to an associate map called operator function. Since an E-operator

w ∈ E induces modifications only on the event numbering (no time shift), we can describe its

behavior by the means of a counter-to-counter function denoted Fw : Z → Z, ki 7→ ko which

maps an input counter value to an output counter value. For an E-operator, this input-output

relation does not depend on time. An E-operator can be considered as an instantaneous system.

For instance, the γ2 E-operator is described by Fγ2(ki) = ki+2. This function can be interpreted

as follows : for the γ2 E-operator, if ki input events have occurred at date t, then ki + 2 output

events have occurred at this date. Similarly, E-operator µ2β3γ
1 is described by the function

Fµ2β3γ1(ki) = b(ki + 1)/3c × 2 (see Fig. 3). Function Fw gives an unambiguous representation

of E-operator w. Moreover, we have Fw1⊕w2 = min(Fw1 ,Fw2) and Fw1◦w2 = Fw1 ◦ Fw2 . On

the graphical representation, the axis are labeled by I-Count (Input Count) and O-Count (Output

Count).

The equality of E-operators can be checked thanks to the operator function : w1, w2 ∈ E , w1 =

w2 ⇐⇒ Fw1 = Fw2 . For instance, we can graphically check (see Fig. 4) the equality µ3β2γ
1⊕

γ2µ3β2 = β2γ
1µ3, even if Prop. 1 does not give all the formal equalities necessary to transform

July 17, 2012 DRAFT
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Figure 3. Representation of Fµ2β3γ1
and Fγ2β3µ4

the left hand part into the right hand part of the equality. In the right side of Fig. 4, we have

depicted Fβ2γ1µ3 with grey dots, and on the left side, Fµ3β2γ1 is depicted with black dots and

Fγ2µ3β2 with white dots.

Figure 4. Representation of Fµ3β2γ1⊕γ2µ3β2
= Fβ2γ1µ3

2) Graphical considerations: The operator function leads to a natural bi-dimensional graphical

representation of E-operators. Some features have to be kept in mind.

Partial order on E : the comparison of two E-operators is graphically interpreted as follows

w1 � w2 ⇐⇒ w1 ⊕ w2 = w2

⇐⇒ min(Fw1 ,Fw2) = Fw2

⇐⇒ epigraph(Fw1) ⊂ epigraph(Fw2)

Graphically, the sum of two E-operators amounts to do the union of their epigraphs8. On Fig. 3

and Fig. 4 the epigraph corresponds to the gray zone.

8epigraph(Fw1) , (ki, k) ∈ Z2 s.t. k ≥ Fw1(ki).
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Left and right product by γn : For w ∈ E ,

Fγnw ⇐⇒ Fw vertically shifted of n units to the top

Fwγn′ ⇐⇒ Fw horizontally shifted of n’ units to the left .

This last feature must be kept in mind when we consider ultimately periodic series that have a

3-D representation.

3) Periodic E-operators: The elementary E-operators γn, µm, βb are described by periodic9

operator functions, i.e. the associate operator function satisfies ∀ki ∈ Z,F(ki +n) = F(ki) +n′.

For E-operators γn, µm and βb we obtain

Fγn(0) = n,Fγn(ki + 1) = Fγn(ki) + 1

Fµm(0) = 0,Fµm(ki + 1) = Fµm(ki) +m

0 ≤ ki < b,Fβb(ki) = 0,Fβb(ki + b) = Fβb(ki) + 1

Operators γn and µm are 1-periodic, and operator βb is b-periodic. The set of periodic E-operators

is denoted Eper.

Definition 8 (Gain of w ∈ Eper): Let w ∈ Eper be a k-periodic E-operator s.t. Fw(ki + k) =

Fw(ki) + k′. The gain10 of w is defined as Γ(w) = k′/k. It is the average slope of Fw.

Proposition 2: Let w1, w2 ∈ Eper be two periodic E-operators. We have

w1w2 ∈ Eper and Γ(w1w2) = Γ(w1)× Γ(w2) (6)

if Γ(w1) = Γ(w2) then w1 ⊕ w2 ∈ Eper (7)

if Γ(w1) = Γ(w2) then w1 ∧ w2 ∈ Eper (8)

Proof: The periodic operator functions satisfy Fw1(ki + k1) = Fw1(ki) + k′1 and Fw2(ki +

k2) = Fw2(ki) + k′2. Hence, Fw2(ki + k1.k2) = Fw2(ki) + k1.k
′
2 and Fw1(Fw2(ki + k1.k2)) =

Fw1(Fw2(ki)+k1.k
′
2) = Fw1(Fw2(ki))+k′1.k

′
2 = Fw1w2(ki)+k′1.k

′
2. Therefore, operator w1w2 is a

periodic operator the gain of which is (k′1.k
′
2)/(k1.k2). For the sum of periodic operators with the

same gain, we can write both operators with the same periodicity: Fw1(ki + k1.k2) = Fw1(ki) +

k′1.k2 and Fw2(ki + k1.k2) = Fw2(ki) + k′2.k1 with k′1.k2 = k1.k
′
2 (since both operators have the

9More exactly, they are only quasi periodic
10A path of a B-TWEG the gain of which is g is described by an E-operator the gain of which is g too.
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same gain). Hence, the min of these two operator functions is also periodic. By symmetry, the

max (∧) of two periodic E-operators with the same gain is also periodic.

Remark 4: Due to the structural definition of the subclass of B-TWEGs (see Def. 2), the

parallel paths have the same gain. The periodicity of E-operators is therefore kept by the structural

compositions of Balanced TWEGs. Said differently, the E-operators generated by B-TWEGs are

periodic.

A k-periodic E-operator w ∈ Eper can be handled by the means of a finite representation :

a pair (k, k′) ∈ N2 describing the gain Γ(w) = k′/k and the values of Fw(i) for one period

i ∈ {0, ..., k − 1}. The canonical form of a periodic function is the one for which the period is

minimal.

Definition 9 (Canonical form of w ∈ Eper): A periodic E-operator w s.t. Γ(w) = k′/k has a

canonical form which is given by

w =
⊕i=N

i=1 γ
ni∇m|bγ

n′i

with ∇m|b , µmβb, m/b = k′/k and N, b are minimal.

For periodic operators of gain 1, we will also use the simplified notation ∇m , ∇m|m = µmβm.

A periodic E-operator can be canonically decomposed on a basis of ∇m|b operators, right and left

shifted by some γn operators. Operator ∇m|b is graphically represented by a staircase function

from Z to Z (see Fig. 3 for the representation of ∇2|3γ
1 = µ2β3γ

1).

As shown in the following example, the canonical form is not necessarily the most concise

one.

Example 5: To establish the canonical form of γ2β3µ4, we can graphically represent Fγ2β3µ4
(see Fig. 3). We have, Γ(γ2β3µ4) = 4

3
, Fγ2β3µ4(0) = 2,Fγ2β3µ4(1) = 3,Fγ2β3µ4(2) = 4,Fγ2β3µ4(ki+

3) = Fγ2β3µ4(ki)+4. The operator function Fγ2β3µ4 can be seen as a min combination Fγ2β3µ4 =

min(Fγ2µ4β3γ2 ,Fγ3µ4β3γ1 ,Fγ4µ4β3). Hence, we have the equality

γ2β3µ4 = γ2∇4|3γ
2 ⊕ γ3∇4|3γ

1 ⊕ γ4∇4|3.

Translated into a B-TWEG model, the previous equality means that the two B-TWEGs depicted

in Fig. 5 are equivalent from an input-output point of view : the same input sequence will

produce the same output sequence11.

11This assertion is true only for the earliest functioning.
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Figure 5. Input-output equivalence for E-operators : γ2β3µ4 = γ2∇4|3γ
2 ⊕ γ3∇4|3γ

1 ⊕ γ4∇4|3.

Remark 5: We can remark that, even if the canonical form is not necessarily the most compact,

sometimes the periodicity may also be reduced by ⊕ combination. For instance, we let the reader

verifying that the following equality is satisfied : γµ2β2γ ⊕ γ2µ2β2 = γ∇2γ ⊕ γ2∇2 = γ.

Remark 6: If Γ(w1) 6= Γ(w2), then w1 ⊕ w2 is not necessarily a periodic operator. Said

differently, Eper is not a subdioid of E .

B. Dioid EJδK

The previous subsection shows that E-operators generated by B-TWEGs are periodic and have

a canonical form. Moreover, all the E-operators commute with the time-shift operator δτ (see

Prop. 1). Therefore, all the operators generated by a B-TWEG can be described by the means

of formal series in one variable δ denoted
⊕

iwiδ
ti , where coefficients wi are taken in Eper and

the exponents are in Z.

1) Three Dimensional representation of operators in B-TWEGs: By analogy with [4], we

can describe discrete B-TWEGs as rational combination of periodic E-operators and time-shift

operators.

Definition 10 (Dioid EJδK): The set of formal power series in one variable δ with exponents

in Z and coefficients in the non commutative complete dioid E , with the simplification rule:

∀s ∈ EJδK,

s = s(δ−1)∗ = (δ−1)∗s, (9)

is a non commutative complete dioid denoted EJδK. A series s ∈ EJδK is written s =
⊕

t∈Z s(t)δ
t
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with s(t) ∈ E . For two series s1, s2 ∈ EJδK :

(s1 ⊕ s2)(t) = s1(t)⊕ s2(t)

(s1 ⊗ s2)(t) =
⊕

τ+τ ′=t s1(τ) ◦ s2(τ ′)
Adding the simplification rule (9) to formal series in δ allows us to assimilate the variable δ in

dioid EJδK to the time-shift operator δ1 : Σ → Σ, δ1x(t) = x(t − 1) in dioid O. Therefore, in

dioid EJδK, all the equalities given in Th. 2 are satisfied.

The series of EJδK have a graphical representation which consists in describing for each t ∈ Z

the value of s(t) ∈ E . The convention adopted here is to represent s in a 3D basis, where t is

described along the z-axis and coefficients s(t) ∈ E are represented by their operator function

in the x× y basis (more exactly, by the epigraph of the operator function). Moreover, according

to Th. 2, a series is invariant by a product with (δ−1)∗ and by (γ1)∗. Therefore, if a piece

of information of a series s is depicted by a point p = (x, y, z) ∈ Z3, then all the points

p′ = (x′, y′, z′) in the cone described by x′ ≤ x, y′ ≥ y and z′ ≤ z are dominated by p. This

domination must be understood in the sense that the information represented by each point of the

cone is yet contained in those represented by the vertex p. Therefore, the graphical representation

of a series s ∈ EJδK may be seen as an infinite union of cones. We will see later on that the

protruding vertices constitute the essential information that we must keep to represent a series

in EJδK.

From an equivalent point of view, each monomial s(t)δt of a series s generates a volume

described by s(t)δt(δ−1)∗ = s(t)δt ⊕ s(t)δt−1 ⊕ .... For this reason, the 3D representation of a

series in EJδK is a volume which also looks like a flight of stairs.

Example 6: The simple series (with only one term) γ2β3µ4δ
5 ∈ EJδK is depicted on Fig. 6.

The graphical representation of Fγ2β3µ4 (see Fig. 3) is depicted in a 3D basis at height 5 (value of

the time-shit operator). In order to improve the readability of the picture, the 3D representation

is truncated to the positive values, i.e. to (x, y, z) ∈ N3.

Remark 7 (Simplifications): The equivalences given in Th. 2 lead to some rules to simplify

series in EJδK. In the 3D domain, two operators are equal if they have the same representation.

Said differently, by considering a series s =
⊕

s(t)δt of EJδK, if a term s(τ)δτ is not visible

in the 3D representation of s, then it means that it can be removed from s. For instance, let us

consider the series α = γ2∇2δ
2 ⊕ γ1∇2γ

1δ5 ⊕ γ2δ4. The representation of γ2δ4 is not visible

since it is hidden by those of γ1∇2γ
1δ5 (see Fig. 7). It means that the next simplification applies
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Figure 6. 3D representation of γ2β3µ4δ
5

α = γ2∇2δ
2⊕ γ1∇2γ

1δ5⊕ γ2δ4 = γ2∇2δ
2⊕ γ1∇2γ

1δ5. Finally, the main pieces of information

in a series of EJδK are those coded by the protruding vertices (depicted by some balls in the

figures).

Figure 7. Simplifications in EJδK

Due to the specific structure of B-TWEGs, we do not consider the whole set of series of EJδK

but only the series the coefficients of which are periodic E-operators. This subset is denoted

EperJδK.

Definition 11 (Balanced series in EperJδK): A series s =
⊕

s(t)δt ∈ EperJδK is said balanced

if all its coefficients s(t) ∈ Eper have the same gain. The gain of s is denoted Γ(s) and corresponds

to the gain of all its coefficients. A balanced series is said conservative if Γ(s) = 1.
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2) Polynomials in EperJδK: The series that can be described by finite sums
⊕T

i=1 s(ti)δ
ti are

called polynomials. Balanced polynomials have a canonical form. According to remark 7, it

consists in only keeping for each monomial wiδti the information that is not yet contained in

monomials wjδtj such that tj > ti. As said in remark 7, it amounts to keeping protruding vertices.

Definition 12: Let us consider a balanced polynomial p =
⊕i=T

i=1 wiδ
ti ∈ EperJδK with wi ∈

Eper. The canonical form of p is such that ∀i, ti < ti+1 and

wi =
∧
w

{w ⊕
⊕
j>i

wj =
⊕
k≥i

wk} (10)

Expression (10) conveys the fact that we only want to keep the essential information, i.e. coef-

ficient wi only keeps the information not yet contained in the coefficients wj with j > i.

Example 7: The canonical form is obtained thanks to a backward analysis starting from the

monomial with the greatest exponent. For polynomial p = δ2 ⊕ (∇3γ
2 ⊕ γ2∇3)δ

4 ⊕ ∇3γ
2δ7

depicted on Fig. 8, we obtain the next simplifications. The monomial ∇3γ
2δ4 is not visible

( since ∇3γ
2δ4 � ∇3γ

2δ7), so it can be removed from p. Then, the monomial δ2 has a non

canonical expanded form δ2 = (γ2∇3 ⊕ γ∇3γ ⊕∇3γ
2)δ2. The only part of the dynamic of δ2

which is not yet described by γ2∇3δ
4 ⊕∇3γ

2δ7 is described by the operator γ∇3γδ
2. Finally,

we have
p = δ2 ⊕ (∇3γ

2 ⊕ γ2∇3)δ
4 ⊕∇3γ

2δ7

= γ∇3γδ
2 ⊕ γ2∇3δ

4 ⊕∇3γ
2δ7

Figure 8. Polynomial γ∇3γδ
2 ⊕ γ2∇3δ

4 ⊕∇3γ
2δ7
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IV. B-TWEGS ARE DESCRIBED BY ULTIMATELY PERIODIC SERIES OF EperJδK

In this section, we show that the behavior of a B-TWEG is described by ultimately periodic

and balanced series of EperJδK. This result has to be compared to the well known result for

ordinary Timed Event Graphs : the entries of the transfer matrix of a TEG are some ultimately

periodic series ofMax
in Jγ, δK. For TEGs, operations (and algorithms) on ultimately periodic series

of Max
in Jγ, δK have already been studied in [5] [1] [9] [10] [8] [13].

Since we consider B-TWEGs, only balanced series of EperJδK are considered hereafter.

Definition 13 (Ultimately periodic series of EperJδK): A balanced series s ∈ EperJδK is said

ultimately periodic if it can be written as s = p ⊕ q(γνδτ )∗, where p and q are balanced

polynomials such that Γ(p) = Γ(q),

p =
⊕
i=1..n

wiδ
ti q =

⊕
j=1..N

Wjδ
Tj ,

wi,Wj ∈ Eper.

The property of periodicity has a natural graphical interpretation. For the 3D representation of s,

the representation of q(γνδτ )∗ = q⊕qγνδτ ⊕qγ2νδ2τ ⊕ ... is a periodic staircase. The polynomial

q is depicted as a group of steps that is repeated periodically (we have the same steps but shifted

by τ units to the top and by ν units toward the decreasing I-count values).

Example 8: Fig 9 gives the graphical description of s = γ2∇3|2δ
3⊕γ4∇3|2γ

1δ4⊕[(γ6∇3|2γ
1⊕

γ7∇3|2)δ
6⊕γ7∇3|2γ

1δ7](γ4δ3)∗. From the T-shift value equals to 6, we have the same two-steps

repeated each 3 units to the top but shifted by 4 units toward the decreasing I-count values.

Remark 8: The periodic form is not unique. For instance, s = p⊕ q(γνδτ )∗ and s = p⊕ q ⊕

qγνδτ (γνδτ )∗ are two different ultimately periodic forms of the same series.

Remark 9: Balanced polynomials in EperJδK can always be considered as ultimately periodic

series since (γ1δ0)∗ = e.

Even if the product of EJδK is not commutative, an ultimately periodic balanced series of

EperJδK has two periodic forms.

Proposition 3 (Left/Right periodicity): An ultimately (right) periodic series s = p⊕ q(γνδτ )∗

in EperJδK has also an ultimately left periodic form s = p ⊕ (γν
′
δτ
′
)∗q′ where q′ is a balanced

polynomial. The left (resp. right) asymptotic slope is defined as σl(s) = τ ′/ν ′ (resp. σr(s) =

τ/ν), and the next equality is satisfied Γ(s) = σr(s)/σl(s).
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Figure 9. Ultimately periodic series in EperJδK

Proof: Let Γ(s) = k′/k be the gain of s. The coefficients of polynomial q =
⊕

wjδ
tj

in their canonical form are given by wj =
⊕

i γ
nij∇mj |bjγ

n′ij with k′/k = mj/bj. Let us
remark that thanks to (4), ∇mj |bjγ

bj = µmjβbjγ
bj = µmjγ

1βbj = γmjµmjβbj = γmj∇mj |bj .
More generally, ∇mj |bjγ

αbj = γαmj∇mj |bj . Therefore, if we take B = lcm(bj) and M = B.k′/k,
then ∀i, j, γnij∇mj |bjγ

n′ijγB = γMγnij∇mj |bjγ
n′ij , and consequently ∀i, wiγB = γMwi. Since we

can develop (γνδτ )∗ = (e⊕ γνδτ ⊕ ...⊕ γ(B−1)νδ(B−1)τ )(γBνδBτ )∗, then

q(γνδτ )∗ = q(e⊕ ...⊕ γ(B−1)νδ(B−1)τ )(γBνδBτ )∗

= q(γBνδBτ )∗(e⊕ ...⊕ γ(B−1)νδ(B−1)τ )

= (γMνδBτ )∗q(e⊕ ...⊕ γ(B−1)νδ(B−1)τ )

= (γMνδBτ )∗q′

Finally, σr(s) = τ/ν and σl(s) = (Bτ)/(Mν) and σr(s)/σl(s) = Γ(s) = k′/k.

Example 9: For the series depicted on Fig. 9, a left and a right forms are given by

s = γ2∇3|2δ
3 ⊕ γ4∇3|2γ

1δ4⊕

[(γ6∇3|2γ
1 ⊕ γ7∇3|2)δ

6 ⊕ γ7∇3|2γ
1δ7](γ4δ3)∗

= γ2∇3|2δ
3 ⊕ γ4∇3|2γ

1δ4⊕

(γ6δ3)∗[(γ6∇3|2γ
1 ⊕ γ7∇3|2)δ

6 ⊕ γ7∇3|2γ
1δ7].

The left and right slopes are σl(s) = 3/6 and σr(s) = 3/4. They are respectively the asymptotic

slope of the 3D representation in the y × z direction (see the plan x = 0 in Fig. 9) and in the

x× z direction.
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As for series inMax
in Jγ, δK, the ultimately periodic series of EperJδK have different expressions.

But, we can provide two canonical forms, left and right periodic, where the periodicity is minimal.

Definition 14 (Canonical forms): An ultimately periodic series of EperJδK has a left and a

right canonical forms for which the degree of p is minimal and the value of ν (resp. ν ′) is

minimal.

The main result concerning the class of B-TWEGs is that they structurally keep the ultimate

periodicity property. To obtain this result, one has to analyze how the sum, the product and the

Kleene star operations behave on ultimately periodic series in EperJδK.

First, we recall a result given in [5, Lemma 6] and detailed in [9, Lemma 4.1.4]. This result

is stated in Max
in Jγ, δK and is still valid in EperJδK since Max

in Jγ, δK is a subdioid.

Lemma 1: For given ν, τ, ν ′, τ ′, α, T, α′, T ′ some positive integers, if τ/ν > τ ′/ν ′ then the

periodic series γαδT (γνδτ )∗ is asymptotically greater than γα′δT ′(γν′δτ ′)∗, say

∃N : ∀n′ ≥ N, ∃n s.t.

γαδT (γνδτ )n � γα
′
δT
′
(γν

′
δτ
′
)n
′
.

Proposition 4: Let us consider two ultimately right periodic series of EperJδK denoted s1 =

p1 ⊕ q1(γν1δτ1)∗ and s2 = p2 ⊕ q2(γν2δτ2)∗.

(a) If Γ(s1) = Γ(s2) then s1 ⊕ s2 is an ultimately periodic series of EperJδK such that

σr(s1 ⊕ s2) = max(σr(s1), σr(s2))

σl(s1 ⊕ s2) = max(σl(s1), σl(s2))

(b) s1 ⊗ s2 is an ultimately periodic series s.t. Γ(s1 ⊗ s2) = Γ(s1)× Γ(s2)

σr(s1 ⊗ s2) = max(σr(s2),Γ(s2)× σr(s1))

σl(s1 ⊗ s2) = max(σl(s1), σl(s2)/Γ(s1))

Proof: These results come from a direct adaptation of results given in [9] for periodic series

in Max
in Jγ, δK. We only give the main ideas.

Outline of Proof for (a) : according to Lemma 1, if (τ1/ν1) > (τ2/ν2), then the simple periodic

series ∇m|bγ
α1δT1(γν1δτ1)∗ is asymptotically greater than ∇m|bγ

α2δT2(γν2δτ2)∗. We can choose

m and b such that m/b = Γ(s1) = Γ(s2) and some integers α1, T1, α2, T2 such that we obtain

two approximations of q1(γν1δτ1)∗ and q2(γν2δτ2)∗ satisfying

∇m|bγ
α1δT1(γν1δτ1)∗ � q1(γ

ν1δτ1)∗

∇m|bγ
α2δT2(γν2δτ2)∗ � q2(γ

ν2δτ2)∗
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By applying Lemma 1, we obtain that q1(γν1δτ1)∗ is asymptotically greater than q2(γ
ν2δτ2)∗.

Therefore, series s1 is asymptotically greater than s2, and then s1⊕s2 is asymptotically periodic

with the periodicity of s1. When (τ1/ν1) = (τ2/ν2), s1 ⊕ s2 is also asymptotically periodic.

Outline of Proof for (b) : We can write s1 and s2 with their right and left forms :

s1 ⊗ s2 = (p1 ⊕ q1(γν1δτ1)∗)

⊗(p2 ⊕ (γν
′
2δτ

′
2)∗q′2)

= p1p2 ⊕ p1(γν
′
2δτ

′
2)∗q′2

⊕q1(γν1δτ1)∗p2
⊕q1(γν1δτ1)∗(γν

′
2δτ

′
2)∗q′2

Series p1(γν
′
2δτ

′
2)∗q′2 and q1(γν1δτ1)∗p2 are finite sums of periodic series, due to (a), the result is

periodic. The last term (γν1δτ1)∗(γν
′
2δτ

′
2)∗ is also a ultimately periodic series in Max

in Jγ, δK (see

[9]), and therefore in EJδK too.

Let us now focus on the behavior of circuits in B-TWEGs. They are algebraically described

by Kleene star operations on series of EperJδK.

Proposition 5: Let p =
⊕i=N

i=1 wiδ
ti be a conservative balanced polynomial (∀i,Γ(wi) = 1).

Then, series p∗ is a conservative and ultimately periodic series of EperJδK.

Proof: The complete proof is detailed in [6].

Proposition 6: Let s = p⊕ q(γνδτ )∗ be a conservative (Γ(s) = Γ(p) = Γ(q) = 1) ultimately

periodic series in EperJδK. Then s∗ is a conservative ultimately periodic series.

Proof: We can write p =
⊕

i γ
ni∇Mγ

n′iδti and q =
⊕

j γ
Nj∇Mγ

N ′jδTj . If we take r =

γMνδMτ , then monomial r commutes with p and q, i.e. pr = rp and qr = rq. First, we can write

(γνδτ )∗ =
(
e⊕ γνδτ ⊕ γ2νδ2τ ⊕ ...⊕ γ(M−1)νδ(M−1)τ

)
r∗.

Then, series s can be written s = p⊕ q(e⊕γνδτ ⊕ ...⊕γ(M−1)νδ(M−1)τ )r∗ = p⊕ q′r∗. Moreover,

r also commutes with q′, i.e. q′r = rq′. Since, (a⊕ b)∗ = a∗(ba∗)∗, therefore s∗ = (p⊕ q′r∗)∗ =

p∗(q′r∗p∗)∗. Since rp = pr, then r∗p∗ = (r ⊕ p)∗ (see [5, Lemma3 ]). Finally, one also have

(ab∗)∗ = e⊕ a(a⊕ b)∗, therefore, we can write s∗ = p∗(q′(r ⊕ p)∗)∗ = p∗(e⊕ q′(q′ ⊕ r ⊕ p)∗).

Since (q′⊕ r⊕ p) is a conservative polynomial, then (q′⊕ r⊕ p)∗ is a periodic series (see Prop.

5). Since the product of periodic series is periodic too, the Kleene star of a conservative and

ultimately periodic series is an ultimately periodic series.
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Proposition 7 (Transfer of a B-TWEG): The transfer matrix of a B-TWEG is composed of

ultimately periodic series of EperJδK.

Proof: We recall first that all the elementary operators γn, δt, µm and βb can be considered

as ultimately periodic series. Then, due to the specific structure of B-TWEGs, the modeling by

series in EperJδK is such that:

• the sum (⊕) of series in EperJδK are necessarily done on series with the same gain (balanced

property). The periodicity is kept by the balanced synchronization (see Prop. 4)

• the product of ultimately periodic series is done when we the serial composition of systems

arises, and the product keeps the periodicity property (see Prop. 4)

• the Kleene star is done only on conservative ultimately periodic series since the loops of a

B-TWEG are neutral. (see Prop. 6)

Remark 10 (Liveness): The liveness of a B-TWEG depends on the initial marking of the

circuits. If a B-TWEG is not alive, then the transfer relation computed in EperJδK will contain

some degenerate periodic series such as
⊕

iwiδ
ti ⊕W (δ1)∗ = p ⊕W (δ1)∗, where wi and W

are periodic E-operators in Eper. The last monomial W (δ1)∗, that can be considered as Wδ+∞,

describes the situation where, after a finite number of output events, the B-TWEG is definitely

blocked, and the system can not release output event anymore : some events are infinitely delayed.

Prop. 7 considers the cases of ultimately blocked B-TWEGs as some degenerate ultimately

periodic cases.

V. CONTROL OF B-TWEGS

The input-output model obtained in the previous section for B-TWEGs allows us to consider

some model matching control problems such as the ones studied in [7] [20] [17] [15]. We

only need to express the residuation of the product in EperJδK. The first step is to express the

residuation of the product in Eper.

A. Residuation in Eper

On a complete dioid, the product is not invertible. But the theory of residuation developped

in [3], and applied to idempotent semirings in [1], can be used to find optimal solutions to some

inequalities. On a complete dioid, mappings La : x 7→ ax and Ra : x 7→ xa are residuated. It
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means that ∀b, La(x) � b and Ra(x) � b have maximal solutions, that are respectively denoted

L]a(b) = a◦\b =
⊕
{x|ax � b} and Ra](b) = b◦/a =

⊕
{x|xa � b}. Mappings L]a and R]

a are said

residual mappings of La et Ra. When the dioid product is commutative, then L]a = R]
a.

Theorem 4 ([3] [1]): On a complete dioid D,

abx � c ⇐⇒ x � b◦\a◦\c (11)

xba � c ⇐⇒ x � c◦/a◦/b (12)

(a⊕ b)x � c ⇐⇒ a◦\c ∧ b◦\c (13)

x(a⊕ b) � c ⇐⇒ c◦/a ∧ c◦/b (14)

The dioid of E-operators denoted E is complete. It is then possible to define the residual

mappings of La and Ra on E . More precisely, concerning the elementary operators of E , we

obtain the following results.

Proposition 8: Let us consider w ∈ E an E-operator. We have :

γn◦\w = γ−nw w◦/γn = wγ−n (15)

µm◦\w = βmγ
m−1w w◦/µm = wβm (16)

βb◦\w = µbw w◦/βb = wγb−1µb (17)

Proof: Since operator γn is invertible (γnγ−n = γ−nγn = e), then we obtain (15). For (16),

the right product by µm is invertible since βmµm = e. For the left product, the residual mapping

satisfies

µm◦\w =
⊕
{v ∈ E|µmv � w}.

Let us remind that w1, w2 ∈ E , then w1 � w2 ⇐⇒ Fw1 ≥ Fw2 . Therefore, we also can express

the residual mapping as
µm◦\w =

⊕
{v ∈ E|Fµmv ≥ Fw}

=
⊕
{v ∈ E|m.Fv ≥ Fw}

=
⊕
{v ∈ E|Fv ≥ Fw/m}

Therefore, the operator function of µm◦\w satisfies

∀k ∈ Z, Fµm◦\w(k) ≥ Fw(k)/m
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Since an operator function is defined on Z, it is equivalent to, ∀k ∈ Z

Fµm◦\w(k) = dFw(k)/me

= b(Fw(k) +m− 1)/mc

It comes that µm◦\w = βmγ
m−1w.

For (17), we know that the left product by βb is invertible. For the right product, we have

w◦/βb =
⊕
{v ∈ E|Fvβb ≥ Fw}

=
⊕
{v ∈ E|∀k ∈ Z,Fv(bk/bc) ≥ Fw(k)}.

Therefore, the operator function of w◦/βb has to satisfy the following constraints

0 ≤ k ≤ b− 1, Fw◦/βb(0) ≥ Fw(k)

b ≤ k ≤ 2b− 1, Fw◦/βb(1) ≥ Fw(k)

2b ≤ k ≤ 3b− 1, Fw◦/βb(2) ≥ Fw(k)

...

Since Fw is a not decreasing function, Fw◦/βb satisfies

Fw◦/βb(0) = Fw(b− 1),

Fw◦/βb(1) = Fw(2b− 1)

...

i.e. Fw◦/βb(k) = Fw(b.k + (b− 1)), which amounts to w◦/βb = wγb−1µb.

Example 10: Let us develop the computation of an example : (γ1µ2)◦\(γ2β3µ4) ∈ E . By

applying results from Prop. 8 and from Prop. 1, we obtain

(γ1µ2)◦\(γ2β3µ4) = µ2◦\(γ1◦\(γ2β3µ4))

= µ2◦\(γ−1(γ2β3µ4))

= β2γ
1(γ1β3µ4) = β2γ

2β3µ4

= γ1β2β3µ4 = γ1β6µ4 = γ1β3µ2

Let us note that the canonical form of γ1β3µ2 is γ1µ2β3γ
1 ⊕ γ2µ2β3 = γ1∇2|3γ

1 ⊕ γ2∇2|3.

Since residuation is not an exact inversion, we can check here that (γ1µ2)[(γ
1µ2)◦\(γ2β3µ4)] 6=

(γ2β3µ4). Indeed, we obtain

(γ1µ2)[(γ
1µ2)◦\(γ2β3µ4)] = (γ1µ2)[γ

1β3µ2]

= γ3∇4|3γ
1 ⊕ γ5∇4|3,

whereas the canonical form of γ2β3µ4 is γ2∇4|3γ
2 ⊕ γ3∇4|3γ

1 ⊕ γ4∇4|3.
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Proposition 9: Let us consider w1, w2 ∈ Eper. Then w2◦\w1 and w1◦/w2 are also periodic E-

operators such that Γ(w2◦\w1) = Γ(w1)/Γ(w2) and Γ(w1◦/w2) = Γ(w1)/Γ(w2).

Proof: Thanks to th. 4 and Prop. 8, and since we can write periodic E-operators as finite

sums, w1 =
⊕

i γ
ni∇m|bγ

n′i and w2 =
⊕

j γ
nj∇M |Bγ

n′j , then

w2◦\w1 = [
⊕

j γ
nj∇M |Bγ

n′j ]◦\[
⊕

i γ
ni∇m|bγ

n′i ]

=
∧
j

(
[γnj∇M |Bγ

n′j ]◦\[
⊕

γni∇m|bγ
n′i ]
)

=
∧
j

(⊕
i γ
−n′jµBβMγ

M−1γ−njγni∇m|bγ
n′i

)
It is then a finite inf of periodic E-operators, that is also a periodic E-operator thanks to Prop.

2.

B. Residuation in EperJδK

Thanks to (13) and (14), we can express the residuation of the product of balanced polynomials.

Let p1 =
⊕

w1iδ
t1i and p2 =

⊕
w2jδ

t2j be two balanced polynomials in EperJδK. Then, we can

write p2◦\p1 and p1◦/p2 as

p2◦\p1 = (
⊕

j w2jδ
t2j )◦\[

⊕
iw1iδ

t1i ]

=
∧
j

(
(w2jδ

t2j )◦\[
⊕

iw1iδ
t1i ]
)

=
∧
j[
⊕

i(w2j
◦\w1i)δ

t1i−t2j ]

and

p1◦/p2 =
∧
j[
⊕

i(w1i
◦/w2j)δ

t1i−t2j ] .

The computation of operations ◦\ and ◦/ on polynomials lies on the residuation of coefficients

in Eper, and it is then equivalent to an infimum operation on some polynomials in EperJδK. When

we extend the computation of operations ◦\ and ◦/ to ultimately periodic series of EperJδK, we

obtain the next result that we can not show here. As for polynomials, the residuation of two

periodic series is equivalent to compute an infimum of a finite set of ultimately periodic series.

Assertion 1: Let s1 and s2 be two ultimately periodic series of EperJδK. If σr(s1) ≥ σr(s2)

then s1◦/s2 and s2◦\s1 are ultimately periodic series of EperJδK such that

σr(s1◦/s2) = σr(s1)

Γ(s1◦/s2) = Γ(s1)/Γ(s2)

σr(s2◦\s1) = σr(s1)

Γ(s2◦\s1) = Γ(s1)/Γ(s2)

If σr(s1) < σr(s2) then s1◦/s2 = s2◦\s1 = ε.
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C. Example

We will apply our work to obtain an output feedback control for the B-TWEG of Fig. 10.

First, we state the transfer relation of Fig. 2 in its canonical form. In example 4 we obtained

x4 = µ3(γ
1δ2)∗β2δ

2x1 ⊕ β2γ1δ1(γ2δ1)∗µ3x1, i.e. x4 = Hx1. The gain of series H is clearly the

gain of all paths from t1 to t4, Γ(H) = 3/2. Series H is depicted in its 3D representation in

Fig. 10. The left and the right canonical forms of H are given below (where coefficients are

also described in their canonical form in Eper)

H = p⊕ q(γ2δ3)∗ = p⊕ (γ1δ1)∗q′

with
p = ∇3|2δ

2 ⊕ γ2∇3|2γ
1δ3 ⊕ γ3∇3|2δ

4

⊕γ4∇3|2γ
1δ5 ⊕ (γ5∇3|2γ

1 ⊕ γ6∇3|2)δ
6

q = [(γ6∇3|2γ
1 ⊕ γ8∇3|2)δ

7

⊕(γ7∇3|2γ
1 ⊕ γ9∇3|2)δ

8]

q′ = [(γ6∇3|2γ
1 ⊕ γ8∇3|2)δ

7]

The left and the right slopes are given by σr(H) = 3/2 and σl(H) = 1/1.

Figure 10. Transfer series of the B-TWEG of Fig. 2

Thanks to results obtained in [7], we can compute the greatest neutral output feedback for the

B-TWEG described by the transfer matrix H . From a practical point of view, it is the slowest
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controller that we can add between the output and the input so that the closed loop system

has the same behavior as the system alone. The benefit from this controller is to reduce the

internal stocks as much as possible. By knowing H , this controller is expressed by (see [7])

F̂ = (H◦\H)◦/H . For the B-TWEG of Fig. 2, the computation gives

F̂ = γ3∇2|3γ
1δ0 ⊕ γ4∇2|3δ

2 ⊕ (γ2δ3)∗[γ6∇2|3δ
4]

= γ3∇2|3γ
1δ0 ⊕ γ4∇2|3δ

2 ⊕ [γ6∇2|3δ
4](γ3δ3)∗.

The controller is described by an ultimately periodic series the slopes of which are σr(F̂ ) = 3/3

and σl(F̂ ) = 3/2. We obtain naturally that Γ(F̂ ) = 2/3 is equal to 1/Γ(H) : the supplementary

circuit due to the feedback loop is neutral, and the closed-loop system is still a B-TWEG. The

transfer series of F̂ is described in Fig. 11. Controller F̂ also can be described by a B-TWEG

which is depicted in Fig. 12. The grey zone corresponds to the realization of controller F̂ .

Figure 11. Transfer series of the optimal neutral output feedback for the B-TWEG of Fig. 2

VI. CONCLUSION

This work presents a modeling approach for the class of Balanced Timed and Weighted

Event Graphs (B-TWEGs) in a dioid of additive operators. Four elementary operators denoted

γn, δt, µm and βb are necessary to describe the dynamical phenomena modeled by a B-TWEG.

The input-output behavior of B-TWEGs can be embedded into some rational formal series in a

dioid denoted EJδK. Each formal series has a natural three dimensional graphical representation

which has an ultimate periodicity property. Since a B-TWEG is completely charaterized by a
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Figure 12. Greatest neutral output feedback

finite series (or a matrix for multivariate systems), some model reference control problems can

be stated and solved in that framework. This work provides a natural extension of the max-plus

theory for Timed Event Graphs to a class of weighted TEGs.
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