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The class of Timed Event Graphs (TEGs) has widely been studied for the last 30 years thanks to an algebraic approach known as the theory of Max-Plus linear systems. In particular, the modeling of TEGs via formal power series has led to input-output descriptions for which some model matching control problems have been solved. In the context of manufacturing applications, the controllers obtained by these approaches have the effect of regulating material flows in order to decrease internal congestions and intermediate stocks. The objective of this work is to extend the class of systems for which a similar control synthesis is possible. To this end, we define first a subclass of timed Petri nets that we call Balanced Timed and Weighted Event Graphs (B-TWEGs). B-TWEGs can model synchronisation and delays (B-TWEGs contains TEGs) and can also describe some dynamic phenomena such as batching and event duplications. Their behavior is described by some rational compositions of four elementary operators γ n , δ t , µ m and β b on a dioid of formal power series. Then, we show that the series associated to B-TWEGs have a three dimensional graphical representation with a property of ultimate periodicity. This modeling allows us to show that B-TWEGs can be handled thanks to finite and canonical forms.

Therefore, the existing results on control synthesis, in particular the model matching control problem, have a natural application in that framework.

I. INTRODUCTION

Since the beginning of the 80s, it has been known that the class of Timed Event Graphs (TEGs) can be studied thanks to linear models in some specific algebraic structures called dioids (or idempotent semirings) [START_REF] Moller | Théorie algébrique des Systèmes à Événements Discrets[END_REF][5] [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF][9] [START_REF] Heidergott | Max Plus at Work -Modelling and Analysis of Synchronized Systems -A Course on Max-Plus Algebra and Its Applications[END_REF]. Among different representations, a specific approach lies on an operatorial description of such systems. By denoting Σ the semimodule of counter functions 1 , one can describe the behavior of a TEG by combining two shift operators (see [START_REF] Cohen | Algebraic Tools for the Performance Evaluation of Discrete Event Systems[END_REF]) denoted respectively γ, δ : Σ → Σ γ : (γx)(t) = x(t) + 1 δ : (δx)(t) = x(t -1)

The input-output behavior of a TEG is then described by a matrix the entries of which are some elements of the rational closure2 of the set {ε, e, γ, δ}, i.e. the transfer matrix of a TEG can be written with a finite composition of these operators. Moreover, due to some fundamental equivalences such as γ n ⊕ γ n = γ min(n,n ) and δ t ⊕ δ t = δ max(t,t ) , a rational expression has a canonical form which is ultimately periodic [START_REF] Gaubert | Théorie des systèmes linéaires dans les dioïdes[END_REF][18] [START_REF] Gaubert | Rational series over dioids and discrete event systems[END_REF]. In other words, we can manipulate TEG transfer as periodic formal series in two variables γ and δ, with some simplification rules, within a dioid called M ax in γ, δ [START_REF] Cohen | Algebraic Tools for the Performance Evaluation of Discrete Event Systems[END_REF] [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF]. On the one hand, this fact has made it possible to elaborate software tools to compute the transfer matrix of any TEG [START_REF] Mc Gettrick | Max-plus toolbox 2[END_REF] [START_REF] Cottenceau | Data processing tool for calculation in dioid[END_REF]. On the other hand, such an input-output model is well suited to address some model matching control problems [START_REF] Cottenceau | Model Reference Control for Timed Event Graphs in Dioids[END_REF] [20] [START_REF] Houssin | Control of (max,+)-linear systems minimizing delays[END_REF] [START_REF] Hardouin | Observer Design for (max,+) Linear Systems[END_REF]. By analogy with the classical control theory, controllers are computed in order to achieve, for the closed-loop system, some prescribed performances. In a manufacturing production context, the controller describes how to manage the input of raw parts into the production line in order to achieve some performance. The controllers obtained by this approach lead to improve the internal flows of products by decreasing internal stocks.

The main objective of this work is to study a class of systems greater than those described by TEGs, but with similar algebraic tools. We focus here on the class of Timed and Weighted Event Graphs (TWEGs). They correspond to TEGs the arcs of which are valued by some positive integers. The arcs valuations express how many tokens the firing events consume/produce in the graph. The modeling power is greatly increased by the introduction of these valuations since in addition to synchronisations and delays, TWEGs can also describe batch constitution (several successive input events are necessary to release one output event) and duplication (one input event instantaneously produces several output events). These situations are usual in manufacturing systems (lot making, batch splitting) and cannot be accurately modeled with ordinary TEGs.

In literature, TWEGs have been studied both as a modeling tool for manufacturing systems and as a model for computation in the field of concurrent applications. In both domain, TWEGs can describe the scheduling of tasks with precedence constraints and also parallel executions.

The analysis and the optimization problems associated to TWEGs aim at checking or enforcing the liveness (can an event be executed an infinite number of times in the model), and also at evaluating the throughput (number of events/unit of time) of the system, in particular for cyclic scheduling (see [START_REF] Marchetti | Complexity results for weighted timed event graphs[END_REF] [START_REF] Benabid-Najjar | Periodic schedules for bounded timed weighted event graphs[END_REF]). When applied to concurrent programming, real-time and embedded systems, an equivalent graphical model called Synchronous Data-Flow (SDF) is generally used (see [START_REF] Lee | Synchronous data flow[END_REF][24] [START_REF] Geilen | Synchronous data flow scenarios[END_REF]).

In order to adapt the control problems described in [START_REF] Cottenceau | Model Reference Control for Timed Event Graphs in Dioids[END_REF] and [START_REF] Maia | Optimal Closed-Loop Control for Timed Event Graphs in Dioid[END_REF] to the context of TWEGs, an input-output representation (transfer function) is necessary. The model proposed here seems to be well adapted to that aim. Our work is in the spirit of [START_REF] Cohen | Timed event graphs with multipliers and homogeneous min-plus systems[END_REF] where a class of Fluid TWEGs is analyzed thanks to a dioid of formal power series. The authors introduce a multiplier operator denoted µ that models the effect of the graph valuations. They thus obtain a necessary and sufficient condition under which a Fluid TWEG can be reduced to a Fluid TEG. This gives a way to "linearize" some TWEGs. This work has been extended in several papers, for instance in [START_REF] Hamaci | Modeling and Control of Hybrid Timed Event Graphs with Multipliers using (Min,+) Algebra[END_REF] where some hybrid Fluid/Discrete TWEGs are considered. In the context of SDF modeling, the studies developed in [START_REF] Geilen | Synchronous data flow scenarios[END_REF] and [START_REF] Geilen | Worst-case performance analysis of synchronous dataflow scenarios[END_REF] are very close to that approach too.

We focus here on the discrete functioning of TWEGs. As in [START_REF] Cohen | Algebraic Tools for the Performance Evaluation of Discrete Event Systems[END_REF] and [START_REF] Cohen | Timed event graphs with multipliers and homogeneous min-plus systems[END_REF], one uses the classical shift operators γ n and δ t to describe event-shift and time-shift, but we also introduce two additional ones denoted β b and µ m that represent respectively a batch operation (which is modeled by an integer division3 on a counter variable) and a duplication phenomenon (multiplier operator), ∀x ∈ Σ

β b : (β b x)(t) = x(t)/b µ m : (µ m x)(t) = x(t) × m.
The behavior of a TWEG denoted G can be described by a rational expression on the set of operators O M,B = {ε, e, γ, δ, µ 2 , µ 3 , ..., µ M , β 2 , ..., β B }, where M is the maximal multiplier value and B the maximal batch value of G. But, it is not clear whether, for the general case, there exists a canonical form for a rational expression on O M,B : the formal computation of the behavior of a TWEG does not necessarily lead to a unique expression. In particular, the non unitary TWEGs seem to be difficult to handle.

We show that for a subclass of TWEGs that we call Balanced Timed and Weighted Event Graphs (B-TWEGs), the rational expressions generated have a canonical periodic form. The class of B-TWEGs corresponds to TWEGs such that parallel paths have the same gain 4 . For these systems, the transfer relation can be expressed, on a dioid of series denoted E δ , by an ultimately periodic power series in one variable δ with coefficients in a dioid E of event operators 5 . The construction of E δ is done so as to include dioid M ax in γ, δ [5] [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF]. The main feature is that the graphical representation of series in E δ is three-dimensional : two dimensions to describe event operators in E and a third dimension for time shift operators. As in M ax in γ, δ , the graphical representation of series in E δ helps us to understand the simplification rules on operators generated by B-TWEGs. Since the input-output behavior of a B-TWEG can be described by a periodic formal series, the existing results on control synthesis can be directly applied. It is only necessary to express the residuation of the product by the elementary operators.

The paper is organised as follows. In section 2, the subclass of Balanced Timed and Weighted Event Graphs is first defined. Then, the modeling via an operatorial description is presented. Section 3 is devoted to define the dioid of formal series denoted E δ and to associate a 3D graphical representation. In section 4, the result concerning the periodicity of B-TWEGs' transfer series is stated. Eventually, the question of control synthesis is addressed in section 5 after some reminders on the residuation theory and its application to dioid E δ .

II. BALANCED TIMED AND WEIGHTED EVENT GRAPHS (B-TWEGS)

A. Definitions

Weighted Event Graphs (WEGs) constitute a subclass of generalized Petri Nets given by a set of places P = {p 1 , ..., p m } and a set of transitions T = {t 1 , ..., t n } (see [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF] for a survey on Petri nets). An event graph cannot describe concurrency phenomenon, then every place p k ∈ P is defined between an input transition t i and an output transition t o . The arcs t i → p k and p k → t o are oriented and valued6 by strictly positive integers denoted respectively w i (p k ) and w o (p k ).

A transition without input (resp. output) place is called a source or input (resp. sink or output)

transition. An initial marking (a set of initial tokens depicted with black dots) denoted M 0 (p k ) is associated to each place p k ∈ P . A given transition t j is said enabled as soon as each input place p l contains at least w o (p l ) tokens. A transition can be fired only if it is enabled. At each firing of a transition, w o (p l ) tokens are removed from each input place p l , and w i (p k ) tokens are added to each output place p k .

Example 1: For the WEG depicted on Fig. 1, t 1 (resp. t 3 ) is an input (resp. output) transition.

The initial marking is given by M 0 (p 1 ) = 1 and M 0 (p 2 ) = 2. All arcs are assumed to be 1-valued except when mentioned, for instance w i (p 1 ) = 2 and w o (p 1 ) = 3. Transition t 3 is enabled when place p 1 has 3 tokens and place p 2 has two tokens. The firing of transition t 1 adds 2 tokens in place p 1 . 

t i → p k → t o is defined as Γ(t i , p k , t o ) w i (p k )/w o (p k ) ∈ Q.
For a general path π passing through places p i , the gain corresponds to the product of elementary paths, i.e. Γ(π) = p j ∈π w i (p j )/w o (p j ).

Definition 2 (Neutral and Balanced WEG): A WEG is said neutral if all its circuits have a gain of 1. A WEG is said balanced if ∀t i , t j ∈ T , all the paths from t i to t j have the same gain.

Remark 1: A balanced WEG is necessarily neutral. In [START_REF] Marchetti | Complexity results for weighted timed event graphs[END_REF], a WEG which is neutral and strongly connected is said unitary. It is important to note that the strongly connectedness is not required for the class of Balanced WEG.

For a WEG, a holding time denoted ∆(p k ) ∈ N can be associated to each place p k ∈ P .

Each token entering in a place p k has to wait ∆(p k ) time units before contributing to enable the output transition. A WEG with holding times is called a Timed and Weighted Event Graph (TWEG). Hereafter, we will only consider Balanced Timed and Weighted Event Graphs (in short B-TWEGs).

Example 2: For the TWEG depicted on Fig. 2, holding times are attached to some places:

∆(p 1 ) = 2, ∆(p 6 ) = 1, ∆(p 4 ) = 1 and ∆(p 5 ) = 2
. This is a Balanced TWEG since it is neutral and all the parallel paths from t 1 to t 4 have the same gain equal to 3/2. For instance,

Γ(t 1 , p 1 , t 2 ) = 1/2 and Γ(t 1 , p 2 , t 3 ) = 3.
Remark 2 (Ordinary TEG): If all the existing arcs are 1-valued, the TWEG is said Ordinary, or simply Timed Event Graph (TEG). A TEG is obviously a Balanced TWEG. 

B. Operatorial representation of B-TWEGs

A dioid (or idempotent semiring) is an algebraic structure with two inner operations, a sum and a product. The sum is commutative, associative and idempotent (a ⊕ a = a) and the product is associative and distributes over the sum. The neutral elements of these operations are usually denoted ε for the sum, and e for the product. Since the sum is idempotent, a natural order can be associated to a dioid as a b ⇐⇒ a = a ⊕ b. When the sum of any finite or infinite subset of a dioid is defined, and the product distributes over infinite sums, the dioid is said complete.

A complete dioid is an ordered set with a complete lattice structure : the inf operator is defined

as a ∧ b = {x|x ⊕ a = a and x ⊕ b = b}.
The operatorial representation of TWEGs requires to associate a counter function x i : Z → Z ∪ +∞ to each transition t i . The set of counter functions denoted Σ has a semimodule structure for the internal operation ⊕ = min and for the scalar operation defined by λ.x(t) = x(t) + λ.

An operator is a map

H : Σ → Σ which is said linear if ∀x, y ∈ Σ, a) H(x ⊕ y) = H(x) ⊕ H(y)
and b) H(λ.x) = λ.H(x). An operator is said additive if only a) is satisfied.

Definition 4 (Dioid O of additive operators [START_REF] Moller | Théorie algébrique des Systèmes à Événements Discrets[END_REF]): The set of additive operators on Σ, with the operations defined below, is a non commutative complete dioid denoted O :

∀H 1 , H 2 ∈ O H 1 ⊕ H 2 ∀x ∈ Σ, (H 1 ⊕ H 2 )(x) = min(H 1 (x), H 2 (x)) H 1 • H 2 ∀x ∈ Σ, (H 1 • H 2 )(x) = H 1 (H 2 (x))
The null operator (neutral for ⊕ and absorbing for •) is denoted ε : ∀x ∈ Σ, (εx)(t) = +∞ and the unit operator (neutral for •) is denoted e : ∀x ∈ Σ, (ex)(t) = x(t).

For the sequel, we will simply denote by Hx (instead of H(x)) the image of the counter x ∈ Σ by the additive operator H ∈ O. And we will also often omit the • symbol for the product of

O, H 1 H 2 = H 1 • H 2 . Two additive operators H 1 , H 2 ∈ O are equal if ∀x ∈ Σ, H 1 x = H 2 x.
Definition 5 (Operators for B-TWEGs): The operators found in B-TWEGs are generated from a family of additive operators in O defined by : let x ∈ Σ be a counter,

τ ∈ Z, δ τ : ∀x, (δ τ x)(t) = x(t -τ ) ν ∈ Z, γ ν : ∀x, (γ ν x)(t) = x(t) + ν b ∈ N * , β b : ∀x, (β b x)(t) = x(t)/b m ∈ N * , µ m : ∀x, (µ m x)(t) = x(t) × m. July 17, 2012 DRAFT
On the basis of these operators, we can remark that the unit operator e has several equivalent expressions : e = γ 0 = δ 0 = µ 1 = β 1 . Hereafter, operators γ ν , β b and µ m (and their ⊕ and • compositions) are considered as event operators (in short E-operators). Proposition 1: The next formal equivalences can be stated

γ n γ n = γ n+n δ t δ t = δ t+t (1) 
γ n ⊕ γ n = γ min(n,n ) δ t ⊕ δ t = δ max(t,t ) (2) 
γ 1 δ 1 = δ 1 γ 1 µ m δ 1 = δ 1 µ m β b δ 1 = δ 1 β b (3) 
µ m γ n = γ m×n µ m γ n β b = β b γ n×b (4) 
Proof: For all counter x ∈ Σ we have (1) : ∀t, (x(t

) + n ) + n = x(t) + (n + n) and x(τ -t-t ) = x(τ -(t+t )). (2) : ∀t, min(x(t)+n, x(t)+n ) = x(t)+min(n, n ). Since ∀t, x(t) ≥ x(t -1) (x is monotone non-decreasing), then min(x(τ -t), x(τ -t ) = x(τ -max(t, t )). ( 3 
) : immediate (4): m × (x(t) + n) = m × x(t) + m × n and x(t)/b + n = x(t)+n×b b .
Remark 3: We can note that equalities (2) are those expressed by the simplification rules in

M ax in γ, δ . Definition 6 (Kleene star):
The Kleene star of an operator in O is defined by : ∀H ∈ O, Proof: see [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF] Theorem 2: For all operator H ∈ O, the next equalities are satisfied

H * = i∈N H i = e ⊕ H ⊕ H 2 ⊕ ... with H n = H • ... • H (n times).
H = H(δ -1 ) * = (δ -1 ) * H = (γ 1 ) * H = H(γ 1 ) * .
Proof: Since a counter function x is monotone, then ∀t,

x(t + 1) ≥ x(t) ⇐⇒ δ -1 x x.
For the same reason, ∀t,

x(t) + 1 ≥ x(t) ⇐⇒ γx x. Therefore, ∀x ∈ Σ, ∀H ∈ O, H(γ 1 ) * x = Hx = (γ 1 ) * Hx = H(δ -1 ) * x = (δ -1 ) * Hx.

C. Modeling of B-TWEGs

The B-TWEGs are analysed here with the earliest functioning rule (see Def. its holding time, can be described by the relation

x j = β w(p k ,t j ) γ M 0 (p k ) µ w(t i ,p k ) δ τ x i , (5) 
where x i (resp. x j ) is the counter function associated to transition t i (resp. t j ).

Example 3 (B-TWEG of Fig. 1): We can link the counter functions x i associated to the transitions t i of the B-TWEG depicted in Fig. 1 as follows. For the earliest functioning, we have

x 3 (t) = min( 2×x 1 (t)+1 3 , x 2 (t)+2 2 ) = min( 2×x 1 (t)+1 3 , x 2 (t) 2 + 1)
Therefore, the counter functions are linked by

x 3 = β 3 γ 1 µ 2 δ 0 x 1 ⊕ β 2 γ 2 δ 0 x 2 = β 3 γ 1 µ 2 δ 0 x 1 ⊕ γ 1 β 2 δ 0 x 2 with β 3 γ 1 µ 2 δ 0 , γ 1 β 2 δ 0 ∈ O.
Example 4 (B-TWEG of Fig. 2): For the B-TWEG depicted in Fig. 2 and for the earliest functioning, we have

x 2 (t) = min( x 1 (t-2) 2 , x 2 (t -2) + 1) x 3 (t) = min(x 1 (t) × 3, x 3 (t -1) + 2)
Therefore, the counter functions are linked by x 2 = β 2 δ 2 x 1 ⊕ γ 1 δ 2 x 2 and thanks to Th. 1,

x 2 = (γ 1 δ 2 ) * β 2 δ 2 x 1 . Similarly, x 3 = (γ 2 δ 1 ) * µ 3 x 1 .
Finally, the counter function associated to the output transition is

x 4 = µ 3 x 2 ⊕ β 2 γ 1 δ 1 x 3 = (µ 3 (γ 1 δ 2 ) * β 2 δ 2 ⊕ β 2 γ 1 δ 1 (γ 2 δ 1 ) * µ 3 )x 1 .
The inputoutput behavior (or transfer function) of the B-TWEG is described by the rational expression 

µ 3 (γ 1 δ 2 ) * β 2 δ 2 ⊕ β 2 γ 1 δ 1 (γ 2 δ 1 ) * µ 3 in O.
γ 1 δ 2 µ 3 β 2 δ 1 = γ 1 µ 3 β 2 δ 4 = δ 4 γ 1 µ 3 β 2 .
Hence, in every finite composition (product) of elementary operators in {δ t , γ n , µ m , β b }, we can factorize the time-shift operator.

Therefore, the rational expressions on O M,B can be considered as formal power series in one variable δ where coefficients are some event operators. Moreover, in the particular case of B-TWEGs, the generated event operators have a canonical form.

A. Bi-dimensional representation of E-operators For instance, the γ 2 E-operator is described by

F γ 2 (k i ) = k i +2.
This function can be interpreted as follows : for the γ 2 E-operator, if k i input events have occurred at date t, then k i + 2 output events have occurred at this date. Similarly, E-operator µ 2 β 3 γ 1 is described by the function 3). Function F w gives an unambiguous representation of E-operator w. Moreover, we have The equality of E-operators can be checked thanks to the operator function :

F µ 2 β 3 γ 1 (k i ) = (k i + 1)/3 × 2 (see Fig.
F w 1 ⊕w 2 = min(F w 1 , F w 2 ) and F w 1 •w 2 = F w 1 • F w 2 .
w 1 , w 2 ∈ E, w 1 = w 2 ⇐⇒ F w 1 = F w 2 .
For instance, we can graphically check (see Fig. 4) the equality 

µ 3 β 2 γ 1 ⊕ γ 2 µ 3 β 2 = β 2 γ 1 µ 3 ,
F µ 3 β 2 γ 1 ⊕γ 2 µ 3 β 2 = F β 2 γ 1 µ 3 
2) Graphical considerations: The operator function leads to a natural bi-dimensional graphical representation of E-operators. Some features have to be kept in mind.

Partial order on E : the comparison of two E-operators is graphically interpreted as follows

w 1 w 2 ⇐⇒ w 1 ⊕ w 2 = w 2 ⇐⇒ min(F w 1 , F w 2 ) = F w 2 ⇐⇒ epigraph(F w 1 ) ⊂ epigraph(F w 2 )
Graphically, the sum of two E-operators amounts to do the union of their epigraphs8 . On Fig. 3 and Fig. 4 the epigraph corresponds to the gray zone.

Left and right product by γ n : For w ∈ E, F γ n w ⇐⇒ F w vertically shifted of n units to the top F wγ n ⇐⇒ F w horizontally shifted of n' units to the left .

This last feature must be kept in mind when we consider ultimately periodic series that have a 3-D representation.

3) Periodic E-operators:

The elementary E-operators γ n , µ m , β b are described by periodic 9 operator functions, i.e. the associate operator function satisfies

∀k i ∈ Z, F(k i + n) = F(k i ) + n .
For E-operators γ n , µ m and β b we obtain

F γ n (0) = n, F γ n (k i + 1) = F γ n (k i ) + 1 F µm (0) = 0, F µm (k i + 1) = F µm (k i ) + m 0 ≤ k i < b, F β b (k i ) = 0, F β b (k i + b) = F β b (k i ) + 1
Operators γ n and µ m are 1-periodic, and operator 10 of w is defined as Γ(w) = k /k. It is the average slope of F w .

β b is b-periodic. The set of periodic E-operators is denoted E per . Definition 8 (Gain of w ∈ E per ): Let w ∈ E per be a k-periodic E-operator s.t. F w (k i + k) = F w (k i ) + k . The gain
Proposition 2: Let w 1 , w 2 ∈ E per be two periodic E-operators. We have

w 1 w 2 ∈ E per and Γ(w 1 w 2 ) = Γ(w 1 ) × Γ(w 2 ) (6) if Γ(w 1 ) = Γ(w 2 ) then w 1 ⊕ w 2 ∈ E per (7) if Γ(w 1 ) = Γ(w 2 ) then w 1 ∧ w 2 ∈ E per (8) 
Proof: The periodic operator functions satisfy

F w 1 (k i + k 1 ) = F w 1 (k i ) + k 1 and F w 2 (k i + k 2 ) = F w 2 (k i ) + k 2 . Hence, F w 2 (k i + k 1 .k 2 ) = F w 2 (k i ) + k 1 .k 2 and F w 1 (F w 2 (k i + k 1 .k 2 )) = F w 1 (F w 2 (k i )+k 1 .k 2 ) = F w 1 (F w 2 (k i ))+k 1 .k 2 = F w 1 w 2 (k i )+k 1 .k 2 . Therefore, operator w 1 w 2 is a periodic operator the gain of which is (k 1 .k 2 )/(k 1 .k 2 ).
For the sum of periodic operators with the same gain, we can write both operators with the same periodicity:

F w 1 (k i + k 1 .k 2 ) = F w 1 (k i ) + k 1 .k 2 and F w 2 (k i + k 1 .k 2 ) = F w 2 (k i ) + k 2 .k 1 with k 1 .k 2 = k 1 .
k 2 (since both operators have the 9 More exactly, they are only quasi periodic 10 A path of a B-TWEG the gain of which is g is described by an E-operator the gain of which is g too.

July 17, 2012 DRAFT same gain). Hence, the min of these two operator functions is also periodic. By symmetry, the max (∧) of two periodic E-operators with the same gain is also periodic. For periodic operators of gain 1, we will also use the simplified notation

∇ m ∇ m|m = µ m β m .
A periodic E-operator can be canonically decomposed on a basis of ∇ m|b operators, right and left shifted by some γ n operators. Operator ∇ m|b is graphically represented by a staircase function from Z to Z (see Fig. 3 for the representation of

∇ 2|3 γ 1 = µ 2 β 3 γ 1 ).
As shown in the following example, the canonical form is not necessarily the most concise one.

Example 5: To establish the canonical form of γ 2 β 3 µ 4 , we can graphically represent F γ 2 β 3 µ 4 (see Fig. 3). We have, Γ(γ

2 β 3 µ 4 ) = 4 3 , F γ 2 β 3 µ 4 (0) = 2, F γ 2 β 3 µ 4 (1) = 3, F γ 2 β 3 µ 4 (2) = 4, F γ 2 β 3 µ 4 (k i + 3) = F γ 2 β 3 µ 4 (k i ) +4. The operator function F γ 2 β 3 µ 4 can be seen as a min combination F γ 2 β 3 µ 4 = min(F γ 2 µ 4 β 3 γ 2 , F γ 3 µ 4 β 3 γ 1 , F γ 4 µ 4 β 3 )
. Hence, we have the equality

γ 2 β 3 µ 4 = γ 2 ∇ 4|3 γ 2 ⊕ γ 3 ∇ 4|3 γ 1 ⊕ γ 4 ∇ 4|3 .
Translated into a B-TWEG model, the previous equality means that the two B-TWEGs depicted in Fig. 5 are equivalent from an input-output point of view : the same input sequence will produce the same output sequence 11 . 

γ 2 β3µ4 = γ 2 ∇ 4|3 γ 2 ⊕ γ 3 ∇ 4|3 γ 1 ⊕ γ 4 ∇ 4|3 .
Remark 5: We can remark that, even if the canonical form is not necessarily the most compact, sometimes the periodicity may also be reduced by ⊕ combination. For instance, we let the reader verifying that the following equality is satisfied :

γµ 2 β 2 γ ⊕ γ 2 µ 2 β 2 = γ∇ 2 γ ⊕ γ 2 ∇ 2 = γ.
Remark 6: If Γ(w 1 ) = Γ(w 2 ), then w 1 ⊕ w 2 is not necessarily a periodic operator. Said differently, E per is not a subdioid of E.

B. Dioid E δ

The previous subsection shows that E-operators generated by B-TWEGs are periodic and have a canonical form. Moreover, all the E-operators commute with the time-shift operator δ τ (see Prop. 1). Therefore, all the operators generated by a B-TWEG can be described by the means of formal series in one variable δ denoted i w i δ t i , where coefficients w i are taken in E per and the exponents are in Z.

1) Three Dimensional representation of operators in B-TWEGs: By analogy with [START_REF] Cohen | Timed event graphs with multipliers and homogeneous min-plus systems[END_REF], we can describe discrete B-TWEGs as rational combination of periodic E-operators and time-shift operators.

Definition 10 (Dioid E δ ): The set of formal power series in one variable δ with exponents in Z and coefficients in the non commutative complete dioid E, with the simplification rule:

∀s ∈ E δ , s = s(δ -1 ) * = (δ -1 ) * s, (9) 
is a non commutative complete dioid denoted E δ . A series s ∈ E δ is written s = t∈Z s(t)δ t July 17, 2012 DRAFT with s(t) ∈ E. For two series s 1 , s 2 ∈ E δ :

(s 1 ⊕ s 2 )(t) = s 1 (t) ⊕ s 2 (t) (s 1 ⊗ s 2 )(t) = τ +τ =t s 1 (τ ) • s 2 (τ )
Adding the simplification rule [START_REF] Gaubert | Théorie des systèmes linéaires dans les dioïdes[END_REF] to formal series in δ allows us to assimilate the variable δ in dioid E δ to the time-shift operator δ 1 : Σ → Σ, δ 1 x(t) = x(t -1) in dioid O. Therefore, in dioid E δ , all the equalities given in Th. 2 are satisfied.

The series of E δ have a graphical representation which consists in describing for each t ∈ Z the value of s(t) ∈ E. The convention adopted here is to represent s in a 3D basis, where t is described along the z-axis and coefficients s(t) ∈ E are represented by their operator function in the x × y basis (more exactly, by the epigraph of the operator function). Moreover, according to Th. 2, a series is invariant by a product with (δ -1 ) * and by (γ 1 ) * . Therefore, if a piece of information of a series s is depicted by a point p = (x, y, z) ∈ Z 3 , then all the points p = (x , y , z ) in the cone described by x ≤ x, y ≥ y and z ≤ z are dominated by p. This domination must be understood in the sense that the information represented by each point of the cone is yet contained in those represented by the vertex p. Therefore, the graphical representation of a series s ∈ E δ may be seen as an infinite union of cones. We will see later on that the protruding vertices constitute the essential information that we must keep to represent a series in E δ .

From an equivalent point of view, each monomial s(t)δ t of a series s generates a volume described by s(t)δ t (δ -1 ) * = s(t)δ t ⊕ s(t)δ t-1 ⊕ .... For this reason, the 3D representation of a series in E δ is a volume which also looks like a flight of stairs.

Example 6: The simple series (with only one term) γ 2 β 3 µ 4 δ 5 ∈ E δ is depicted on Fig. 6.

The graphical representation of F γ 2 β 3 µ 4 (see Fig. 3) is depicted in a 3D basis at height 5 (value of the time-shit operator). In order to improve the readability of the picture, the 3D representation is truncated to the positive values, i.e. to (x, y, z) ∈ N 3 .

Remark 7 (Simplifications):

The equivalences given in Th. 2 lead to some rules to simplify series in E δ . In the 3D domain, two operators are equal if they have the same representation. Said differently, by considering a series s = s(t)δ t of E δ , if a term s(τ )δ τ is not visible in the 3D representation of s, then it means that it can be removed from s. For instance, let us

consider the series α = γ 2 ∇ 2 δ 2 ⊕ γ 1 ∇ 2 γ 1 δ 5 ⊕ γ 2 δ 4 .
The representation of γ 2 δ 4 is not visible since it is hidden by those of γ 1 ∇ 2 γ 1 δ 5 (see Fig. 7). It means that the next simplification applies July 17, 2012 DRAFT 

α = γ 2 ∇ 2 δ 2 ⊕ γ 1 ∇ 2 γ 1 δ 5 ⊕ γ 2 δ 4 = γ 2 ∇ 2 δ 2 ⊕ γ 1 ∇ 2 γ 1 δ 5 .
Finally, the main pieces of information in a series of E δ are those coded by the protruding vertices (depicted by some balls in the figures). Due to the specific structure of B-TWEGs, we do not consider the whole set of series of E δ but only the series the coefficients of which are periodic E-operators. This subset is denoted

E per δ .
Definition 11 (Balanced series in E per δ ): A series s = s(t)δ t ∈ E per δ is said balanced if all its coefficients s(t) ∈ E per have the same gain. The gain of s is denoted Γ(s) and corresponds to the gain of all its coefficients. A balanced series is said conservative if Γ(s) = 1.

July 17, 2012 DRAFT

2) Polynomials in E per δ : The series that can be described by finite sums T i=1 s(t i )δ t i are called polynomials. Balanced polynomials have a canonical form. According to remark 7, it consists in only keeping for each monomial w i δ t i the information that is not yet contained in monomials w j δ t j such that t j > t i . As said in remark 7, it amounts to keeping protruding vertices.

Definition 12: Let us consider a balanced polynomial p = i=T i=1 w i δ t i ∈ E per δ with w i ∈ E per . The canonical form of p is such that ∀i, t i < t i+1 and

w i = w {w ⊕ j>i w j = k≥i w k } (10) 
Expression [START_REF] Gaubert | Rational series over dioids and discrete event systems[END_REF] conveys the fact that we only want to keep the essential information, i.e. coefficient w i only keeps the information not yet contained in the coefficients w j with j > i.

Example 7: The canonical form is obtained thanks to a backward analysis starting from the monomial with the greatest exponent. For polynomial

p = δ 2 ⊕ (∇ 3 γ 2 ⊕ γ 2 ∇ 3 )δ 4 ⊕ ∇ 3 γ 2 δ 7
depicted on Fig. 8, we obtain the next simplifications. The monomial ∇ 3 γ 2 δ 4 is not visible

( since ∇ 3 γ 2 δ 4 ∇ 3 γ 2 δ 7
), so it can be removed from p. Then, the monomial δ 2 has a non

canonical expanded form δ 2 = (γ 2 ∇ 3 ⊕ γ∇ 3 γ ⊕ ∇ 3 γ 2 )δ 2 .
The only part of the dynamic of δ 2 which is not yet described by γ 2 ∇ 3 δ 4 ⊕ ∇ 3 γ 2 δ 7 is described by the operator γ∇ 3 γδ 2 . Finally,

we have p = δ 2 ⊕ (∇ 3 γ 2 ⊕ γ 2 ∇ 3 )δ 4 ⊕ ∇ 3 γ 2 δ 7 = γ∇ 3 γδ 2 ⊕ γ 2 ∇ 3 δ 4 ⊕ ∇ 3 γ 2 δ 7 Figure 8. Polynomial γ∇3γδ 2 ⊕ γ 2 ∇3δ 4 ⊕ ∇3γ 2 δ 7

IV. B-TWEGS ARE DESCRIBED BY ULTIMATELY PERIODIC SERIES OF E per δ

In this section, we show that the behavior of a B-TWEG is described by ultimately periodic and balanced series of E per δ . This result has to be compared to the well known result for ordinary Timed Event Graphs : the entries of the transfer matrix of a TEG are some ultimately periodic series of M ax in γ, δ . For TEGs, operations (and algorithms) on ultimately periodic series of M ax in γ, δ have already been studied in [START_REF] Cohen | Algebraic Tools for the Performance Evaluation of Discrete Event Systems[END_REF] [1] [START_REF] Gaubert | Théorie des systèmes linéaires dans les dioïdes[END_REF] [10] [8] [START_REF] Mc Gettrick | Max-plus toolbox 2[END_REF]. Since we consider B-TWEGs, only balanced series of E per δ are considered hereafter.

Definition 13 (Ultimately periodic series of E per δ ): A balanced series s ∈ E per δ is said ultimately periodic if it can be written as s = p ⊕ q(γ ν δ τ ) * , where p and q are balanced polynomials such that Γ(p) = Γ(q), p = i=1..n

w i δ t i q = j=1..N W j δ T j , w i , W j ∈ E per .
The property of periodicity has a natural graphical interpretation. For the 3D representation of s, the representation of q(γ ν δ τ ) * = q ⊕ qγ ν δ τ ⊕ qγ 2ν δ 2τ ⊕ ... is a periodic staircase. The polynomial q is depicted as a group of steps that is repeated periodically (we have the same steps but shifted by τ units to the top and by ν units toward the decreasing I-count values). 

= γ 2 ∇ 3|2 δ 3 ⊕γ 4 ∇ 3|2 γ 1 δ 4 ⊕[(γ 6 ∇ 3|2 γ 1 ⊕ γ 7 ∇ 3|2 )δ 6 ⊕ γ 7 ∇ 3|2 γ 1 δ 7 ](γ 4 δ 3 ) * .
From the T-shift value equals to 6, we have the same two-steps repeated each 3 units to the top but shifted by 4 units toward the decreasing I-count values.

Remark 8: The periodic form is not unique. For instance, s = p ⊕ q(γ ν δ τ ) * and s = p ⊕ q ⊕ qγ ν δ τ (γ ν δ τ ) * are two different ultimately periodic forms of the same series.

Remark 9: Balanced polynomials in E per δ can always be considered as ultimately periodic series since (γ

1 δ 0 ) * = e.
Even if the product of E δ is not commutative, an ultimately periodic balanced series of E per δ has two periodic forms.

Proposition 3 (Left/Right periodicity): An ultimately (right) periodic series s = p ⊕ q(γ ν δ τ ) * in E per δ has also an ultimately left periodic form s = p ⊕ (γ ν δ τ ) * q where q is a balanced polynomial. The left (resp. right) asymptotic slope is defined as σ l (s) = τ /ν (resp. σ r (s) = τ /ν), and the next equality is satisfied Γ(s) = σ r (s)/σ l (s). Proof: Let Γ(s) = k /k be the gain of s. The coefficients of polynomial q = w j δ t j in their canonical form are given by

w j = i γ n ij ∇ m j |b j γ n ij with k /k = m j /b j . Let us remark that thanks to (4), ∇ m j |b j γ b j = µ m j β b j γ b j = µ m j γ 1 β b j = γ m j µ m j β b j = γ m j ∇ m j |b j . More generally, ∇ m j |b j γ αb j = γ αm j ∇ m j |b j . Therefore, if we take B = lcm(b j ) and M = B.k /k, then ∀i, j, γ n ij ∇ m j |b j γ n ij γ B = γ M γ n ij ∇ m j |b j γ n ij ,
and consequently ∀i, w i γ B = γ M w i . Since we can develop (γ ν δ τ ) * = (e ⊕ γ ν δ τ ⊕ ... ⊕ γ (B-1)ν δ (B-1)τ )(γ Bν δ Bτ ) * , then

q(γ ν δ τ ) * = q(e ⊕ ... ⊕ γ (B-1)ν δ (B-1)τ )(γ Bν δ Bτ ) * = q(γ Bν δ Bτ ) * (e ⊕ ... ⊕ γ (B-1)ν δ (B-1)τ ) = (γ M ν δ Bτ ) * q(e ⊕ ... ⊕ γ (B-1)ν δ (B-1)τ ) = (γ M ν δ Bτ ) * q
Finally, σ r (s) = τ /ν and σ l (s) = (Bτ )/(M ν) and σ r (s)/σ l (s) = Γ(s) = k /k. Example 9: For the series depicted on Fig. 9, a left and a right forms are given by

s = γ 2 ∇ 3|2 δ 3 ⊕ γ 4 ∇ 3|2 γ 1 δ 4 ⊕ [(γ 6 ∇ 3|2 γ 1 ⊕ γ 7 ∇ 3|2 )δ 6 ⊕ γ 7 ∇ 3|2 γ 1 δ 7 ](γ 4 δ 3 ) * = γ 2 ∇ 3|2 δ 3 ⊕ γ 4 ∇ 3|2 γ 1 δ 4 ⊕ (γ 6 δ 3 ) * [(γ 6 ∇ 3|2 γ 1 ⊕ γ 7 ∇ 3|2 )δ 6 ⊕ γ 7 ∇ 3|2 γ 1 δ 7 ].
The left and right slopes are σ l (s) = 3/6 and σ r (s) = 3/4. They are respectively the asymptotic slope of the 3D representation in the y × z direction (see the plan x = 0 in Fig. 9) and in the x × z direction. July 17, 2012 DRAFT As for series in M ax in γ, δ , the ultimately periodic series of E per δ have different expressions. But, we can provide two canonical forms, left and right periodic, where the periodicity is minimal. Definition 14 (Canonical forms): An ultimately periodic series of E per δ has a left and a right canonical forms for which the degree of p is minimal and the value of ν (resp. ν ) is minimal.

The main result concerning the class of B-TWEGs is that they structurally keep the ultimate periodicity property. To obtain this result, one has to analyze how the sum, the product and the Kleene star operations behave on ultimately periodic series in E per δ .

First, we recall a result given in [5, Lemma 6] and detailed in [START_REF] Gaubert | Théorie des systèmes linéaires dans les dioïdes[END_REF]Lemma 4.1.4]. This result is stated in M ax in γ, δ and is still valid in E per δ since M ax in γ, δ is a subdioid. Lemma 1: For given ν, τ, ν , τ , α, T, α , T some positive integers, if τ /ν > τ /ν then the periodic series γ α δ T (γ ν δ τ ) * is asymptotically greater than γ α δ T (γ ν δ τ ) * , say ∃N : ∀n ≥ N, ∃n s.t.

γ α δ T (γ ν δ τ ) n γ α δ T (γ ν δ τ ) n .
Proposition 4: Let us consider two ultimately right periodic series of E per δ denoted s 1 =

p 1 ⊕ q 1 (γ ν 1 δ τ 1 ) * and s 2 = p 2 ⊕ q 2 (γ ν 2 δ τ 2 ) * .
(a) If Γ(s 1 ) = Γ(s 2 ) then s 1 ⊕ s 2 is an ultimately periodic series of E per δ such that σ r (s 1 ⊕ s 2 ) = max(σ r (s 1 ), σ r (s 2 ))

σ l (s 1 ⊕ s 2 ) = max(σ l (s 1 ), σ l (s 2 )) (b) s 1 ⊗ s 2 is an ultimately periodic series s.t. Γ(s 1 ⊗ s 2 ) = Γ(s 1 ) × Γ(s 2 ) σ r (s 1 ⊗ s 2 ) = max(σ r (s 2 ), Γ(s 2 ) × σ r (s 1 )) σ l (s 1 ⊗ s 2 ) = max(σ l (s 1 ), σ l (s 2 )/Γ(s 1 ))
Proof: These results come from a direct adaptation of results given in [START_REF] Gaubert | Théorie des systèmes linéaires dans les dioïdes[END_REF] for periodic series in M ax in γ, δ . We only give the main ideas. Outline of Proof for (a) : according to Lemma 1, if (τ 1 /ν 1 ) > (τ 2 /ν 2 ), then the simple periodic series ∇ m|b γ α 1 δ T 1 (γ ν 1 δ τ 1 ) * is asymptotically greater than ∇ m|b γ α 2 δ T 2 (γ ν 2 δ τ 2 ) * . We can choose m and b such that m/b = Γ(s 1 ) = Γ(s 2 ) and some integers α 1 , T 1 , α 2 , T 2 such that we obtain two approximations of q 1 (γ ν 1 δ τ 1 ) * and q 2 (γ ν 2 δ τ 2 ) * satisfying

∇ m|b γ α 1 δ T 1 (γ ν 1 δ τ 1 ) * q 1 (γ ν 1 δ τ 1 ) * ∇ m|b γ α 2 δ T 2 (γ ν 2 δ τ 2 ) * q 2 (γ ν 2 δ τ 2 ) *
By applying Lemma 1, we obtain that q 1 (γ ν 1 δ τ 1 ) * is asymptotically greater than q 2 (γ ν 2 δ τ 2 ) * . Therefore, series s 1 is asymptotically greater than s 2 , and then s 1 ⊕ s 2 is asymptotically periodic with the periodicity of s 1 . When (τ 1 /ν 1 ) = (τ 2 /ν 2 ), s 1 ⊕ s 2 is also asymptotically periodic.

Outline of Proof for (b) : We can write s 1 and s 2 with their right and left forms :

s 1 ⊗ s 2 = (p 1 ⊕ q 1 (γ ν 1 δ τ 1 ) * ) ⊗(p 2 ⊕ (γ ν 2 δ τ 2 ) * q 2 ) = p 1 p 2 ⊕ p 1 (γ ν 2 δ τ 2 ) * q 2 ⊕q 1 (γ ν 1 δ τ 1 ) * p 2 ⊕q 1 (γ ν 1 δ τ 1 ) * (γ ν 2 δ τ 2 ) * q 2
Series p 1 (γ ν 2 δ τ 2 ) * q 2 and q 1 (γ ν 1 δ τ 1 ) * p 2 are finite sums of periodic series, due to (a), the result is periodic. The last term (γ ν 1 δ τ 1 ) * (γ ν 2 δ τ 2 ) * is also a ultimately periodic series in M ax in γ, δ (see [START_REF] Gaubert | Théorie des systèmes linéaires dans les dioïdes[END_REF]), and therefore in E δ too.

Let us now focus on the behavior of circuits in B-TWEGs. They are algebraically described by Kleene star operations on series of E per δ .

Proposition 5: Let p = i=N i=1 w i δ t i be a conservative balanced polynomial (∀i, Γ(w i ) = 1). Then, series p * is a conservative and ultimately periodic series of E per δ .

Proof: The complete proof is detailed in [START_REF] Cottenceau | Input-Output Representation for a Subclass of Timed and Weighted Event Graphs in Dioids[END_REF].

Proposition 6: Let s = p ⊕ q(γ ν δ τ ) * be a conservative (Γ(s) = Γ(p) = Γ(q) = 1) ultimately periodic series in E per δ . Then s * is a conservative ultimately periodic series.

Proof: We can write p = i γ n i ∇ M γ n i δ t i and q = j γ N j ∇ M γ N j δ T j . If we take r = γ M ν δ M τ , then monomial r commutes with p and q, i.e. pr = rp and qr = rq. First, we can write

(γ ν δ τ ) * = e ⊕ γ ν δ τ ⊕ γ 2ν δ 2τ ⊕ ... ⊕ γ (M -1)ν δ (M -1)τ r * .
Then, series s can be written s = p ⊕ q(e ⊕ γ ν δ τ ⊕ ... ⊕ γ (M -1)ν δ (M -1)τ )r * = p ⊕ q r * . Moreover, r also commutes with q , i.e. q r = rq . Since, (a ⊕ b) * = a * (ba * ) * , therefore s * = (p ⊕ q r * ) * = p * (q r * p * ) * . Since rp = pr, then r * p * = (r ⊕ p) * (see [START_REF] Cohen | Algebraic Tools for the Performance Evaluation of Discrete Event Systems[END_REF]Lemma3 ]). Finally, one also have (ab * ) * = e ⊕ a(a ⊕ b) * , therefore, we can write s * = p * (q (r ⊕ p) * ) * = p * (e ⊕ q (q ⊕ r ⊕ p) * ).

Since (q ⊕ r ⊕ p) is a conservative polynomial, then (q ⊕ r ⊕ p) * is a periodic series (see Prop. 5). Since the product of periodic series is periodic too, the Kleene star of a conservative and ultimately periodic series is an ultimately periodic series. 

abx c ⇐⇒ x b • \a • \c (11) xba c ⇐⇒ x c • /a • /b (12) (a ⊕ b)x c ⇐⇒ a • \c ∧ b • \c (13) x(a ⊕ b) c ⇐⇒ c • /a ∧ c • /b (14) 
The dioid of E-operators denoted E is complete. It is then possible to define the residual mappings of L a and R a on E. More precisely, concerning the elementary operators of E, we obtain the following results.

Proposition 8: Let us consider w ∈ E an E-operator. We have :

γ n • \w = γ -n w w • /γ n = wγ -n (15) 
µ m • \w = β m γ m-1 w w • /µ m = wβ m (16) 
β b • \w = µ b w w • /β b = wγ b-1 µ b (17) 
Proof: Since operator γ n is invertible (γ n γ -n = γ -n γ n = e), then we obtain [START_REF] Hardouin | Observer Design for (max,+) Linear Systems[END_REF]. For ( 16), the right product by µ m is invertible since β m µ m = e. For the left product, the residual mapping satisfies

µ m • \w = {v ∈ E|µ m v w}.
Let us remind that w 1 , w 2 ∈ E, then w 1 w 2 ⇐⇒ F w 1 ≥ F w 2 . Therefore, we also can express the residual mapping as

µ m • \w = {v ∈ E|F µmv ≥ F w } = {v ∈ E|m.F v ≥ F w } = {v ∈ E|F v ≥ F w /m} Therefore, the operator function of µ m • \w satisfies ∀k ∈ Z, F µm• \w (k) ≥ F w (k)/m
July 17, 2012 DRAFT Since an operator function is defined on Z, it is equivalent to, ∀k ∈ Z

F µm• \w (k) = F w (k)/m = (F w (k) + m -1)/m It comes that µ m • \w = β m γ m-1 w.
For [START_REF] Houssin | Control of (max,+)-linear systems minimizing delays[END_REF], we know that the left product by β b is invertible. For the right product, we have

w • /β b = {v ∈ E|F vβ b ≥ F w } = {v ∈ E|∀k ∈ Z, F v ( k/b ) ≥ F w (k)}.
Therefore, the operator function of w • /β b has to satisfy the following constraints

0 ≤ k ≤ b -1, F w• /β b (0) ≥ F w (k) b ≤ k ≤ 2b -1, F w• /β b (1) ≥ F w (k) 2b ≤ k ≤ 3b -1, F w• /β b (2) ≥ F w (k) ... Since F w is a not decreasing function, F w• /β b satisfies F w• /β b (0) = F w (b -1), F w• /β b (1) = F w (2b -1) 
... 

(γ 1 µ 2 ) • \(γ 2 β 3 µ 4 ) = µ 2 • \(γ 1 • \(γ 2 β 3 µ 4 )) = µ 2 • \(γ -1 (γ 2 β 3 µ 4 )) = β 2 γ 1 (γ 1 β 3 µ 4 ) = β 2 γ 2 β 3 µ 4 = γ 1 β 2 β 3 µ 4 = γ 1 β 6 µ 4 = γ 1 β 3 µ 2 Let us note that the canonical form of γ 1 β 3 µ 2 is γ 1 µ 2 β 3 γ 1 ⊕ γ 2 µ 2 β 3 = γ 1 ∇ 2|3 γ 1 ⊕ γ 2 ∇ 2|3 .
Since residuation is not an exact inversion, we can check here that (γ

1 µ 2 )[(γ 1 µ 2 ) • \(γ 2 β 3 µ 4 )] = (γ 2 β 3 µ 4 )
. Indeed, we obtain 

(γ 1 µ 2 )[(γ 1 µ 2 ) • \(γ 2 β 3 µ 4 )] = (γ 1 µ 2 )[γ 1 β 3 µ 2 ] = γ 3 ∇ 4|3 γ 1 ⊕ γ 5 ∇ 4|3 , whereas the canonical form of γ 2 β 3 µ 4 is γ 2 ∇ 4|3 γ 2 ⊕ γ 3 ∇ 4|3 γ 1 ⊕ γ 4 ∇ 4|3 .
= i γ n i ∇ m|b γ n i and w 2 = j γ n j ∇ M |B γ n j , then w 2 • \w 1 = [ j γ n j ∇ M |B γ n j ] • \[ i γ n i ∇ m|b γ n i ] = j [γ n j ∇ M |B γ n j ] • \[ γ n i ∇ m|b γ n i ] = j i γ -n j µ B β M γ M -1 γ -n j γ n i ∇ m|b γ n i
It is then a finite inf of periodic E-operators, that is also a periodic E-operator thanks to Prop.

2.

B. Residuation in E per δ

Thanks to ( 13) and ( 14), we can express the residuation of the product of balanced polynomials.

Let p 1 = w 1 i δ t 1 i and p 2 = w 2 j δ t 2 j be two balanced polynomials in E per δ . Then, we can write p 2 • \p 1 and p 1 • /p 2 as

p 2 • \p 1 = ( j w 2 j δ t 2 j ) • \[ i w 1 i δ t 1 i ] = j (w 2 j δ t 2 j ) • \[ i w 1 i δ t 1 i ] = j [ i (w 2 j • \w 1 i )δ t 1 i -t 2 j ]
and

p 1 • /p 2 = j [ i (w 1 i • /w 2 j )δ t 1 i -t 2 j ] .
The computation of operations • \ and • / on polynomials lies on the residuation of coefficients in E per , and it is then equivalent to an infimum operation on some polynomials in E per δ . When we extend the computation of operations • \ and • / to ultimately periodic series of E per δ , we obtain the next result that we can not show here. As for polynomials, the residuation of two periodic series is equivalent to compute an infimum of a finite set of ultimately periodic series. 

C. Example

We will apply our work to obtain an output feedback control for the B-TWEG of Fig. 10.

First, we state the transfer relation of Fig. 2 in its canonical form. In example 4 we obtained x 4 = µ 3 (γ 1 δ 2 ) * β 2 δ 2 x 1 ⊕ β 2 γ 1 δ 1 (γ 2 δ 1 ) * µ 3 x 1 , i.e. x 4 = Hx 1 . The gain of series H is clearly the gain of all paths from t 1 to t 4 , Γ(H) = 3/2. Series H is depicted in its 3D representation in Fig. 10. The left and the right canonical forms of H are given below (where coefficients are also described in their canonical form in E per )

H = p ⊕ q(γ 2 δ 3 ) * = p ⊕ (γ 1 δ 1 ) * q with p = ∇ 3|2 δ 2 ⊕ γ 2 ∇ 3|2 γ 1 δ 3 ⊕ γ 3 ∇ 3|2 δ 4 ⊕γ 4 ∇ 3|2 γ 1 δ 5 ⊕ (γ 5 ∇ 3|2 γ 1 ⊕ γ 6 ∇ 3|2 )δ 6 q = [(γ 6 ∇ 3|2 γ 1 ⊕ γ 8 ∇ 3|2 )δ 7 ⊕(γ 7 ∇ 3|2 γ 1 ⊕ γ 9 ∇ 3|2 )δ 8 ] q = [(γ 6 ∇ 3|2 γ 1 ⊕ γ 8 ∇ 3|2 )δ 7 ]
The left and the right slopes are given by σ r (H) = 3/2 and σ l (H) = 1/1. Thanks to results obtained in [START_REF] Cottenceau | Model Reference Control for Timed Event Graphs in Dioids[END_REF], we can compute the greatest neutral output feedback for the B-TWEG described by the transfer matrix H. From a practical point of view, it is the slowest July 17, 2012 DRAFT controller that we can add between the output and the input so that the closed loop system has the same behavior as the system alone. The benefit from this controller is to reduce the internal stocks as much as possible. By knowing H, this controller is expressed by (see [START_REF] Cottenceau | Model Reference Control for Timed Event Graphs in Dioids[END_REF]) F = (H • \H) • /H. For the B-TWEG of Fig. 2, the computation gives

F = γ 3 ∇ 2|3 γ 1 δ 0 ⊕ γ 4 ∇ 2|3 δ 2 ⊕ (γ 2 δ 3 ) * [γ 6 ∇ 2|3 δ 4 ] = γ 3 ∇ 2|3 γ 1 δ 0 ⊕ γ 4 ∇ 2|3 δ 2 ⊕ [γ 6 ∇ 2|3 δ 4 ](γ 3 δ 3 ) * .
The controller is described by an ultimately periodic series the slopes of which are σ r ( F ) = 3/3 and σ l ( F ) = 3/2. We obtain naturally that Γ( F ) = 2/3 is equal to 1/Γ(H) : the supplementary circuit due to the feedback loop is neutral, and the closed-loop system is still a B-TWEG. The transfer series of F is described in Fig. 11. Controller F also can be described by a B-TWEG which is depicted in Fig. 12. The grey zone corresponds to the realization of controller F . 

Figure 1 .

 1 Figure 1. Weighted Event Graph

Figure 2 .

 2 Figure 2. Balanced Timed and Weighted Event Graph

Theorem 1 :

 1 On a complete dioid D, the implicit equation x = ax ⊕ b has x = a * b as least solution.

  3). We can model a path of a B-TWEG by a product of operators in O, the synchronization of parallel paths by a July 17, 2012 DRAFT sum ⊕ of operators, and the circuits by the Kleene star of some operators. Each elementary path t i → p k → t j of a B-TWEG, where M 0 (p k ) is the initial marking of place p k and τ = ∆(p k )

Theorem 3 (

 3 Transfer matrix of a B-TWEG): The behavior of a B-TWEG is described by a matrix the elements of which belong to the rational closure of the set of operators O M,B = {ε, e, γ 1 , δ

1 )

 1 Event operators: The set of operators generated by sum and composition of operators in γ n , µ m and β b has a dioid structure. Definition 7 (Dioid of E-operators E): We denote by E the dioid of operators obtained by sums and compositions of operators in {ε, e, γ n , µ m , β b }, with n ∈ Z, and m, b ∈ N * . The elements of E are called E-operators hereafter.Dioid E is a complete subdioid of O (additive operators). Since the • operation is not commutative on E, checking the equality of two E-operators is not immediate. Nevertheless, the comparison of E-operators is possible thanks to an associate map called operator function. Since an E-operator w ∈ E induces modifications only on the event numbering (no time shift), we can describe its behavior by the means of a counter-to-counter function denoted F w : Z → Z, k i → k o which maps an input counter value to an output counter value. For an E-operator, this input-output relation does not depend on time. An E-operator can be considered as an instantaneous system.

  On the graphical representation, the axis are labeled by I-Count (Input Count) and O-Count (Output Count).

Figure 3 .

 3 Figure 3. Representation of F µ 2 β 3 γ 1 and F γ 2 β 3 µ 4

Figure 4 .

 4 Figure 4. Representation of F µ 3 β 2 γ 1 ⊕γ 2 µ 3 β 2 = F β 2 γ 1 µ 3

Remark 4 :Definition 9 (

 49 Due to the structural definition of the subclass of B-TWEGs (see Def. 2), the parallel paths have the same gain. The periodicity of E-operators is therefore kept by the structural compositions of Balanced TWEGs. Said differently, the E-operators generated by B-TWEGs are periodic. A k-periodic E-operator w ∈ E per can be handled by the means of a finite representation : a pair (k, k ) ∈ N 2 describing the gain Γ(w) = k /k and the values of F w (i) for one period i ∈ {0, ..., k -1}. The canonical form of a periodic function is the one for which the period is minimal. Canonical form of w ∈ E per ): A periodic E-operator w s.t. Γ(w) = k /k has a canonical form which is given by w = i=N i=1 γ n i ∇ m|b γ n i with ∇ m|b µ m β b , m/b = k /k and N, b are minimal.

Figure 5 .

 5 Figure 5. Input-output equivalence for E-operators :γ 2 β3µ4 = γ 2 ∇ 4|3 γ 2 ⊕ γ 3 ∇ 4|3 γ 1 ⊕ γ 4 ∇ 4|3 .

Figure 6 .

 6 Figure 6. 3D representation of γ 2 β3µ4δ 5

Figure 7 .

 7 Figure 7. Simplifications in E δ

Example 8 :

 8 Fig 9 gives the graphical description of s

Figure 9 .

 9 Figure 9. Ultimately periodic series in Eper δ

  July 17, 2012 DRAFT means that ∀b, L a (x) b and R a (x) b have maximal solutions, that are respectively denoted L a (b) = a • \b = {x|ax b} and R a (b) = b • /a = {x|xa b}. Mappings L a and R a are said residual mappings of L a et R a . When the dioid product is commutative, then L a = R a . Theorem 4 ([3] [1]): On a complete dioid D,

Example 10 :

 10 i.e. F w• /β b (k) = F w (b.k + (b -1)), which amounts to w • /β b = wγ b-1 µ b . Let us develop the computation of an example : (γ 1 µ 2 ) • \(γ 2 β 3 µ 4 ) ∈ E. By applying results from Prop. 8 and from Prop. 1, we obtain

Assertion 1 :

 1 Let s 1 and s 2 be two ultimately periodic series ofE per δ . If σ r (s 1 ) ≥ σ r (s 2 ) then s 1 •/s 2 and s 2 • \s 1 are ultimately periodic series of E per δ such thatσ r (s 1 • /s 2 ) = σ r (s 1 ) Γ(s 1 • /s 2 ) = Γ(s 1 )/Γ(s 2 ) σ r (s 2 • \s 1 ) = σ r (s 1 ) Γ(s 2 • \s 1 ) = Γ(s 1 )/Γ(s 2 ) If σ r (s 1 ) < σ r (s 2 ) then s 1 • /s 2 = s 2 • \s 1 = ε.July 17, 2012 DRAFT

Figure 10 .

 10 Figure 10. Transfer series of the B-TWEG of Fig. 2

Figure 11 .

 11 Figure 11. Transfer series of the optimal neutral output feedback for the B-TWEG of Fig.2

Figure 12 .

 12 Figure 12. Greatest neutral output feedback

  1 , µ 2 , ..., µ M , β 2 , ..., β B } where B = max i w o (p i ) and M = max i w i (p i ) with p i ∈ P .

Proof: For each place p k we associate an operator µ m γ n β b δ t (see

[START_REF] Cohen | Algebraic Tools for the Performance Evaluation of Discrete Event Systems[END_REF]

). Then, the different graph compositions (parallel, serial, loop) are expressed by operations in {⊕, •, * }. Since a B-TWEG is a finite graph, the rationality is straightforward. July 17, 2012 DRAFT III. THREE DIMENSIONAL REPRESENTATION OF OPERATORS According to (3) in Prop. 1, operator δ 1 can commute with any simple or composed event operator. For instance, δ 1

  Let us consider w 1 , w 2 ∈ E per . Then w 2 • \w 1 and w 1 • /w 2 are also periodic Eoperators such that Γ(w 2 • \w 1 ) = Γ(w 1 )/Γ(w 2 ) and Γ(w 1 • /w 2 ) = Γ(w 1 )/Γ(w 2 ). Thanks to th. 4 and Prop. 8, and since we can write periodic E-operators as finite sums, w 1

	Proposition 9: Proof:	
	July 17, 2012	DRAFT

A counter function x : Z → Z, t → x(t) gives the cumulative number of occurrences of the events labeled x at date t. Such a function plays the role of signal.

Where ε (resp. e) is the null (resp. neutral) operator.[START_REF] Gaubert | Théorie des systèmes linéaires dans les dioïdes[END_REF] DRAFT

x denotes the greatest integer less than or equal to x.July 17, 2012 DRAFT

Thus, we also reduce the problems of liveness.

Operators that act only on the event numberingJuly 17, 2012 DRAFT

From a graphical point of view, the valuations are depicted directly on the arcs July 17, 2012 DRAFT

Except source transitions. July 17, 2012 DRAFT

epigraph(Fw 1 ) (ki, k) ∈ Z 2 s.t. k ≥ Fw 1 (ki).July 17, 2012 DRAFT

This assertion is true only for the earliest functioning. July 17, 2012 DRAFT

July 17, 2012 DRAFT

Proposition 7 (Transfer of a B-TWEG):

The transfer matrix of a B-TWEG is composed of ultimately periodic series of E per δ .

Proof: We recall first that all the elementary operators γ n , δ t , µ m and β b can be considered as ultimately periodic series. Then, due to the specific structure of B-TWEGs, the modeling by series in E per δ is such that:

• the sum (⊕) of series in E per δ are necessarily done on series with the same gain (balanced property). The periodicity is kept by the balanced synchronization (see Prop. 4)

• the product of ultimately periodic series is done when we the serial composition of systems arises, and the product keeps the periodicity property (see Prop. 4)

• the Kleene star is done only on conservative ultimately periodic series since the loops of a B-TWEG are neutral. (see Prop. 6) Remark 10 (Liveness): The liveness of a B-TWEG depends on the initial marking of the circuits. If a B-TWEG is not alive, then the transfer relation computed in E per δ will contain some degenerate periodic series such as i w i δ t i ⊕ W (δ 1 ) * = p ⊕ W (δ 1 ) * , where w i and W are periodic E-operators in E per . The last monomial W (δ 1 ) * , that can be considered as W δ +∞ , describes the situation where, after a finite number of output events, the B-TWEG is definitely blocked, and the system can not release output event anymore : some events are infinitely delayed. Prop. 7 considers the cases of ultimately blocked B-TWEGs as some degenerate ultimately periodic cases.

V. CONTROL OF B-TWEGS

The input-output model obtained in the previous section for B-TWEGs allows us to consider some model matching control problems such as the ones studied in [START_REF] Cottenceau | Model Reference Control for Timed Event Graphs in Dioids[END_REF] [START_REF] Maia | Optimal Closed-Loop Control for Timed Event Graphs in Dioid[END_REF] [17] [START_REF] Hardouin | Observer Design for (max,+) Linear Systems[END_REF]. We only need to express the residuation of the product in E per δ . The first step is to express the residuation of the product in E per .

A. Residuation in E per

On a complete dioid, the product is not invertible. But the theory of residuation developped in [START_REF] Blyth | Residuation Theory[END_REF], and applied to idempotent semirings in [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF], can be used to find optimal solutions to some inequalities. On a complete dioid, mappings L a : x → ax and R a : x → xa are residuated. It