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RANDOM WEIGHTED SOBOLEV INEQUALITIES ON Rd AND

APPLICATION TO HERMITE FUNCTIONS

by

Aurélien Poiret, Didier Robert & Laurent Thomann

Abstract. — We extend a randomisation method, introduced by Shiffman-Zelditch and developed by
Burq-Lebeau on compact manifolds for the Laplace operator, to the case of Rd with the harmonic oscillator.
We construct measures, thanks to probability laws which satisfy the concentration of measure property,
on the support of which we prove optimal weighted Sobolev estimates on R

d. This construction relies on
accurate estimates on the spectral function in a non-compact configuration space. As an application, we
show that there exists a basis of Hermite functions with good decay properties in L

∞(Rd), when d ≥ 2.

1. Introduction and results

1.1. Introduction. — During the last years several papers show some basic results concerning

P.D.E. and Sobolev spaces can be strikingly improved using randomizationn techniques. In particular

Burq-Lebeau developed in [2] a randomisation method based on the Laplace operator on a compact

Riemannian manifold, and showed that almost surely, a function enjoys better Sobolev estimates than

expected, using ideas of Shiffman-Zelditch [18]. This approach depends heavily on spectral properties

of the operator one considers. In this paper we are interested in estimates in Sobolev spaces based on

the harmonic oscillator in L2(Rd)

H = −∆+ |x|2 =
d
∑

j=1

(−∂2j + x2j ).

We get optimal stochastic weighted Sobolev estimates on Rd using the Burq-Lebeau method. Indeed

we show that there is a unified setting for these results, including the case of compact manifolds.

We also make the following extension: In [2], the construction of the measures relied on Gaussian

random variables, while in our work we consider general random variable which satisfy concentration
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of measure estimates (including discrete random variables, see Section 2). However, we obtain the

optimal estimates only in the case of the Gaussians.

We will see that the extension from a compact manifold to an operator on Rd with discrete spectrum

is not trivial because of the complex behaviour of the spectral function on a non-compact configuration

space.

In our forthcoming paper [15], we will give some applications to the well-posedness of nonlinear

Schrödinger equations with Sobolev regularity below the optimal deterministic index.

Most of the results stated here can be extended to more general Schrödinger Hamiltonians−△+V (x)

with confining potentials V . This will be detailed in [16].

Let d ≥ 2. We want to define probability measures on finite dimensional subspaces Eh ⊂ L2(Rd),

based on spectral projections with respect to H. We denote by {ϕj , j ≥ 1} an orthonormal basis

of L2(Rd) of eigenvectors of H (the Hermite functions), and we denote by {λj , j ≥ 1} the non

decreasing sequence of eigenvalues (each is repeated according to its multiplicity): Hϕj = λjϕj .

For h > 0, we define the interval Ih = [ahh ,
bh
h [ and we assume that ah and bh satisfy, for some

a, b,D > 0, δ ∈ [0, 1],

(1.1) lim
h→0

ah = a, lim
h→0

bh = b, 0 < a ≤ b and bh − ah ≥ Dhδ,

with any D > 0 if δ < 1 and D ≥ 2 in the case δ = 1. This condition ensures that Nh, the

number (with multiplicities) of eigenvalues of H in Ih tends to infinity when h → 0. Indeed, we can

check that Nh ∼ ch−d(bh − ah), in particular lim
h→0

Nh = +∞, since d ≥ 2. In the sequel, we write

Λh = {j ≥ 1, λj ∈ Ih} and Eh = span{ϕj , j ∈ Λh}, so that Nh = #Λh = dim Eh. Finally, we denote

by Sh =
{

u ∈ Eh : ‖u‖L2(Rd) = 1
}

the unit sphere of Eh.

Let (γn)n∈N be a sequence so that there exist K0,K1 > 0

(1.2)
K1

Nh

∑

j∈Λh

|γj|2 ≤ |γn|2 ≤
K0

Nh

∑

j∈Λh

|γj |2, ∀n ∈ Λh, ∀h ∈]0, 1].

This so-called “squeezing” condition means that on each level of energy λn, n ∈ Λh, the coefficients |γk|
have almost the same size. For instance (1.2) holds if there exists (dh)h∈]0,1] so that γn = dh for all

n ∈ Λh.

Consider a probability space (Ω,F ,P) and let {Xn, n ≥ 1} be independent standard complex

Gaussians NC(0, 1). In fact, in our work we will consider more general probability laws, which satisfy

concentration of measure estimates (see Assumption 1), but for sake of clarity, we first state the results

in this particular case. If (γn)n∈N satisfies (1.2), we define the random vector in Eh
vγ(ω) := vγ,h(ω) =

∑

j∈Λh

γjXj(ω)ϕj .
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We define a probability measure Pγ,h on Sh by: for all measurable and bounded function f : Sh −→ R

∫

Sh

f(u)dPγ,h(u) =

∫

Ω
f

(

vγ(ω)

‖vγ(ω)‖L2(Rd)

)

dP(ω).

We can check that in the isotropic case (γj = 1√
N

for all j ∈ Λh), Pγ,h is the uniform probability

on Sh (see Appendix C).

Finally, let us recall the definition of harmonic Sobolev spaces for s ≥ 0, p ≥ 1.

(1.3) Ws,p = Ws,p(Rd) =
{

u ∈ Lp(Rd), Hs/2u ∈ Lp(Rd)
}

,

Hs = Hs(Rd) = Ws,2.

The natural norms are denoted by ‖u‖Ws,p and up to equivalence of norms we have for 1 < p < +∞
‖u‖Ws,p = ‖Hs/2u‖Lp ≡ ‖(−∆)s/2u‖Lp + ‖〈x〉su‖Lp .

1.2. Main results of the paper. —

1.2.1. Estimates for frequency localised functions. — Our first result gives properties of the

elements on the support of Pγ,h, which are high frequency localised functions. Namely

Theorem 1.1. — Let d ≥ 2. Assume that 0 ≤ δ < 2/3 in (1.1). Then there exist 0 < C0 < C1,

c1 > 0 and h0 > 0 such that for all h ∈]0, h0].
Pγ,h

[

u ∈ Sh : C0| log h|1/2 ≤ ‖u‖Wd/2,∞(Rd) ≤ C1| log h|1/2
]

≥ 1− hc1 .

Moreover the estimate from above is satisfied for any δ ≥ 1 with D large enough.

It is clear that under condition (1.2), there exist 0 < C2 < C3, so that for all u ∈ Sh, and s ≥ 0

C2h
−s/2 ≤ ‖u‖Hs(Rd) ≤ C3h

−s/2,

since all elements of Sh oscillate with frequency h−1/2. Thus Theorem 1.1 shows a gain of d/2

derivatives in L∞, and this induces a gain of d derivatives compared to the usual deterministic Sobolev

embeddings. This can be compared with the results of [2] where the authors obtain a gain of d/2

derivatives on compact manifolds: this comes from different behaviours of the spectral function, see

Section 3. Notice that the bounds in Theorem 1.1 (and in the results of [2] as well) do not depend

on the length of the interval of the frequency localisation Ih (see (1.1)), but only on the size of the

frequencies. This is a consequence of the randomisation, and from the bound (3.15).

We will see in Theorem 4.1 that the upper bound in Theorem 1.1 holds for any 0 ≤ δ ≤ 1 and for

more general random variables X which satisfy the concentration of measure property. However, to

prove the lower bound (see Corollary 4.8), we have to restrict to the case of Gaussians: in the general

case, under Assumption 1, we do not reach the factor | lnh|1/2. Following the approach of [18, 2],

we first prove estimates of ‖u‖Wd/2,∞(Rd) with large r and uniform constants (see Theorem 4.12), and

which are essentially optimal for general random variables (see Theorem 4.13).
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The condition δ < 2/3 is needed to prove the lower bound, thanks to a reasonable functional calculus

based on the harmonic oscillator (see Appendix B).

Finally we point out that in a very recent paper [6], Feng and Zelditch prove similar estimates for

the mean and median for the L∞-norm of random holomorphic fields.

1.2.2. Global Sobolev estimates. — Using a dyadic Littlewood-Paley decomposition, we now

give general estimates in Sobolev spaces; we refer to Subsection 4.1 for more details. For s ∈ R,

p, q ∈ [1,+∞], we define the harmonic Besov space by

(1.4) Bs
p,q(R

d) =
{

u =
∑

n≥0

un :
∑

n≥0

2nqs/2‖un‖qLp(Rd)
< +∞

}

,

where the un have frequencies of size ∼ 2n. The space Bs
p,q(R

d) is a Banach space with the norm

in ℓq(N) of {2ns/2‖un‖Lp(Rd)}n≥0.

We assume that γ satisfies (1.2) and
∑

n≥0

|γ|Λn < +∞.

Then we set

vγ(ω) =

+∞
∑

j=0

γjXj(ω)ϕj ,

so that almost surely vγ ∈ B0
2,1(R

d) and its probability law defines a measure µγ in B0
2,1(R

d). Notice

that we have

Hs(Rd) ⊂ B0
2,1(R

d) ⊂ L2(Rd), ∀s > 0.

We have the following result

Theorem 1.2. — For every (s, r) ∈ R2 such that r ≥ 2 and s = d(12 − 1
r ) there exists c0 > 0 such

that for all K > 0 we have

(1.5) µγ

[

u ∈ B0
2,1(R

d) : ‖u‖Ws,r(Rd) ≥ K‖u‖B0
2,1(R

d)

]

≤ e−c0K2
.

In particular µγ-almost all functions in B0
2,1(R

d) are in Ws,r(Rd).

If γ satisfies (1.2) and the (weaker) condition
∑

n≥0

|γ|2Λn
< +∞, then µγ defines a probability measure

on L2(Rd) and we can prove the estimate

(1.6) µγ

[

u ∈ L2(Rd) : ‖u‖Ws,r(Rd) ≥ K‖u‖L2(Rd)

]

≤ e−c0K2
,

with s = d(12 − 1
r ) when r < +∞ and s < d/2 in the case r = +∞. From this result it is easy to

deduce space-time estimates (Strichartz) for the linear flow e−itHu, which can be used to study the

nonlinear problem. This will be pursued in [15].
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1.2.3. An application to Hermite functions. — Similarly to [2], the previous results give some

information on Hilbertian bases. We prove that there exists a basis of Hermite functions with good

decay properties.

Theorem 1.3. — Let d ≥ 2. Then there exists a Hilbertian basis of L2(Rd) of eigenfunctions of the

harmonic oscillator H denoted by (ϕn)n≥1 such that ‖ϕn‖L2(Rd) = 1 and so that for some M > 0 and

all n ≥ 1,

(1.7) ‖ϕn‖L∞(Rd) ≤Mn−1/4(1 + log n)1/2.

In other words, all elements of the this basis are decreasing in L∞(Rd) norm. This seems not known

before for d ≥ 2.

We refer to Theorem 5.1 for a more quantitative result, and where we prove that for a natural

probability measure, almost all Hermite basis satisfies the property of Theorem 1.3 (see also Corol-

lary 4.14). For the proof of this result, we need the finest randomisation with δ = 1 and D = 2 in (1.1),

so that Pγ,h is a probability measure on each eigenspace.

The result of Theorem 1.3 does not hold true in dimension d = 1. Indeed, in this case one can prove

the optimal bound (see [11])

(1.8) ‖ϕn‖L∞(R) ≤ Cn−1/12.

We stress that we don’t now any explicit example of (ϕn)n≥1 which satisfy the conclusion of the

Theorem. For instance, the basis obtained by tensorisation of the 1D basis does not realise (1.7)

because of (1.8).

Let us compare (1.7) with the general known bounds on Hermite functions. We have Hϕn = λnϕn,

with λn ∼ cn1/d, therefore (1.7) can be rewritten

(1.9) ‖ϕn‖L∞(Rd) ≤Mλ
− d

4
n (1 + log λn)

1/2.

For a general basis with d ≥ 2, Koch and Tataru [11] (see also [12]) prove that

‖ϕn‖L∞(Rd) ≤ Cλ
d
4
− 1

2
n .

which shows that (1.9) induces a gain of d − 1 derivatives compared to the general case. Observe

also that the basis of radial Hermite functions does not satisfy (1.7) in dimension d ≥ 2. As in [2,

Théorème 8], it is likely that the log term in (1.7) can not be avoided.

1.3. Notations and plan of the paper. —

Notations. — In this paper c, C > 0 denote constants the value of which may change from line to line.

These constants will always be universal, or uniformly bounded with respect to the other parameters.

We denote by H = −∆+|x|2 =∑d
j=1(−∂2j +x2j) the harmonic oscillator on Rd, and for s ≥ 0 we define

the Sobolev space Hs by the norm ‖u‖Hs = ‖Hs/2u‖L2(Rd) ≈ ‖u‖Hs(Rd)+‖〈x〉su‖L2(Rd). More generally,

we define the spaces Ws,p by the norm ‖u‖Ws,p = ‖Hs/2u‖Lp(Rd). We write Lr,s(Rd) = Lr(Rd, 〈x〉sdx),
and its norm ‖u‖r,s.
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The rest of the paper is organised as follows. In Section 2 we describe the general probabilistic setting

and we prove large deviation estimates on Hilbert spaces. In Section 3 we state crucial estimates on

the spectral function of the harmonic oscillator. Section 4 is devoted to the proof of weighted Sobolev

estimates and of the mains results. In Section 5 we prove Theorem 1.3.

Acknowledgements. — The authors thank Nicolas Burq for discussions on this subject and for his

suggestion to introduce condition (1.2).

2. A general setting for probabilistic smoothing estimates

Our aim in this section is to unify several probabilistic approaches to improve smoothing estimates

established for dispersive equations. This setting is inspired by papers of Burq-Lebeau [2], Burq-

Tzvetkov [3, 4] and their collaborators.

2.1. The concentration of measure property. —

Definition 2.1. — We say that a probability measure ν on RN satisfies the concentration of measure

property if there exists constants c, C > 0 independent of N ∈ N such that for all Lipschitz and convex

function F : RN −→ R

(2.1) ν
[

X ∈ R
N :

∣

∣F (X)− E(F (X))
∣

∣ ≥ r
]

≤ c e
− Cr2

‖F‖2
Lip , ∀r > 0,

where ‖F‖Lip is the best constant so that |F (X)− F (Y )| ≤ ‖F‖Lip‖X − Y ‖ℓ2 .

For a comprehensive study of these phenomena, we refer to the book of Ledoux [13]. Notice that

one of the main features of (2.1) is that the bound is independent of the dimension of space, which

enables to take N large.

Typically, in our applications, F will be a norm in RN .

Let us give some significative examples of such measures.

• If ν is a probability measure on RN which satisfies a Log-Sobolev estimate with constant C⋆ > 0,

then (2.1) is satisfied for all Lipschitz function F : RN −→ R (see [1, Théorème 7.4.1, page 123]).

Recall that a probability measure ν on RN satisfies a Log-Sobolev estimate if there exists C > 0 so

that for all f ∈ Cb(RN )

(2.2)

∫

RN

f2 ln
( f2

E(f2)

)

dν(x) ≤ C

∫

RN

|∇f |2dν(x), E(f2) =

∫

RN

f2dν(x).

Such a property is usually difficult to check. See [1] for more details. Notice that the convexity of F

is not needed.

• A probability measure of the form dν(x) = cα,N exp
(

−∑N
j=1 |xj |α

)

dx, x ∈ RN , satisfies (2.1) if

and only if α ≥ 2 (see [1, page 109]).
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• Assume that ν is a measure on RN with bounded support, then ν satisfies the concentration of

measure property. This is the Talagrand theorem [19] (see also [20] for an introduction to the topic).

Assumption 1. — Consider a probability space (Ω,F ,P) and let {Xn, n ≥ 1} be a sequence of

independent, identically distributed, real or complex random values. In the sequel we can assume that

they are real with the identification C ≈ R2. Moreover, we assume that for all n ≥ 1,

(i) The joint law ν of Xn satisfies the concentration of measure property in the sense of Defini-

tion 2.1.

(ii) The r.v. Xn is centred: E(Xn) = 0.

(iii) The r.v. Xn is normalized: E(X2
n) = 1.

Under Assumption 1, for all n ≥ 1, and ε > 0 small enough

(2.3) E(eεX
2
n) < +∞.

Indeed, by Definition 2.1 with F (X) = Xn

E(eεX
2
n) =

∫ +∞

0
νn( e

CεX2
n > λ )dλ = 1 +

∫ +∞

1
νn
(

|Xn| >
√

lnλ

ε

)

dλ ≤ 1 + 2

∫ +∞

1
λ−

1
εC dλ < +∞.

Next, with the inequality s|x| ≤ εx2/2+ s2/(2ε), we obtain that for all s ∈ R, E(esXn) ≤ CeCs2 which

in turn implies (see [14, Proposition 46]) that there exists C > 0 so that for all s ∈ R

(2.4) E(esXn) ≤ eCs2 .

Remark 2.2. — Condition (2.4) is weaker that (2.2): a family of independent centred r.v. {Xn, n ≥
1} which satisfies (2.4) does not necessarily satisfy (2.1) for all Lipschitz function F . Indeed, using

Kolmogorov estimate, one can prove (see [13]) that condition (2.1) is equivalent to

(2.5)

∫

Rd

esFdν ≤ eCs2‖F‖2Lip , ∀ s ∈ R,

for all Lipschitz function F with ν-mean 0.

We conclude with the elementary property

Lemma 2.3. — Assume that {Xn} satisfies (2.4) and that {αj , 1 ≤ j ≤ N} are real numbers such

that
∑

1≤j≤N

α2
j ≤ 1. Then X :=

∑

1≤j≤N

αjXj satisfies (2.4) with the same constant C.

Proof. — It is a direct application of (2.5) with F (X) =

N
∑

j=1

αjXj.
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2.2. Probabilities on Hilbert spaces. — In this sub-section K is a separable complex Hilbert

space and K is a self-adjoint, positive operator on K with a compact resolvent. We denote by {ϕj , j ≥
1} an orthonormal basis of eigenvectors of K, Kϕj = λjϕj , and {λj , j ≥ 1} is the non decreasing

sequence of eigenvalues of K (each is repeated according to its multiplicity). Then we get a natural

scale of Sobolev spaces associated with K defined for s ≥ 0 by Ks = Dom(Ks/2).

Now we want to introduce probability measures on these spaces and on some finite dimensional

spaces of K.

Let us describe in our setting the randomization technique deeply used by Burq-Tzvetkov in [3].

Let γ = {γj}j≥1 a sequence of complex numbers such that
∑

j≥1

λsj |γj|2 < +∞.

We denote by v0γ =
∑

j≥1

γjϕj ∈ Ks, and we define the random vector vγ(ω) =
∑

j≥1

γjXj(ω)ϕj . We

have E(‖vγ‖2K) < +∞, therefore vγ ∈ Ks, a.s. We define the measure µγ on Ks as the law of the

random vector vγ .

2.2.1. The Kakutani theorem. — The following proposition gives some properties of the mea-

sures µγ (see [5] for more details).

Proposition 2.4. — Assume that all random variables Xj have the same law ν.

(i) If the support of ν is R and if γj 6= 0 for all j ≥ 1 then the support of µγ is Ks.

(ii) If for some ε > 0 we have v0γ /∈ Ks+ε then µγ(Ks+ε) = 0.

(iii) Assume that we are in the particular case where dν(x) = cαe
−|x|αdx with α ≥ 2. Let γ = {γj}

and β = {βj} be two complex sequences and assume that

(2.6)
∑

j≥1

(

∣

∣

∣

∣

γj
βj

∣

∣

∣

∣

α/2

− 1

)2

= +∞.

Then the measures µγ and µβ are mutually singular, i.e there exists a measurable set A ⊂ Hs such

that µγ(A) = 1 and µβ(A) = 0.

We give the proof of (iii) in Appendix A.

We shall see now that condition (1.2) can be perturbed so that Proposition 2.4 gives us an infinite

number of mutually singular measures on Ks.

Lemma 2.5. — Let γ satisfying (1.2) and δ = {δn}n≥1 such that |δn| ≤ ε|γn| for every n ≥ n0.

Then for every ε ∈ [0,
√
2− 1[, the sequence γ + δ satisfies (1.2) (with a new constant Kε).

We do not give the details of the proof. From this Lemma and Proposition 2.4 we get an infinite

number of measures µγ with γ satisfying (1.2). Let εj be any sequence such that
∑

j≥1

ε2j = +∞ and

lim sup εj <
√
2−1 and denote by ε⊗γ the sequence εjγj . Then µγ and µγ+ε·γ are mutually singular.
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2.2.2. Measures on the sphere Sh. — Now we consider finite dimensional subspaces Eh of K
defined by spectral localizations depending on a small parameter 0 < h ≤ 1 (h−1 is a measure of

energy for the quantum Hamiltonian K). In the sequel, we use the notations Ih = [ahh ,
bh
h [, Nh, Λh

and Eh introduced in Section 1.1, and we assume that (1.1) is satisfied. Observe that Eh is the spectral

subspace of K in the interval Ih: Eh = ΠhK where Πh is the orthogonal projection on K. For simplicity,

we sometimes denote by N = Nh, Λ = Λh, . . . , with implicit dependence in h. Our goal is to find

uniform estimates in h ∈]0, h0[ for a small constant h0 > 0.

Let us consider the random vector in Eh
(2.7) vγ(ω) := vγ,h(ω) =

∑

j∈Λ
γjXj(ω)ϕj ,

and assume that (1.2) is satisfied. In the sequel we denote by |γ|2Λ =
∑

n∈Λ
γ2n.

Now we consider probabilities on the unit sphere Sh of the subspaces Eh. The random vector vγ
in (2.7) defines a probability measure νγ,h on Eh. Then we can define a probability measure Pγ,h on Sh

as the image of by v 7→ v
‖v‖ . Namely, we have for every Borel and bounded function f on Sh,

(2.8)

∫

Sh

f(w)Pγ,h(dw) =

∫

Eh
f

(

v

‖v‖K

)

νγ,h(dv) =

∫

Ω
f

(

vγ(ω)

‖vγ(ω)‖K

)

P(dω).

Remark that we have

‖vγ(ω)‖2K =
∑

j∈Λ
|γj |2|Xj(ω)|2

and

E(‖vγ‖2K) =
∑

j∈Λ
|γj |2 = |γ|2Λ.

Let us detail two particular cases of interest:

• If |γn| = 1√
N

for all j ∈ Λ and if Xn follows the complex normal law NC(0, 1) then Pγ,h is the

uniform probability on Sh considered in [2]. This follows from (2.8) and property of Gaussian laws.

• Assume that for all n ∈ N, P(Xn = 1) = P(Xn = −1) = 1/2, then Pγ,h is a convex sum of 2N

Dirac measures. Indeed we have ‖vγ(ω)‖2K =
∑

j∈Λ |γj |2 = |γ|2Λ. Denote by (ε(k))1≤k≤2N all the

sequences so that ε
(k)
j = ±1 for all 1 ≤ j ≤ N , and set

Φk =
1

|γ|
∑

j∈Λ
γjε

(k)
j ϕj , 1 ≤ k ≤ 2N .

Then

Pγ,h =
1

2N

2N
∑

k=1

δΦk
.
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To get an optimal lower bound for L∞ estimates we shall need a stronger normal concentration

estimate than estimate given in (2.1). Hence we make the following assumptions:

Assumption 2. — We assume that

(i) The random variables Xj are standard independent Gaussians NC(0, 1).

(ii) The sequence γ satisfies (1.2).

Let L be a linear form on Eh, and denote by eL =
∑

j∈Λh

|L(ϕj)|2. The main result of this section is

the following

Theorem 2.6. — Let L be a linear form on Eh. Under Assumption 1, there exist C1, C2, c1, c2 > 0

and ε0, h0 > 0 so that

(2.9) Pγ,h

[

u ∈ Sh : |L(u)| ≥ t
]

≤ C2e
−c2

N
eL

t2
, ∀ t ≥ 0, ∀h ∈]0, h0],

and such that

(2.10) C1e
−c1

N
eL

t2 ≤ Pγ,h

[

u ∈ Sh : |L(u)| ≥ t
]

, ∀t ∈
[

0, ε0

√
eL√
N

]

, ∀h ∈]0, h0].

Moreover, if Assumption 2 is satisfied, there exist C1, C2, c1, c2, ε0, h0 > 0 so that

(2.11) C1 e
−c1

N
eL

t2 ≤ Pγ,h

[

u ∈ Sh : |L(u)| ≥ t
]

≤ C2 e
−c2

N
eL

t2
, ∀ t ∈ [0, ε0

√
eL ], ∀h ∈]0, h0].

Since Pγ,h is supported by Sh, the bounds in the previous result don’t depend on |γ|Λ. The

restriction on t ≥ 0 in (2.11) is natural, because by the Cauchy-Schwarz inequality we have

|L(u)| ≤ √
eL, ∀u ∈ Sh.

In the applications we give, there is some embedding Ks → C(M), for s > 0 large enough, where

M is a metric space. We have E ⊆ ⋂

s∈RKs, thus we can consider the Dirac evaluation linear form

δx(v) = v(x). In this case we have eL =
∑

j∈Λ
|ϕj(x)|2 = ex, which is usually called the spectral function

of K in the interval I.

For example, one can consider the Laplace-Beltrami operator on compact Riemannian manifolds,

namely K = −△ and Ks = Hs(M) are the usual Sobolev spaces: this is the framework of [2]. In

Section 3 we will apply the result of Theorem 2.6 to the Harmonic oscillator K = −△ + |x|2 on Rd.

In this latter case Ks is the weighted Sobolev space

Ks =
{

u ∈ Hs(Rd), |x|su ∈ L2(Rd)
}

, s ≥ 0.

Remark 2.7. — In the particular case where Pγ,h is the uniform probability on Sh, we have the

explicit explicit computation.

Pγ,h

[

u ∈ Sh : |L(u)| ≥ t
]

= Φ

(

r√
eL

)

,
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where

(2.12) Φ(t) = I[0,1[(t)(1− t2)Nh−1,

and (2.9) follows directly. For a proof, see [2] or in Appendix C of this paper for an alternative

argument.

For the proof of Theorem 2.6 we will need the following result.

Proposition 2.8. — Let L be a linear form on Eh. Then we have the large deviation estimate

P

[

ω ∈ Ω : |L(vγ)| ≥ t
]

≤ 4e
−κ1

N

eL|γ|2
Λ

t2

,

where κ1 =
κ0
4K1

. As a consequence, if νγ,h denotes the probability law of vγ, then

νγ,h

[

w ∈ Eh : |L(w)| ≥ t
]

≤ 4e
−κ1

N

eL|γ|2
Λ

t2

.

Proof. — We have

L(vγ) =
∑

j∈Λ
γnXn(ω)L(ϕn).

It is enough to assume that L(vγ) is real and to estimate P
[

ω ∈ Ω : L(vγ) ≥ t
]

. Using the Markov

inequality, we have for all s > 0

P
[

L(vγ) ≥ t
]

≤ e−st
E(esL(vγ)),

and thanks (1.2) we have
∑

j∈Λ
|γjL(ϕj)|2 ≤ K1

|γ|2Λ
N

∑

j∈Λ
|L(ϕj)|2.

Using Lemma 2.3 we get

P
[

L(vγ) ≥ t
]

≤ e−steκ0K1
eL
N

|γ|2Λs2 ,

and with the choice s = κ0
2

tN
K1eL|γ|2Λ

we obtain P
[

L(vγ) ≥ t
]

≤ e
−κ1

N

|γ|2
Λ
eL

t2

.

It will be useful to show that ‖vγ(ω)‖2K is close to its expectation for large N .

Lemma 2.9. — Let γ satisfying the squeezing condition (1.2). Then then exists c0 > 0 (depending

only on K0 and K1) such that for every ε > 0

P

[

ω ∈ Ω :
∣

∣‖vγ(ω)‖2K − |γ|2Λ
∣

∣ > ε
]

≤ 2e
− εc0N

|γ|2
Λ .

Proof. — It is enough to consider the real case, so we assume that γn and Xn are real and {Xn, n ≥ 1}
have a common law ν. We also assume that |γ|2Λ = 1.

We have

‖vγ(ω)‖2K =
∑

j∈Λ
|γj|2X2

j (ω) :=MN (ω).
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From large number law, ‖vγ(ω)‖2K converges to 1 a.s. To estimate the tail we use the Chernoff large

deviation principle. This applies because from (2.3) we know that f(s) := E(esX
2
1 ) is C2 in ]−∞, s0[

for some s0 > 0.

We reproduce here a well known computation in large deviation theory. Define the cumulant

function g(s) = log(f(s)) which is well defined for s < s0. Now, since the Xj are i.i.d., for t, s ≥ 0 we

have

P
[

MN > t
]

= P
[

esNMN > esNt
]

≤ E(esNMN )e−sNt

=
∏

j∈Λ
e−(Ns|γj |2t−g(Ns|γj |2)).

Next, apply the Taylor formula to g at 0: g(0) = 0, g′(0) = 1 so tτ − g(τ) = (t − 1)τ +O(τ2), hence

there exists s1 > 0 such that for 0 ≤ τ ≤ s1, tτ − g(τ) ≥ (t − 1) τ2 . Then, with t = 1 + ε, and since

N |γj|2 ≤ K0 we get

P
[

MN > 1 + ε
]

≤
∏

j∈Λ
e−εNs|γj|2/2 = e−εsN/2,

provided s > 0 is small enough, but independent of ε > 0 and N ≥ 1. The same computation applied

to −MN gives as well P
[

MN < 1− ε
]

≤ e−εc0N .

Proof of (2.9). — By homogeneity, we can assume that |γ|Λ = 1. Denote by

(2.13) A =
{

ω ∈ Ω :
∣

∣‖vγ(ω)‖2K − 1
∣

∣ ≤ 1/2
}

.

By the Cauchy-Schwarz inequality, for all u ∈ Sh, we obtain |L(u)| ≤ e
1/2
L . Thus in the sequel we can

assume that t ≤ e
1/2
L . Then, from Proposition 2.8 and Lemma 2.9 we have

(2.14) Pγ,h

[

u ∈ Sh : |L(u)| ≥ t
]

= P
[

ω ∈ Ω : |L(v(ω))| ≥ t‖v(ω)‖L2

]

= P
[

(|L(v(ω))| ≥ t‖v(ω)‖L2) ∩A
]

+ P
[

(|L(v(ω))| ≥ t‖v(ω)‖L2) ∩Ac
]

.

Therefore

Pγ,h

[

u ∈ Sh : |L(u)| ≥ t
]

≤ P
[

|L(v(ω))| ≥ t/2
]

+ P(Ac)

≤ C1e
−c1

N
eL

t2
+ 2e−c2N ≤ Ce

−c N
eL

t2
,

which implies (2.9).

We now turn to the proof of (2.10). To begin with, we state the following elementary lemma

Lemma 2.10. — Consider a sequence of random variables, so that for all N ≥ 1, c0 ≤ ‖YN‖2 ≤ C0

and ‖YN‖2+δ ≤ C for some δ > 0. Then there exists η > 0 and ε > 0 so that for all N ≥ 1

P
(

ω ∈ Ω : |YN | > η
)

> ε.
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Proof. — We proceed by contradiction: Assume that for all k ≥ 1 and s > 0 there exists N(s, k) ≥ 1

so that P
(

ω ∈ Ω : |YN(s,k)| > s
)

≤ 1/k, and we assume that N(s, k) is minimal for this property. Fix

A > 0, and let s > A. Then P
(

ω ∈ Ω : |YN(A,k)| > s
)

≤ P
(

ω ∈ Ω : |YN(A,k)| > A
)

≤ 1/k, therefore, we

can assume that the sequence N(s, k) is independent of s ∈ [A,+∞).

By Markov, for all s ≥ A, we get

sP
(

ω ∈ Ω : |YN(A,k)| > s
)

≤ s
‖YN(A,k)‖2+δ

2+δ

〈s〉2+δ
≤ C

〈s〉1+δ
∈ L1(R),

thus by the Lebesgue theorem,
∫ +∞

A
sP
(

ω ∈ Ω : |YN(A,k)| > s
)

ds −→ 0,

when k −→ +∞.

Next, we have
∫ A

0
sP
(

ω ∈ Ω : |YN(A,k)| > s
)

ds ≤
∫ A

0
s ds ≤ A2.

We now use the formula

c20 ≤ ‖YN(A,k)‖22 = 2

∫ +∞

0
sP
(

ω ∈ Ω : |YN(A,k)| > s
)

ds,

which yields a contradiction, if A is fixed small enough, and k → +∞.

As a consequence, we have

Lemma 2.11. — We suppose that Assumption 1 is satisfied. Then there exist C1 > 0, c1 > 0, h0 > 0,

ε0 > 0 such that

P

[

ω ∈ Ω : |L(vγ(ω))| ≥ t
]

≥ C1e
−c1

N

eL|γ|2
Λ

t2

, ∀t ∈
[

0, ε0

√
eL|γ|Λ√
N

]

, ∀h ∈]0, h0].

Proof. — We apply the result of Lemma 2.10 to the random variable

YN =

√
N√

eL|γ|Λ
L(vγ) =

√
N√

eL|γ|Λ
∑

j∈Λ
γjXjL(ϕj).

By (1.2), we clearly have c0 ≤ ‖YN‖2 ≤ C0. Then, by Khinchin, the condition ‖YN‖2+δ ≤ C is also

satisfied.

Proof of (2.10). — We assume that |γ|Λ = 1, and consider the set A defined in (2.13). Then by (2.14)

and the inequality P(B ∩A) ≥ P(B)− P(Ac) we get

Pγ,h

[

u ∈ Sh : |L(u)| ≥ t
]

≥ P
[

(|L(v(ω))| ≥ t‖v(ω)‖L2) ∩A
]

≥ P
[

|L(v(ω))| ≥ 3t/2
]

− P(Ac)

≥ C1e
−c1

N
eL

t2 − 2e−c2N ,
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where in the last line we used Lemma 2.11 and Lemma 2.9. This yields the result if t ≤ ε0
√
eL√
N

with

ε0 > 0 small enough.

We now prove (2.11). To begin with, we can state

Lemma 2.12. — We suppose that Assumption 2 is satisfied. Then there exist C1 > 0, c1 > 0, h0 > 0,

ε0 > 0 such that

P

[

ω ∈ Ω : |L(vγ(ω))| ≥ t
]

≥ C1e
−c1

N

eL|γ|2
Λ

t2

, ∀t ≥ 0, ∀h ∈]0, h0].

Proof. — Denote by γ ⊗ L(ϕ) the vector (γ ⊗ L(ϕ))j = γjL(ϕj). Observe that, thanks to (1.2),

K1
|γ|2ΛeL
N

≤ |γ ⊗ L(ϕ)|2 =
∑

j∈Λh

γ2j |L(ϕj)|2 ≤ K0
|γ|2ΛeL
N

.

Then, using the rotation invariance of the Gaussian law and the previous line, we get

P

[

ω ∈ Ω : |L(vγ(ω))| ≥ t
]

= P

[ ∣

∣

∣〈 γ ⊗ L(ϕ)

|γ ⊗ L(ϕ)| ,X〉
∣

∣

∣ ≥ t

|γ ⊗ L(ϕ)|
]

=
1√
2π

∫

|s|≥ t
|γ⊗L(ϕ)|

e−s2/2ds

≥ Ce
− cN

eL|γ|2
Λ

t2

.

The estimate (2.11) then follows from Lemma 2.12 and with the same argument as for Lemma 2.11.

2.2.3. Concentration phenomenon. — We now state a concentration property for Pγ,h, inherited

from Assumption 1. See [13] for more details on this topic.

Proposition 2.13. — Suppose that Assumption 1 is satisfied. Then there exist constants K > 0,

κ > 0 (depending only on C⋆) such that for every Lipschitz function F : Sh −→ R satisfying

|F (u)− F (v)| ≤ ‖F‖Lip‖u− v‖L2(Rd), ∀u, v ∈ Sh,

we have

(2.15) Pγ,h

[

u ∈ Sh : |F −MF | > r
]

≤ Ke
− κNr2

‖F‖2
Lip , ∀r > 0, h ∈]0, 1],

where MF is a median for F .

Recall that a median MF for F is defined by

Pγ,h

[

u ∈ Sh : F ≥ MF

]

≥ 1

2
, Pγ,h

[

u ∈ Sh : F ≤ MF

]

≥ 1

2
.

In Proposition 2.13, the distance in L2 can be replaced with the geodesic distance dS on Sh, since

we can check that

‖u− v‖L2(Rd) ≤ dS(u, v) = 2 arcsin
(‖u− v‖L2(Rd)

2

)

≤ π

2
‖u− v‖L2(Rd).
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When Pγ,h is the uniform probability on Sh, Proposition 2.13 is proved in [13, Proposition 2.10],

and the proof can be adapted in the general case (see Appendix D). The factor N in the exponential

of r.h.s of (2.15) will be crucial in our application.

3. Some spectral estimates for the harmonic oscillator

Our goal here is to apply the general setting of Section 2 to the harmonic oscillator in Rd. This

way we shall get probabilistic estimates analogous to results proved in [2] for the Laplace operator in

a compact Riemannian manifold.

In the following, we consider the Hamiltonian H = −△ + V (x) with V (x) = |x|2, x ∈ Rd for

d ≥ 2. For this model, all the necessary spectral estimates are already known. More general confining

potentials V shall be considered in the forthcoming paper [16].

A first and basic ingredient in probabilistic approaches of weighted Sobolev spaces is a good knowl-

edge concerning the asymptotic behavior of eigenvalues and eigenfunctions of H. The eigenvalues of

this operator are the
{

2(j1+· · ·+jd)+d, j ∈ Nd
}

, and we can order them in a non decreasing sequence

{λj , j ∈ N}, repeated according to their multiplicities. We denote by {ϕj , j ∈ N} an orthonormal

basis in L2(Rd) of eigenfunctions (the Hermite functions), so that Hϕj = λjϕj . The spectral function

is then defined as πH(λ;x, y) =
∑

λj≤λ

ϕj(x)ϕj(y) (recall that this definition does not depend on the

choice of {ϕj , j ∈ N}). When the energy λ is localized in I ⊆ R+ we denote by ΠH(I) the spectral

projector of H on I. The range EH(I) of ΠH(I) is spanned by {ϕj ;λj ∈ I} and ΠH(I) has an integral

kernel given by

πH(I;x, y) =
∑

[j :λj∈I]
ϕj(x)ϕj(y).

We will also use the notation EH(λ) = EH([0, λ]), NH(λ) = dim[EH(λ)].

3.1. Interpolation inequalities. — We begin with some general interpolation results which will

be needed in the sequel. In Rd, the spectral function πH(λ;x, x) is fast decreasing for |x| → +∞ so

it is natural to work with weighted Lp norms. We denote by 〈x〉s = (1 + |x|2)s/2 and introduce the

following Lebesgue space with weight

Lp,s(Rd) =

{

u, Lebesgue measurable :

∫

|u(x)|p〈x〉sdx < +∞
}

= Lp(Rd, 〈x〉sdx),

endowed with its natural norm, which we denote by ‖u‖p,s. For p = ∞, we set ‖u‖∞,s = sup
x∈Rd

〈x〉s|u(x)|.
The following interpolation inequalities hold true. Let 1 ≤ p1 ≤ p ≤ p0 ≤ +∞ and κ ∈]0, 1[ such

that 1
p = κ

p1
+ 1−κ

p0
. Then for p0 < +∞ we have

(3.1) ‖u‖Lp,s(Rd) ≤ (‖u‖Lp0,s0 (Rd))
1−κ(‖u‖Lp1,s1 (Rd))

κ, with s =
p1 − p

p1 − p0
s0 +

p0 − p

p0 − p1
s1.
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In the case p0 = +∞, we have

(3.2) ‖u‖Lp,s(Rd) ≤ (sup
Rd

〈x〉s0 |u(x)|)1−p1/p(‖u‖Lp1,s1 (Rd))
p1/p, with s = (p− p1)s0 + s1.

3.2. Rough estimates of the harmonic oscillator. — We recall here some more or less standard

properties stated in [10]. To begin with, we state a ”soft” Sobolev inequality.

Lemma 3.1. — For all u ∈ EH(I)

(3.3) |u(x)| ≤ (πH(I;x, x))1/2‖u‖L2(Rd).

Proof. — We have

u(x) = Πu(x) =

∫

Rd

πH(I;x, y)u(y)dy.

Using the Cauchy-Schwarz inequality

(3.4) |u(x)| ≤
(
∫

Rd

|πH(I;x, y)|2dy
)1/2

‖u‖L2(Rd).

Now we use that ΠH(I) is an orthonormal projector.

(3.5) πH(I;x, y) =

∫

Rd

πH(I;x, z)πH (I; z, y)dz and πH(I;x, y) = πH(I; y, x).

Finally, from (3.4) and (3.5) with y = x we get (3.3).

The next result gives a bound on πH .

Lemma 3.2. — The following bound holds true

(3.6) πH(λ;x, x) ≤ Cλd/2 exp

(

−c |x|
2

λ

)

, ∀x ∈ R
d, λ ≥ 1.

Proof. — Let K(t;x, y) be the heat kernel of e−tH . It is given by the following Mehler formula (1)

(3.7) K(t;x, y) = (2π sinh 2t)−d/2 exp

(

−tanh t

4
|x+ y|2 − |x− y|2

4 tanh t

)

.

So we have

(3.8) K(t;x, x) =

∫

R

e−tµ dπH(µ;x, x) = (2π sinh 2t)−d/2 exp(−|x|2 tanh t).

We set t = λ−1, integrate in µ on [0, λ] and get

πH(λ;x, x) ≤ eK(λ−1;x, x).

Assuming λ ≥ λ0, λ0 large enough, we easily see that (3.6) is a consequence of (3.8).

(1)The Mehler formula can also be obtained from Fourier transform computation of the Weyl symbol of e−tH (see [17]

Exercise IV-2).
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Let u ∈ EH(λ). From (3.3) and (3.6) we get

|u(x)| ≤ Cλd/4 exp

(

−c |x|
2

2λ

)

‖u‖L2(Rd),

where c, C > 0 do not depend on x ∈ Rd nor λ ≥ 1.

Remark 3.3. — From (3.6), we can deduce that for every θ > 0 there exists Cθ > 0 such that

πH(λ;x, x) ≤ Cθλ
(d+θ)/2〈x〉−θ,

which by (3.3) implies with the semiclassical parameter h = λ−1

〈x〉θ/2h(d+θ)/4|u(x)| ≤ Cθ‖u‖L2(Rd), ∀u ∈ EH(h−1).

We can easily see that this uniform estimate is true for u ∈ E(Ih) where Ih = [ ah ,
b
h ] with a < b. For

smaller energy intervals we can get much better estimates, as we will see in Lemma 3.5.

Remark 3.4. — Let us compare the previous results with the case of a compact Riemannian mani-

fold M , and when H = −△ is the Laplace operator. We have the uniform Hörmander estimate [7]:

(3.9) πH(λ;x, x) = cd(x)λ
d/2 +O(λ(d−1)/2),

where 0 < cd(x) is a continuous function on M . Thus from (3.4) and (3.9) we get for some con-

stant CS > 0,

‖u‖L∞(M) ≤ CSλ
d/4‖u‖L2(M), ∀u ∈ E(λ).

Let us emphasis here that it results form the uniform Weyl law (3.9) that πH(λ;x, x) has an upper

bound and a lower bound of order λd/2. For confining potentials like V the behavior of πH(λ;x, x)

is much more complicated because of the turning points:
{

|x|2 = λ
}

. This behavior was analyzed

in [10].

3.3. More refined estimates for the spectral function. — From the Weyl law for the harmonic

oscillator we have

NH(λ) = cdλ
d +O(λd−1), cd > 0,

we deduce that if (1.1) is satisfied with δ = 1 then we have

(3.10) αh−d(bh − ah) ≤ Nh ≤ βh−d(bh − ah), α > 0, β > 0.

The main result of this section is the following lemma. It is a consequence of the work of Karadzhov [10].

It could also be deduced from the papers by Koch, Tataru and Zworski ([11, 12]) and it is also related,

after rescaling, with results obtained by Ivrii [8, Theorem 4.5.4].

Lemma 3.5. — Let d ≥ 2 and assume that |µ| ≤ c0, p ≥ 1 and θ ≥ 0. Then there exists C > 0 so

that for all λ ≥ 1

‖πH(λ+ µ;x, x)− πH(λ;x, x)‖Lp,(p−1)θ(Rd) ≤ Cλα,

with α = d
2(1 +

1
p)− 1 + θ

2 (1− 1
p).
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Proof. — Recall the following estimates proved in [10, Theorem 4]: For d ≥ 2 and x ∈ R

(3.11) |πH(λ+ µ;x, x)− πH(λ;x, x)| ≤ Cλd/2−1, λ ≥ 1, |µ| ≤ 1.

and for every ε0 > 0 and every N ≥ 1 there exists Cε0,N such that

(3.12) πH(λ;x, x) ≤ Cε0,N |x|−N , for |x|2 ≥ (1 + ε0)λ.

From (3.11) we get that for every C0 > 0 there exists C > 0 such that

(3.13) |πH(λ+ µ;x, x)− πH(λ;x, x)| ≤ C(1 + |µ|)λd/2−1, λ ≥ 1, |µ| ≤ C0λ.

Then from (3.13) and (3.12) we get that for every θ ≥ 0 there exists C such that

(3.14) |πH(λ+ µ;x, x)− πH(λ;x, x)| ≤ C(1 + |µ|)λd/2−1+θ/2〈x〉−θ, λ ≥ 1, |µ| ≤ C0λ.

Therefore, by (3.12), to get the result of Lemma 3.5, it is enough to integrate the previous inequality

on |x| ≤ c0λ
1/2.

From (3.14), we easily get an accurate estimate for the spectral function

ex = πH(
bh
h
;x, x) − πH(

ah
h
;x, x).

Lemma 3.6. — Assume that (1.1) is satisfied with 0 < δ ≤ 1. For any θ ≥ 0 there exists C > 0 such

that

(3.15) 〈x〉θex ≤ CNhh
(d−θ)/2.

Using (3.3) and interpolation inequalities we get Sobolev type inequalities for u ∈ Eh, θ ≥ 0, p ≥ 2.

(3.16) ‖u‖L∞,θ/2(Rd) ≤ C
(

Nhh
(d−θ)/2

)1/2
‖u‖L2(Rd),

which in turn implies, by (3.1)

(3.17) ‖u‖Lp,θ(p/2−1)(Rd) ≤ C
(

Nhh
(d−θ)/2

) 1
2
− 1

p ‖u‖L2(Rd).

By (3.10), the previous inequality can be written as

‖u‖Lp,θ(p/2−1)(Rd) ≤ C(bh − ah)
1
2
− 1

ph−(d+θ
2

)( 1
2
− 1

p
)‖u‖L2(Rd), ∀p ∈ [2,+∞], ∀θ ∈ [0, d].

Remark 3.7. — For similar bounds for eigenfunctions or quasimodes, we refer to [12].

4. Probabilistic weighted Sobolev estimates

We apply here the general probabilistic setting of Section 2 when K = H is the harmonic oscillator,

K = L2(Rd) and {ϕj , j ∈ N} an orthonormal basis of Hermite functions. Recall that Sh is the unit

sphere of the complex Hilbert space Eh, identified with CN or R2N , and that Pγ,h is the probability

on Sh defined as in Section 2.
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We divide this section in two parts: in the first part, under Assumption 1, we establish upper

bounds and in the second part we obtain lower bounds, but only in the case of Gaussian random

variables (Assumption 2), and under the condition 0 ≤ δ < 2/3.

4.1. Upper bounds. — We suppose here that Assumption 1 and (1.1) with 0 ≤ δ ≤ 1 are satisfied.

Our result is the following

Theorem 4.1. — There exists h0 ∈]0, 1], c2 > 0 and C > 0 such that if c1 = d(1 + d/4), we have

(4.1) Pγ,h

[

u ∈ Sh : h−
d−θ
4 ‖u‖L∞,θ/2(Rd) > Λ

]

≤ Ch−c1e−c2Λ2
, ∀Λ > 0, ∀h ∈]0, h0].

Proof. — We adapt here the argument of [2]. To begin with, by (3.15) and (2.9), there exists c2 > 0

such that for every θ ∈ [0, d], every x ∈ Rd, and every Λ > 0 we have

(4.2) Pγ,h

[

u ∈ Sh : 〈x〉 θ
2h−

d−θ
4 |u(x)| > Λ

]

≤ e−c2Λ2
.

Now, we will need a covering argument. Our configuration space is not compact but using (3.12) we

have, for every u ∈ Sh,

|u(x)| ≤ CN |x|−N , for |x| ≥ (1 + ε0)h
−1/2.

So choosing R > 0 large enough it is sufficient to estimate u inside the box BRh
= {x ∈ Rd, |x|∞ ≤

Rh−1/2}. We divide BRh
in small boxes of side with length τ small enough. We use the gradient

estimate

|∇xu(x)| ≤ Ch−1/2−d/4, ∀u ∈ Sh,

and (4.2) at the center of each small box to get the result.

For x, x′ ∈ Rd we have

|〈x〉θ/2u(x)− 〈x′〉θ/2u(x′)| ≤ C(〈x〉θ/2|u(x)− u(x′)|+ 〈x〉θ/2|x− x′||u(x′)|).
Let {Qτ}τ∈A be a covering of BRh

with small boxes Qτ with center xτ and side length τ small enough.

Then for every x ∈ Qτ we have

(4.3) h(θ−d)/4|〈x〉θ/2u(x)− 〈xτ 〉θ/2u(xτ )| ≤ Cτh−1/2−d/4.

We choose

(4.4) τ ≈
εΛ

2C
h1/2+d/4

and hε > 0 such that

(4.5) |x|∞ > Rh−1/2 ⇒ h(θ−d)/4〈x〉θ/2|u(x)| ≤ εΛ

2
, ∀h ∈]0, hε].

Then using (4.2), (4.3), (4.4) and (4.5) we get

(4.6) Pγ,h

[

u ∈ Sh : h−
d−θ
4 ‖u‖L∞,θ/2(Rd) > Λ

]

≤ #Ae−c2(1−ε)2Λ2
, ∀Λ > 0,∀h ∈]0, hε].

Using now that #A ≈ Ch−c1 with c1 = d(1 + d/4) we get (4.1) from (4.6).

We can deduce probabilistic estimates for the derivatives as well. Recall that the Sobolev spaces

Ws,p(Rd) are defined in (1.3).
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Corollary 4.2. — For any multi index α, β ∈ Nd there exists c̃2 such that

Pγ,h

[

u ∈ Sh : h
|α|+|β|

2
− d

4 ‖xα∂βxu‖L∞(Rd) > Λ
]

≤ Ch−c1e−c̃2Λ2
, ∀Λ > 0, ∀h ∈]0, h0].

In particular we have, for every s > 0,

Pγ,h

[

u ∈ Sh : h
s
2
− d

4 ‖u‖W s,∞(Rd) > Λ
]

≤ Ch−c1e−c̃2Λ2
, ∀Λ > 0, ∀h ∈]0, h0].

Proof. — We apply (4.1) using that from the spectral localization of u ∈ Eh we have

‖xα∂βxu‖L2(Rd) ≤ Ch−
|α|+|β|

2 ‖u‖L2(Rd),

‖Hsu‖L2(Rd) ≤ Ch−s/2‖u‖L2(Rd).

The following corollary shows that we get a probabilistic Sobolev estimate improving the determin-

istic one (3.16) with probability close to one as h → 0. The improvement is ”almost” of order N
1/2
h

or
(

(bh − ah)h
−d
)1/2

. Choosing Λ =
√−K log h for K > 0 we get

Corollary 4.3. — Let c1, c2 > 0 be the constants given by Theorem 4.1. Then for every K > c1
c2

we

have

Pγ,h

[

u ∈ Sh : ‖u‖L∞,θ/2(Rd) > Kh
d−θ
4 | log h|1/2

]

≤ hKc2−c1 , ∀h ∈]0, h0], ∀θ ∈ [0, d].

Pγ,h

[

u ∈ Sh : ‖u‖Ws,∞(Rd) > Kh
d
4
− s

2 | log h|1/2
]

≤ hKc2−c1 , ∀h ∈]0, h0], ∀s ≥ 0.

Let us give now an application to a probabilistic Sobolev embedding for the Harmonic oscillator.

We shall use a Littlewood-Paley decomposition with hj = 2−j . Let ϕ a C∞ real function on R

such that ϕ(t) = 0 for t ≤ a, ϕ(t) = 1 for t ≤ b/2 with 0 < a < b/2. Define ψ−1(t) = 1 − ϕ(t),

ψj(t) = ϕ(hjt)− ϕ(hj+1t) for j ∈ N. Notice that the support of ψj is in [ a
hj
, b
hj
].

For every distribution u ∈ S ′(Rd) we have the Littlewood-Paley decomposition

u =
∑

j≥−1

uj, with uj =
∑

k∈N
ψj(λk)〈u, ϕk〉ϕk

and we have uj ∈ Ehj
.

The Besov spaces for the Harmonic are naturally defined as follows: if p, r ∈ [1,∞] and s ∈ R,

u ∈ Bs
p,r if and only if

‖u‖Bs
p,r

:=





∑

j≥−1

2jsr/2‖uj‖rLp(Rd)





1/r

< +∞.

We shall use here the spaces Bs
2,∞. For every s > 0 we have

Bs
2,∞ ⊆ L2(Rd) ⊆ B0

2,∞.
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Another scale of spaces is defined as

Gm =
{

u ∈ S ′(Rd) :
∑

j≥1

jm‖uj‖L2(Rd) < +∞
}

, m ≥ 0.

Then for every s > 0, m ≥ 0 we have Bs
2,∞ ⊆ Gm ⊆ L2(Rd).

It is not difficult to see that Gm can be compared with the domain in L2(Rd) of the operator logsH.

This domain is denoted by Hs
log, the norm being the graph norm. For every s > 1/2 we have

Hm+s
log ⊂ Gm ⊂ Hm

log.

Notice that we do not need that the energy localizations ψj are smooth and we can define the same

spaces with ψ(t) = I[1,2[(t) so that the energy intervals [2j , 2j+1[ are disjoint.

Let us now define probabilities on Gm as we did for Sobolev spaces Hs. Let γj be a sequence of

complex numbers satisfying (1.2) and such that

(4.7)
∑

j≥0

jm|γ|Λj < +∞,

where Λj = Λhj
and

v0γ =
∑

j≥0

γjϕj , vγ(ω) =
∑

j≥0

γjXj(ω)ϕj ,

so that vγ is a.s in Gm and its probability law defines a measure µmγ in Gm. This measure satisfies also

the following properties as in Proposition 2.4.

(i) If the support of ν is R and if γj 6= 0 for all j ≥ 1 then the support of µmγ is Gm.

(ii) If u0γ ∈ Gm and v0γ /∈ Gs where s > m then µmγ (Gs) = 0. In particular µmγ (Hs) = 0 for every

s > 0.

(iii) Under the assumptions (iii) in Proposition 2.4 we can construct singular measures µmγ and µmβ .

Now we can state the following corollary of Theorem 4.1.

Corollary 4.4. — Suppose that γ satisfies (1.2) with a < b and (4.7) with m = 1/2. Then for the

measure µ
1/2
γ almost all functions in the space G1/2 are in the space C[d/2]

H where

Cℓ
H(Rd) =

{

u ∈ Cℓ(Rd) : ‖xα∂βxu‖L∞(Rd) < +∞, ∀ |α|+ |β| ≤ ℓ
}

.

In particular if v0γ ∈ Hs0, s0 > 0 and if v0γ /∈ Hs, s > s0, then we have µ
1/2
γ (Bσ

2,∞) = 1 for every σ > 0

and we have an a.s embedding of the Besov space Bσ
2,∞ in C[d/2]

H .

Proof. — Let u =
∑

n≥−1

un ∈ G1/2 with un ∈ Ehn . For κ > 0 (chosen large enough) denote by

Bκ
n =

{

v ∈ Ehn : ‖xα∂βx v‖L∞(Rd) ≤ κ
√
n‖v‖L2(Rd), ∀ |α|+ |β| ≤ [d/2]

}

.
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We have, using Corollary 4.2

νγ,n(B
κ
n) ≥ 1− e−n(c2κ2−c1).

So if Bκ =
{

u ∈ G1/2 : u0 ∈ Eh0 , un ∈ Bκ
n, ∀n ≥ 1

}

, then we have

µ1/2γ (Bκ) ≥
∏

n≥1

(

1− e−n(c2κ2−c1)
)

≥ 1− ε(κ)

with lim
κ→+∞

ε(κ) = 0. More precisely we have ε(κ) ≈ e−cκ2
for some c > 0.

Now if u ∈ Bκ we have

‖xα∂βxu‖L∞(Rd) ≤
∑

n≥−1

‖xα∂βxun‖L∞(Rd) ≤ κ
∑

n≥−1

√
n‖un‖L2(Rd) := κ‖u‖G1/2 .

So the corollary is proved.

Remark 4.5. — In the last corollary, for every s > 0 we can choose γ such that µ
1/2
γ (Hs) = 0. So

the smoothing property is a probabilistic effect similar to the Khinchin inequality.

From the proof we get a more quantitative statement. There exists c > 0 such that

µ1/2γ

[

‖u‖Wd/2,∞ ≥ κ‖u‖G1/2

]

≤ e−cκ2
.

Remark 4.6. — The proof of the corollary depends on the squeezing assumption (1.2) on γ. For

example if (1.2) is satisfied for bh−ah ≈ h then we can consider the energy decomposition in intervals

[2n, 2(n + 1)[ instead of the dyadic decomposition. So when applying Theorem 4.1 with h of order 1
n

we get h−c1e−c2Λ2
= ec1 logn−c2Λ2

.

Then taking Λ = κ
√
log n with κ large enough, in the construction of Bκ

n we have to replace
√
n by√

log n. In the conclusion the space G1/2 is replaced by G̃1/2 where

G̃m =
{

u ∈ S ′(Rd) :
∑

j≥1

logm j‖uj‖L2(Rd) < +∞
}

, uj :=
∑

2j≤λn<2(j+1)

〈u, ϕj〉ϕj .

4.2. Lower bounds in the case of Gaussian random variables. — Here we suppose that the

stronger Assumption 2 and (1.1) with δ < 2/3 are satisfied. We are interested to get a lower bound

for ‖u‖L∞,θ/2(Rd).

The spectral condition δ < 2/3 is needed here because it seems difficult to estimate from below the

variations of the spectral function of the harmonic oscillator in intervals of length ≤ h−1/3.

A first step is to get two sides weighted Lr estimates for large r which is a probabilistic improvement

of (3.17). Denote by

(4.8) βr,θ =
d− θ

2
(1− 2

r
).

Theorem 4.7. — Assume that θ ∈ [0, d], and denote by Mr a median of ‖u‖Lr,θ(r/2−1) . Then there

exist 0 < C0 < C1, K > 0, c1 > 0 , h0 > 0 such that for all r ∈ [2,K| log h|] and h ∈]0, h0] such that

(4.9) Pγ,h

[

u ∈ Sh :
∣

∣

∣‖u‖Lr,θ(r/2−1) −Mr

∣

∣

∣ > Λ
]

≤ 2 exp
(

− c2N
2/r
h h−βr,θΛ2

)

.
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and where

C0

√
rh

d−θ
4

(1− 2
r
) ≤ Mr ≤ C1

√
rh

d−θ
4

(1− 2
r
), ∀r ∈ [2,K logN ].

This result shows that ‖u‖Lr,θ(r/2−1) has a Gaussian concentration around its median.

From (4.9) we deduce that for every κ ∈]0, 1[, K > 0, there exist 0 < C0 < C1, c1 > 0 , h0 > 0 such

that for all r ∈ [2,K| log h|κ], h ∈]0, h0] and Λ > 0 we have

Pγ,h

[

u ∈ Sh : C0

√
rh

d−θ
4

(1− 2
r
) ≤ ‖u‖Lr,θ(r/2−1) ≤ C1

√
rh

d−θ
4

(1− 2
r
)
]

≥ 1− e−c1| log h|1−κ
.

As a consequence of Theorem 4.7, for every θ ∈ [0, d] we get a two sides weighted L∞ estimate

showing that Theorem 4.1 and its corollary are sharp.

Corollary 4.8. — After a slight modification of the constants in Theorem 4.7, if necessary, we get

that for all θ ∈ [0, d] and h ∈]0, h0]

(4.10) Pγ,h

[

u ∈ Sh : C0| log h|1/2h(d−θ)/4 ≤ ‖u‖L∞,θ/2 ≤ C1| log h|1/2h(d−θ)/4
]

≥ 1− hc1 .

To prove these results we have to adapt to the unbounded configuration space Rd the proofs of [2,

Theorems 4 and 5] which hold for compact manifolds. The concentration result stated in Proposi-

tion 2.13 will prove useful.

Proof of Theorem 4.7. — Denote by Fr(u) = ‖u‖Lr,θ(r/2−1) and by Mr its median. Thanks to (3.17)

we have the Lipschitz estimate

|Fr(u)− Fr(v)| ≤ C
(

Nhh
d−θ
2

)
1
2
− 1

r ‖u− v‖L2(Rd), ∀u, v ∈ Sh.

Therefore, by (2.15) and (4.8), we have for some c2 > 0

(4.11) Pγ,h

[

u ∈ Sh : |Fr −Mr| > Λ
]

≤ 2 exp
(

− c2N
2/r
h h−βr,θΛ2

)

.

The next step is to estimate Mr. Denote by Ar
r = Eh(F

r
r ) the moment of order r and compute, with

s = θ(r/2− 1),

Ar
r = Eh

(∫

Rd

〈x〉s|u(x)|r dx
)

= r

∫

Rd

〈x〉s
(

∫ +∞

0
sr−1Pγ,h

[

u ∈ Sh : |u(x)| > s
]

ds
)

dx.

Thus by (2.11) we get

C1r

∫

Rd

〈x〉s
(

∫ ε0
√
ex

0
sr−1e−c1

N
ex

s2 ds
)

dx ≤ Ar
r ≤ C2r

∫

Rd

〈x〉s
(

∫ +∞

0
sr−1e−c2

N
ex

s2 ds
)

dx.

Performing the change of variables t = cNex s
2 we obtain that there exist C1, C2 > 1 such that

(4.12) C1 rN
−r/2

(
∫

Rd

〈x〉ser/2x dx

)
∫ εN

0
tr/2−1e−t dt ≤ Ar

r ≤ C2 rN
−r/2

(
∫

Rd

〈x〉ser/2x dx

)

Γ(r/2),
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with ε = c1ε
2
0. We need to estimate the term

∫ εN
0 tr/2−1e−tdt from below. Using the elementary

estimate
∫ +∞

T
tr/2−1e−tdt ≤ T r/2e1−TΓ(r/2), T ≥ 1,

we get that there exists ε1 > 0 such that for N large and r ≤ ε1
N

logN then we have

∫ εN

0
tr/2−1e−tdt ≥ Γ(r/2)

2
.

So we get the expected lower bound, ∀r ∈ [1, ε1
N

logN ],

e−r/2C−1r

(∫

Rd

〈x〉ser/2x dx

)

N−r/2Γ(r/2) ≤ Ar
r ≤ C2 rN

−r/2

(∫

Rd

〈x〉ser/2x dx

)

Γ(r/2).

and where Γ(r/2) can be estimated thanks to the Stirling formula: there exist 0 < C0 < C1 such that

(C0r)
r/2 ≤ Γ(r/2) ≤ (C1r)

r/2, ∀r ≥ 1.

Now we need the following lemma which will be proven in Appendix B. The upper bound can be

seen as an application of Lemma 3.5 with λ = h−1 and µ = (bh − ah)h
−1 ∼ Nhh

d−1.

Lemma 4.9. — There exist 0 < C0 < C1 and h0 > 0 such that

C0Nhh
β2p,θ ≤

(∫

Rd

〈x〉θ(p−1)epx dx

)1/p

≤ C1Nhh
β2p,θ ,

for every p ∈ [1,∞[ and h ∈]0, h0] where βr,θ = d−θ
2 (1− 2

r ).

From this lemma we get

(4.13) C0

√

rhβr,θ ≤ Ar ≤ C1

√

rhβr,θ , ∀r ≥ 2, h ∈]0, h0].
Now we have to compare Ar and the median Mr. We have

|Ar −Mr|r =
∣

∣‖Fr‖Lr(Sh) − ‖Mr‖Lr(Sh)

∣

∣

r

≤ ‖Fr −Mr‖rLr(Sh)
= r

∫ ∞

0
sr−1Pγ,h

[

|Fr −Mr| > s
]

ds.

Then using the large deviation estimate (2.15) we get

|Ar −Mr| ≤ CN−1/r
√

rhβr,θ , ∀r ≥ 2.

Choosing r ≤ K logN , (K < 1) and N large, from (4.13) we obtain

(4.14) C0

√

rhβr,θ ≤ Mr ≤ C1

√

rhβr,θ , ∀r ∈ [2,K logN ]

and the proof of Theorem 4.7 follows using (4.14) and (4.11).

Remark 4.10. — The upper-bound in Lemma 4.9 is true for δ = 1. This is proved in Appendix B.

Now let us prove Corollary 4.8.
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Proof of Corollary 4.8. — For simplicity we assume that θ = d. Using (4.1) it is enough to prove that

there exist C0 > 0, h0 > 0, c1 > 0 such that

(4.15) Pγ,h

[

u ∈ Sh : ‖u‖L∞,d/2 ≤ C0| log h|1/2
]

≤ hc1 , ∀h ∈]0, h0].

Let u ∈ Sh, then by (3.2) we have the interpolation inequality

‖u‖Lr,d(r/2−1)(Rd) ≤ ‖u‖1−2/r

L∞,d/2 .

So we get

Pγ,h

[

u ∈ Sh : ‖u‖L∞,d/2 ≤ C0| log h|1/2
]

≤ Pγ,h

[

u ∈ Sh : ‖u‖Lr,d(r/2−1) ≤
(

C0| log h|1/2
)1−2/r

]

,

and choosing r = rh = ε0| log h| we obtain

Pγ,h

[

u ∈ Sh : ‖u‖L∞,d/2 ≤ C0| log h|1/2
]

≤ Pγ,h

[

u ∈ Sh : ‖u‖Lrh,d(rh/2−1) ≤
(

C0√
ε0
r
1/2
h

)1−2/rh
]

.

Then choosing h0 > 0, C0√
ε0

small enough and Λ = c| log h|1/2 we can conclude that (4.15) is satisfied

using (4.9).

Remark 4.11. — Concerning the mean M∞ of F∞(u) := ‖u‖L∞,d/2 it results from Corollary 4.8,

(4.1) and (3.16) that we have the two sides estimates

C0| log h|1/2 ≤ M∞ ≤ C1| log h|1/2, ∀h ∈]0, h0].

It is not difficult to adapt the proof of (4.9) and (4.10) for the Sobolev norms ‖u‖Ws,p(Rd). It is enough

to remark that considering Lsu(x) = Hs/2u(x) we have

eLs =
∑

j∈Λ
λsjϕ

2
j (x).

But for j ∈ Λ, λj is of order h−1 hence there exists C > 0 such that

C−1h−sex ≤ eLs ≤ Ch−sex.

Using this property we easily get the next result, which in particular implies Theorem 1.1. Let Mr,s

be the median of u 7→ ‖u‖Ws,r(Rd), and recall the definition (4.8). Then

Theorem 4.12. — Let s ≥ 0. There exist 0 < C0 < C1, K > 0, c1 > 0 , h0 > 0 such that for all

r ∈ [2,K| log h|] and h ∈]0, h0]

(4.16) Pγ,h

[

u ∈ Sh :
∣

∣

∣
‖u‖Ws,r(Rd) −Mr,s

∣

∣

∣
> Λ

]

≤ 2 exp
(

− c2N
2/r
h h−βr,0+sΛ2

)

.

where

C0

√
rh

βr,0−s

2 ≤ Mr,s ≤ C1

√
rh

βr,0−s

2 , ∀r ∈ [2,K logN ].
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In particular, for every κ ∈]0, 1[, K > 0 , there exist C0 > 0, C1 > 0, c1 > 0 such that for every

r ∈ [2,K| log h|κ] we have

Pγ,h

[

u ∈ Sh : C0

√
rh

d
4
(1− 2

r
)h−

s
2 ≤ ‖u‖Ws,r(Rd) ≤ C1

√
rh

d
4
(1− 2

r
)h−

s
2

]

≥ 1− e−c1| log h|1−κ
,

For r = +∞ we have for all h ∈]0, h0]

Pγ,h

[

u ∈ Sh : C0| log h|1/2h
d−2s

4 ≤ ‖u‖Ws,∞(Rd) ≤ C1| log h|1/2h
d−2s

4

]

≥ 1− hc1 .

Namely,

‖u‖Ws,r(Rd) ≈ h−s/2‖u‖Lr,0(Rd) + ‖u‖Lr,s(Rd),

and

h−s/2‖u‖Lr,0(Rd) ∼ h
d
4
(1− 2

r
)h−

s
2 , ‖u‖Lr,s(Rd) ∼ h

d
4
(1− 2

r
)h−

s
2r .

4.3. Lower bounds in the general case. — Under Assumption 1, we prove a weaker version of

Theorem 4.12.

Theorem 4.13. — Suppose that Assumption 1 is satisfied. Let s ≥ 0, κ ∈]0, 1[, K > 0. There exist

0 < C0 < C1, K > 0, c1 > 0, h0 > 0 such that for all r ∈ [2,K| log h|κ] and h ∈]0, h0]

Pγ,h

[

u ∈ Sh : C0h
d
4
(1− 2

r
)h−

s
2 ≤ ‖u‖Ws,r(Rd) ≤ C1

√
rh

d
4
(1− 2

r
)h−

s
2

]

≥ 1− e−c1| log h|1−κ
, .

For r = +∞ we have for all h ∈]0, h0]

Pγ,h

[

u ∈ Sh : C0h
d−2s

4 ≤ ‖u‖Ws,∞(Rd) ≤ C1| log h|1/2h
d−2s

4

]

≥ 1− hc1 .

Therefore, we have optimal constants in the control of the Ws,r(Rd) norms when r < +∞ and for

general random variables which satisfy the concentration property, but when r = +∞ we lose the

factor | log h|1/2 in the lower bound.

Proof. — We can follow the main lines of the proof of Theorem 4.12. Here compared to (4.12) we get

Ar
r ≥ C rN−r/2

(
∫

Rd

〈x〉ser/2x dx

)
∫ ε

0
tr/2−1e−t dt

≥ CN−r/2

(∫

Rd

〈x〉ser/2x dx

)

εr/2,

and this explains the loss of the factor
√
r.

4.4. Global probabilistic Lp-Sobolev estimates. — Here we extend the L∞- random estimates

obtained before to the Lr-spaces for any real r ≥ 2, and we prove Theorem 1.2. Let us recall the

definition (1.4) of the Besov spaces, where we use the notations of Subsection 4.1 for the dyadic

Littlewood-Paley decomposition.
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Proof of Theorem 1.2. — Recall that for every σ > m we can choose γ such that µγ(Hσ) = 0.

Denote by Fr,s(u) = ‖u‖Ws,r . The Lipschitz norm of Fr,s satisfies

‖Fr,s‖Lip ≤ Ch−s+d( 1
2
− 1

r
)N

1
2
− 1

r
h .

Let us denote by Mr,s the median of Fr,s on the sphere Sh for the probability Pγ,h and by Ar
r,s the

mean of F r
r,s. From Proposition 2.13 we have, for some 0 < c0 < c1,

(4.17) Pγ,h

[

u ∈ Sh : |Fr,s −Mr,s| > K
]

≤ exp
(

− c1N
K2

‖Fr,s‖2Lip

)

≤ exp
(

− c0N
1/rK2

)

.

With the same computations as for (4.14) we get

(4.18) Ar,s ≈
√
r and |Ar,s −Mr,s| .

√
rN−1/r.

These formulas are obtained from (2.9) applied to the linear form Lsu := Hsu(x) noticing that

eLs =
∑

j∈Λh

|Hsϕj(x)|2 ≈ h−2sex.

Then taking c0 > 0 small enough that we have

(4.19) νγ,h

[

v ∈ Eh : ‖v‖Ws,r ≥ K‖v‖L2(Rd)

]

≤ exp
(

−c0N2/rK2
)

, ∀K ≥ 1.

Then from (4.19) we proceed as for the proof of Corollary 4.4. For simplicity we consider here the

usual Littlewood-Paley decomposition. Then we have N2/r ≈ 22nd/r. So the end of the proof follows

by considering

Bκ
n =

{

v ∈ En : ‖v‖Ws,r ≤ K‖v‖L2(Rd)

}

.

So for a fixed r ≥ 2 we infer (1.5) from (4.17) and (4.18), taking c0 > 0 small enough, we get

µγ





∏

n≥0

BK
n



 ≥ 1− e−c0K2
.

Using the isometry u 7→ H−m/2u between Bs
2,1 and Bm+s

2,1 for all real m ≥ 0, we can get the following

corollary to Theorem 1.2.

Corollary 4.14. — Let m ≥ 0 and assume that γ satisfies (1.2) and
∑

n≥0

2nm|γ|n < +∞.

Then for s = d(12 − 1
r ) +m and r ≥ 2, we have

µγ

[

u ∈ Bm
2,1 : ‖u‖Wm+s,r ≥ K‖u‖Bm

2,1

]

≤ e−c0K2
.
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5. Application to Hermite functions

We turn to the proof of Theorem 1.3 and we can follow the main lines of [2, Section 3]. We use

here the upper bounds estimates of Section 4.1 in their full strength. Firstly, we assume that for all

j ∈ Λh, γj = N
−1/2
h and that Xj ∼ NC(0, 1), so that Ph := Pγ,h is the uniform probability on Sh. We

set hk = 1/k with k ∈ N∗, and

ahk
= 2 + dhk, bhk

= 2 + (2 + d)hk.

Then (1.1) is satisfied with δ = 1 and D = 2. In particular, each interval

Ihk
=
[ ahk

hk
,
bhk

hk

[

= [2k + d, 2k + d+ 2[

only contains the eigenvalue λk = 2k + d with multiplicity Nhk
∼ ckd−1, and Ehk

is the corresponding

eigenspace of the harmonic oscillator H. We can identify the space of the orthonormal basis of Ehk

with the unitary group U(Nhk
) and we endow U(Nhk

) with its Haar probability measure ρk. Then

the space B of the Hilbertian bases of eigenfunctions of H in L2(Rd) can be identified with

B = ×k∈NU(Nhk
),

which can be endowed with the measure

dρ = ⊗k∈N dρk.

Denote by B = (ϕk,ℓ)k∈N, ℓ∈J1,Nhk
K ∈ B a typical orthonormal basis of L2(Rd) so that for all k ∈ N,

(ϕk,ℓ)ℓ∈J1,Nhk
K ∈ U(Nhk

) is an orthonormal basis of Ehk
.

Then the main result of the section is the following, which implies Theorem 1.3.

Theorem 5.1. — Let d ≥ 2. Then, if M > 0 is large enough, there exist c, C > 0 so that for all

r > 0

ρ
[

B = (ϕk,ℓ)k∈N, ℓ∈J1,Nhk
K ∈ B : ∃k, ℓ; ‖ϕk,ℓ‖Wd/2,∞(Rd) ≥M(log k)1/2 + r

]

≤ Ce−cr2 .

We will need the following result

Proposition 5.2. — Let d ≥ 2. Then, if M > 0 is large enough, there exist c, C > 0 so that for all

r > 0 and k ≥ 1

(5.1) ρk

[

Bk = (ψℓ)ℓ∈J1,Nhk
K ∈ U(Nhk

) : ∃ℓ ∈ J1, Nhk
K; ‖ψℓ‖Wd/2,∞(Rd) ≥M(log k)1/2 + r

]

≤ Ck−2e−cr2 .

Proof. — The proof is similar to the proof of [2, Proposition 3.2]. We observe that for any ℓ0 ∈
J1, Nhk

K, the measure ρk is the image measure of Phk
under the map

U(Nhk
) ∋ Bk = (ψℓ)ℓ∈J1,Nhk

K 7−→ ψℓ0 ∈ Shk
.
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Then we use that Shk
⊂ Ehk

is an eigenspace and by Theorem 4.1 we obtain that for all ℓ0 ∈ J1, Nhk
K

ρk

[

Bk = (ψℓ)ℓ∈J1,Nhk
K ∈ U(Nhk

) : ‖ψℓ0‖Wd/2,∞(Rd) ≥M(log k)1/2 + r
]

= Phk

[

u ∈ Shk
: ‖u‖Wd/2,∞(Rd) ≥M(log k)1/2 + r

]

= Phk

[

u ∈ Shk
: kd/4‖u‖L∞,0(Rd) ≥M(log k)1/2 + r

]

≤ Ckc1−M2c2e−c2r2 ,

where c1, c2 > 0 are given by Theorem 4.1. As a consequence, (5.1) is bounded by Ckce−c2r2 , with

c = c1 −M2c2 + d− 1 which implies the result.

Proof of Theorem 5.1. — We set

Fk,r =
{

Bk = (ψℓ)ℓ∈J1,Nhk
K ∈ U(Nhk

) : ∀ℓ ∈ J1, Nhk
K; ‖ψℓ‖Wd/2,∞(Rd) ≤M(log k)1/2 + r

}

,

and Fr = ∩k≥1Fk,r. Then for all r > 0

ρ(Fc
r ) ≤

∑

k≥1

ρk(Fc
k,r) ≤ C

∑

k≥1

k−2e−cr2 = C ′e−cr2 ,

and this completes the proof.

We have the following consequence of the previous results.

Corollary 5.3. — For ρ-almost all orthonormal basis (ϕk,ℓ)k∈N, ℓ∈J1,Nhk
K of eigenfunctions of H we

have

‖ϕk,ℓ‖L∞(Rd) ≤ (M + 1)k−
d
4 (1 + log k)1/2, ∀ k ∈ N, ∀ ℓ ∈ J1, Nhk

K.

Proof. — Apply (5.1) with r = (log k)1/2 and denote, for k ≥ 2, Ωk the event

Ωk =
{

B = (ϕk,ℓ), ∃ℓ ∈ J1, Nhk
K, ‖ϕk,ℓ‖L∞(Rd) ≥ (M + 1)k−d/4(log k)1/2

}

.

We have ρ(Ωk) ≤ C
k2
. Therefore from the Borel-Cantelli Lemma we have ρ[lim sup

k→+∞
Ωk] = 0 and this

gives the corollary.

Appendix A

Proof of Proposition 2.4 (iii)

Proof. — Denote by fγ(x) =
cα
γ e

−( |x|
γ
)α
, γ > 0. We have, with obvious identifications,

µγ = ⊗j≥0(fγjdx).

Denote by

πj =

∫

R

(

fγj
fβj

)1/2

fβj
dx.



30 AURÉLIEN POIRET, DIDIER ROBERT & LAURENT THOMANN

According to the main result of [9] the measures µγ and µβ are mutually singular if the infinite product
∏

j≥0 πj is divergent. From elementary computations we get

πj =

(

1

2

(

γj
βj

)α/2

+
1

2

(

βj
γj

)α/2
)−1/α

.

• If πj has not 1 as limit then the product is divergent.

• If πj has 1 as limit then the infinite product is divergent if
∑

j≥0

(π−α
j − 1) = +∞. So, using that

1

2
(x+

1

x
) = 1 +

1

2
(1− x)2 +O(1− x)3,

we see that the infinite product is divergent if (2.6) is satisfied.

Appendix B

Lp weighted spectral estimates for the Harmonic oscillator

Our goal here is to give a self-contained proof of Lemma 4.9. It could be proved using the semi-

classical functional calculus for pseudo-differential operators [17], but for the harmonic oscillator it is

possible to use the exact Mehler formula and elementary properties of Hermite functions to get the

result.

B.1. A functional calculus with parameter for the Harmonic oscillator. — The starting

point is the inverse Fourier transform

f(H) =
1

2π

∫

eitH f̂(t)dt,

where f is in the Schwartz space S(R).
We want estimates for the integral kernel Kf (x, y) of f(H). To do that it is convenient to first

compute the Weyl symbol Wf(H)(x, ξ) of f(H) and use that

Kf (x, y) = (2π)−d

∫

Rd

Wf(H)

(x+ y

2
, ξ
)

ei(x−y)·ξdξ.

For basic properties about the Weyl calculus see for example [17]. The unitary operator eitH has an

explicit Weyl symbol w(t, x, ξ) :

(B.1) w(t, x, ξ) =
1

(cos t)d
ei tan t(|x|2+|ξ|2), for |t| < π

2
.

Formula (B.1) can be easily proved from the Mehler formula (3.7) and also directly (see [17], Exer-

cise IV).

Let us introduce a cutoff χ ∈ C∞(R), χ(t) = 1 for |t| < ε0, χ(t) = 0 for |t| > 2ε0 with 0 < ε0 < π/4.

Denote by

Rf =
1

2π

∫

eitH(1− χ(t))f̂(t)dt
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and

W̃f (x, ξ) =
1

2π

∫

R

w(t, x, ξ)χ(t)f̂ (t)dt.

We apply these formulas to give estimates with fh(s) = f(hs) where h > 0 is a small parameter. We

begin with an estimate for the remainder term for the kernel KRfh(x, y) of the operator Rfh .

Lemma B.1. — There exists M0 > 0 such that for every M ≥ 1 there exists CM > 0 such that

(B.2) |KRfh(x, y)| ≤ CMh
M
(

〈x〉〈y〉
)−M

2
−d−1‖f‖M+M0 , ∀h ∈]0, 1], ∀x, y ∈ R

d,

where ‖f‖m = sup
j+k≤m,t∈R

|tj d
k

dtk
f̂(t)|.

Proof. — Denote by ĝh(t) = (1− χ(t))f̂( t
h). So we have Rf,h = gh(H) and for every M,M ′ ≥ 1,

|µMgh(µ)| ≤
∫

|t|≥ε0

∣

∣

dM

dtM
ĝh(t)

∣

∣dt ≤ CM,M ′(f)hM
′
.

So we have

|KRfh(x, y)| =
∣

∣

∑

j

gh(λj)ϕj(x)ϕj(y)
∣

∣ ≤ ChM
(

∑

j

λ−M
j |ϕj(x)|2

)1/2(
∑

j

λ−M
j |ϕj(y)|2

)1/2
.

Recall the Sobolev estimate in the harmonic spaces: for every s > d
2 + r there exists C = Csr such

that

〈x〉r|u(x)| ≤ C‖u‖Hs , ∀u ∈ Hs(Rd).

So we get, for s > d
2 + r,

|KRfh(x, y)| ≤ ChM (〈x〉〈y〉)−r
∑

j

λs−M
j .

Using that λj ≈ j1/d and choosing r = M
2 + d+ 1 we get (B.2).

Our aim is to estimate the kernel of f
(

H−νλ
µ

)

for large λ, |µ| ≥ Dλ1−δ where D > 0 and δ < 2/3.

The parameter ν is fixed in an interval [ν0, ν1], where 0 < ν0 < ν1. All our estimates will be uniform

in ν, so for convenience we shall take ν = 1.

Denote by gλ,µ(s) = f
(

s−λ
µ

)

so we have ĝλ,µ(t) = µe−itλf̂(µt). We consider the dilated Weyl

symbol: Wλ,µ(x, ξ) = W̃gλ,µ(
√
λx,

√
λξ). Then we have

(B.3) Wλ,µ(x, ξ) =
µ

2π

∫

R

eiλΦ(t,x,ξ) χ(t)

cos(t)d
f̂(µt)dt,

with the phase Φ(t, x, ξ) = tan t(|x|2 + |ξ|2)− t.
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Lemma B.2. — Assume that δ < 2
3 . Then for every N,M ≥ 0 we have

Wλ,µ(x, ξ) =
∑

j(1−δ)+k(2−3δ)<N

ck,jλ
kµ−3k−j(|x|2 + |ξ|2)kf (3k+j)

(λ

µ
(|x|2 + |ξ|2 − 1)

)

+ O
(

λ−N (1 + |x|2 + |ξ|2)−M
)

,(B.4)

where ck,j are real numbers, c0,0 = 1.

Proof. — Using that ∂tΦ(t, x, ξ) = (1 + tan2 t)(|x|2 + |ξ|2) − 1 and integrating by parts we get that

for every M there exists CM > 0 such that for
∣

∣|x|2 + |ξ|2 − 1
∣

∣ ≥ 1/2 we have

(B.5) |Wλ,µ(x, ξ)| ≤ CMλ
−Mδ(|x|2 + |ξ|2 + 1)−M .

So it is enough to estimate Wλ,µ(x, ξ) for |x|2 + |ξ|2 ≈ 1.

To do that, we write down

eiλΦ(t,x,ξ) = eiλ(tan t−t)(|x|2+|ξ|2)eiλt(|x|
2+|ξ|2−1).

Denote by Et = (tan t− t)(|x|2 + |ξ|2), then we have

eiλEt =
∑

0≤k≤N

(iλEt)
k

k!
+ rN (iλEt)

where

| d
j

dsj
rN (s)| ≤ |s|N−j

(N − j)!
, 0 ≤ j ≤ N.

Lastly, we end up the computation by expanding (tan t− t) with Taylor

(tan t− t)k
χ(t)

cos(t)d
=

+∞
∑

j=0

dk,jt
3k+j.

Thus

Wλ,µ(x, ξ) =
µ

2π

+∞
∑

k=0

+∞
∑

j=0

∫

R

eiλt(|x|
2+|ξ|2−1)dk,ji

kλkt3k+j(|x|2 + |ξ|2)kf̂(µt)dt

=
µ

2π

+∞
∑

k=0

+∞
∑

j=0

∫

R

eiλt(|x|
2+|ξ|2−1)dk,ji

jλkµ−3k−j(|x|2 + |ξ|2)kf̂ (3k+j)(µt)dt

=

+∞
∑

k=0

+∞
∑

j=0

ck,jλ
kµ−3k−j(|x|2 + |ξ|2)kf

(λ

µ
(|x|2 + |ξ|2 − 1)

)

,

which implies the result with (B.5).
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B.2. Proof of Lemma 4.9. — First remark that the upper-bound is a direct consequence of (3.12)

and (3.13) and this hold true for δ = 1. The bound (3.13) being a rather difficult result, we shall

prove by the same method the estimate from above and from below for δ < 2/3.

We use here the functional calculus with energy parameter (B.4). Let f be a non negative C∞

function in ]− 2C0, 2C0[ with a compact support, such that f = 1 in [−C0, C0]. We choose two cutoff

functions f± with f+ as above and f− such that supp(f−) ⊆]C1, C0[, f− = 1 in [2C1, C0/2] where

C1 < C0/4. If K±,h(x, y) is the Schwartz kernel of f±
(

H−h−1

µ

)

(h = 1
λ is now a small parameter,

ν ∈ [ν0, ν1]). We have

K−,h(x, x) ≤ ex ≤ K+,h(x, x).

So we have to prove

(B.6) C0Nhh
β2p,θ ≤

(∫

Rd

〈x〉θ(p−1)K±,h(x, x)
pdx

)1/p

≤ C1Nhh
β2p,θ .

Recall that

K±,h(x, x) = (2π)−d

∫

Rd

W±,h(x, ξ)dξ

where W±,h(x, ξ) is the Weyl symbol of the operator f±
(

H−h−1

µ

)

. So using (B.4) it is not difficult to

see that it is enough to consider only the principal term given by the following formula

K0
f,h(x, x) = (2π)−d

∫

Rd

f

( |x|2 + |ξ|2 − h−1

µ

)

dξ.

We shall detail now the lower-bound; the upper-bound is proved in the same way. Denote by

K0
−(x) = K0

f,h(x, x) and s = θ(p− 1). We have

∫

Rd

〈x〉sK0
−(x)

pdx = (2π)−dp

∫

Rd
x

〈x〉s
(

∫

Rd
ξ

f−

( |x|2 + |ξ|2 − h−1

µ

)

dξ

)p

dx.

Now performing the change of variable x = h−1/2y, ξ = h−1/2η, using property of the support of f−
and integrating in y in the domain 1/2 ≤ |y| ≤ 2/3, we obtain

∫

Rd

〈x〉sK0
−(x)

pdx & h−s/2−(1+p)d/2(hµ)p.

Hence we get (B.6) using that µ ≈ hδ−1 so µh ≈ hδ ≈ hdNh.

Appendix C

Proof of (2.12)

To begin with, we identify the complex sphere of CN with the real sphere

S
2N−1 =

{

w ∈ R
2N : w2

1 + · · ·+ w2
2N = 1

}

⊂ R
2N .
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Denote by PN the uniform probability measure on S2N−1 and by µN the Gaussian measure on R2N of

density dµ =
1

(2π)N
exp

(

− 1

2

2N
∑

j=1

x2j
)

dx1 . . . dx2N . It is easy to check that PN is the image measure

of µN by the map
G : R2N −→ S2N−1

(x1, . . . , x2N ) 7−→ 1
√

∑2N
j=1 x

2
j

(x1, . . . , x2N ).

Indeed, µN ◦ G−1 is a probability measure on S2N−1 which is invariant by the isometries of S2N−1,

therefore PN = µN ◦G−1. For t ∈ [0, 1], denote by Φ(t) = PN

(
√

w2
1 + w2

2 > t
)

, then

Φ(t) =
1

(2π)N

∫

Ix2
1+x2

2>t2
∑2N

j=1 x
2
j
e−

1
2

∑2N
j=1 x

2
j dx1 . . . dx2N

=
1

(2π)N

∫

I
x2
1+x2

2>
t2

1−t2

∑2N
j=3 x

2
j

e−
1
2

∑2N
j=1 x

2
j dx1 . . . dx2N .

We make a spherical change of variables (x3, . . . , x2N ) 7−→ rσ and the polar change of variables

(x1, x2) = (r cos θ, r sin θ). Denote by s = t/
√
1− t2, thus there exists CN so that

Φ(t) = CN

∫

r2N−3e−
1
2
(ρ2+r2)

Iρ>sr ρdrdρ

= CN

∫ +∞

0
r2N−3e−

1
2
(1+s2)r2 dr.

Now, by the change of variables r′ = (1 + s2)1/2r, there exists CN so that

Φ(t) = CN (1 + s2)−(N−1) = CN (1− t2)N−1,

and CN = Φ(0) = 1.

Appendix D

Proof of Proposition 2.13

For simplicity we assume that the random variables, the γj and the space Eh are real, and we

identify Eh with RN , endowed with its natural Euclidean norm |y|0. We also consider the γ-dependent

norm

|y|2γ =
1

N

∑

1≤j≤N

y2j
γ2j
, y = (y1, · · · , yN ).

Condition (1.2) means that we have

1

C
|y|20 ≤ |y|2γ ≤ C|y|20.

We define a probability measure νγ in RN as the pull forward of the measure ν in RN by the mapping

ϕ: (x1, · · · , xN ) 7→
√
N(γ1x1, · · · , γNxN ). Notice that νγ satisfies the concentration property of

Definition 2.1.
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Now we follow the proof of of [13, Proposition 2.10]. Let F be a Lipschitz function on the sphere Sh,

and by homogeneity, it is enough to assume that F is 1-Lipschitz. For x ∈ RN , G(x) = |x|0
(

F ( x
|x|0 )−

F (x0)
)

, where x0 is a fixed point on Sh. Thus G satisfies

(D.1) |G(x) −G(y)|0 ≤ 2(π + 1)|x− y|0,
and

(D.2) F (
x

|x|0
)− F (

y

|y|0
) = G(

x

|x|0
)−G(

y

|y|0
).

By [13, Corollary 1.5], it is enough to prove that

Pγ,h ⊗Pγ,h

[

u, v ∈ Sh : |F (u)− F (u)| ≥ 3r
]

= νγ ⊗ νγ

[

x, y ∈ R
N :

∣

∣

∣F (
x

|x|0
)− F (

y

|y|0
)
∣

∣

∣ ≥ 3r
]

≤ Ce−cNr2 .

Denote by Mγ the median of x 7→ |x|0 with respect to νγ . Then by (D.2)

νγ ⊗ νγ

[

x, y ∈ R
N :

∣

∣

∣F (
x

|x|0
)− F (

y

|y|0
)
∣

∣

∣ ≥ 3r
]

= νγ ⊗ νγ

[

x, y ∈ R
N :

∣

∣

∣G(
x

|x|0
)−G(

y

|y|0
)
∣

∣

∣ ≥ 3r
]

≤ νγ ⊗ νγ

[

x, y ∈ R
N :

∣

∣

∣G(
x

Mγ
)−G(

y

Mγ
)
∣

∣

∣ ≥ r
]

+ 2νγ

[

x ∈ R
N :

∣

∣

∣G(
x

|x|0
)−G(

x

Mγ
)
∣

∣

∣ ≥ r
]

.

By (D.1) we have
∣

∣

∣
G(

x

|x|0
)−G(

x

Mγ
)
∣

∣

∣
≤ 2(π + 1)

∣

∣

∣

∣

|x|0
Mγ

− 1

∣

∣

∣

∣

,

which implies from (2.1) that

νγ

[

x ∈ R
N :

∣

∣

∣
G(

x

|x|0
)−G(

x

Mγ
)
∣

∣

∣
≥ r
]

≤ C1e
−c1M2

γr
2
.

Similarly, by (D.1) and (2.1)

νγ

[

x, y ∈ R
N :

∣

∣

∣
G(

x

Mγ
)−G(

y

Mγ
)
∣

∣

∣
≥ r
]

≤ C2e
−c2M2

γr
2
.

To conclude the proof of the proposition we use the following

Lemma D.1. — In RN , denote by Mγ(N) the median of x 7→ |x|0 with respect to νγ, and by Aγ(N)

its expectation. Then there exist C,C1, C2 > 0 such that for all N ≥ 1

|Mγ(N)−Aγ(N)| ≤ C and C1

√
N ≤ Mγ(N) ≤ C2

√
N.

Proof. — Here we use the notation |x|N := (x21 + · · · + x2N )1/2. By definition of Mγ , we have for all

t > 0 and thanks to (2.5)

1

2
= Pγ,h

[

|x|N ≥ Mγ

]

≤ e−t(Mγ−Aγ )E
[

et(|x|N−Aγ)
]

≤ e−t(Mγ−Aγ)ect
2
.
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Then, we choose t = (Mγ − Aγ)/(2c) and get for some C > 0, |Mγ − Aγ | ≤ C. This was the first

claim.

Next, by Cauchy-Schwarz, we obtain A2
γ(N) ≤

∫

RN |x|2Ndν(x) = N . Now we prove that there exists

C > 0 so that for all N ≥ 1, Aγ(N) ≥ C
√
N . Indeed,

Aγ(N + 1)−Aγ(N) =

∫

RN+1

x2N+1

|x|N + |x|N+1
dν(x)

≥ 1

2

∫

RN+1

x2N+1

|x|N+1
dν(x) =

Aγ(N)

2(N + 1)
.

This implies that for all N ≥ 1

Aγ(N + 1) ≥ (1− 1

2(N + 1)
)−1Aγ(N) ≥ (1 +

1

2(N + 1)
)Aγ(N),

and then Aγ(N) ≥ PNAγ(1), where

lnPN =

N
∑

k=2

ln(1 +
1

2k
) =

1

2
lnN +O(1),

which yields the result.
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[1] C. Ané, S. Blachère, D. Chafäı, P. Fougères, I. Gentil, F. Malrieu, R. Cyril, and G. Scheffer. Sur les
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2000.

[2] N. Burq and G. Lebeau. Injections de Sobolev probabilistes et applications. Ann. Sci. Éc. Norm. Supér.,
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[7] L. Hörmander. The spectral function of an elliptic operator. Acta Mathematica. 121, p. 193–218, (1968).

[8] V. Ivrii. Microlocal Analysis and Precise Spectral Asymtotics. Springer Monographs in Mathematics (1998).

[9] S. Kakutani. On Equivalence of Infinite Product Measures. Annals of Math. 49, No.1 (1948), p. 214–224.

[10] G.E. Karadzhov. Riesz summability of multiple Hermite series in Lp spaces. Math. Z. 219, p. 107–118,
(1995).

[11] H. Koch and D. Tataru. Lp eigenfunction bounds for the Hermite operator. Duke Math. J. 128 (2005), no.
2, 369–392.

[12] H. Koch, D. Tataru and M. Zworski. Semiclassical Lp Estimates. Annales Henri Poincaré 8 (2007), 885–
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