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Abstract

New relaxations of the Nash equilibrium concept are shown to exist in any strategic game with

discontinuous payoff functions. The new concepts are used (1) to show the equivalence between Reny’s

better-reply security condition [28] and Simon-Zame’s endogenous tie-breaking rule equilibrium concept

[32], (2) to obtain conditions for the existence of approximated equilibria in a class of discontinuous

games that naturally extends Reny’s better-reply secure games, and (3) to show the existence of

approximated equilibria in a large family of two-player games that contains all standard models of

auctions.

JEL classification: C02, C62, C72.

Keywords: Discontinuous games, better-reply security, sharing-rule equilibrium, approximated

equilibrium, strategic approximation, auctions, diagonal games.

1 Introduction

Many economic interactions can be formulated as games with discontinuous payoff functions. Examples

include price and spatial competition, auctions, bargaining problems, preemption games, wars of attrition,

general equilibrium models, etc.

To study the existence of a Nash equilibrium in these games, standard results such as the Nash-

Glicksberg’s theorem [16, 25, 26] fail because they require continuous utility functions. As a result, two

kinds of issues were explored in the literature.

The first issue is to identify some regularity conditions on payoffs, which combined with a limited

form of quasiconcavity of utility functions, guarantee the existence of a Nash equilibrium. The first

conditions of existence are given by the seminal papers of Dasgupta and Maskin [12, 13]. The significant
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106/112 Boulevard de l’Hôpital 75647 Paris Cedex 13. E-mail: bich@univ-paris1.fr
‡CNRS, Economics Department, Ecole Polytechnique, France. Part/time associated of the Équipe Combinatoire et
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breakthrough, extending the previous results, is achieved by Reny [28] throughout the better-reply security

condition.

Quoting Reny, “A game is better-reply secure if for every nonequilibrium strategy x∗ and every payoff

vector limit u∗ resulting from strategies approaching x∗, some player i has a strategy yielding a payoff

strictly above u∗i even if the others deviate slightly from x∗”. In particular, many examples above are

better-reply secure and consequently admit a Nash equilibrium. Reny’s paper induces a large and still

extremely active research agenda. For instance, Barelli and Soza [3, 5] and Mclennan et al. [24] propose an

extension to non-transitive preferences and non-quasiconcave games, Reny [29, 30] introduces a refinement

of better-reply security, Carmona [9] gives an extension of Dasgupta and Maskin’s results, which are

unrelated to Reny’s approach. More recently, Barelli et al. [4] apply Reny’s tools to prove the existence

of the value (and so existence for an ε-Nash equilibrium for every ε > 0) in a large class of zero-sum

games including the Colonel Blotto game.

The second issue is to propose an alternative solution concept for games without a Nash equilibrium.

Simon and Zame [32] argue that “payoffs should be viewed as only partially determined, and that when-

ever the economic nature of the problem leads to indeterminacies, the sharing rule should be determined

endogenously.” Actually, in most applications, discontinuities are located on a low-dimensional subspace

of strategy profiles (firms or players choosing the same price, location, bid, acting time, etc.). In some of

these games, the exogenously given tie-breaking rule leads to no pure Nash equilibrium (e.g. asymmetric

Bertrand duopoly, Hotelling location game) or no mixed Nash equilibrium (e.g. 3-player timing games

[22], auctions with correlated types or values [15, 18]). However, the existence of a Nash equilibrium

is restored if the tie-breaking rule is chosen endogenously [21, 23, 32]. For instance, in an asymmetric

Bertrand duopoly, a pure Nash equilibrium exists if ties are broken in favor of the lower-cost firm. Simon

and Zame give a significant answer by proving, under mild topological conditions on the strategy spaces,

the existence of a solution (i.e. a Nash equilibrium in mixed strategies after an eventual modification of

payoff functions at discontinuity points).

Another alternative solution for games without a Nash equilibrium is the notion of approximated

equilibrium. An approximated equilibrium is a limit strategy profile x∗ and a limit payoff vector u∗ of

ε-Nash equilibria xε with associated payoff vector u(xε), as ε goes to 0. It was shown to exist in many

games such as two-player stochastic and timing games [22, 34, 35] and more recently for the Colonel Blotto

game [4]. Surprisingly, there is but only one general result in the spirit of Nash’s theorem which provides

the existence of approximated equilibria, due to Prokopovych [27]. While theoretically interesting, it

requires assumptions on payoff functions that are not applicable in many economic problems (such as

auctions).

The main objective of our paper is (1) to establish a connection between better-reply security, endoge-

nous sharing rule and approximated equilibrium, in pure and mixed strategies and (2) to extend Reny,

Simon and Zame’s ideas (usually used to study existence of a Nash equilibrium) to study existence of an

approximated equilibrium.

A first result is the “equivalence” between Reny and Simon-Zame approaches in pure strategies. This

answers to a question of Jackson and Swinkel [19], who ask if “these approaches [Reny and Simon-Zame]

turn out to be related”.1 This equivalence requires the extension of Simon and Zame’s solution to pure

1De Castro [11] proposes an answer to the question of Jackson et al. [17] in a restricted class of games.
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strategies, since the Simon and Zame solution concept is only defined and proved to exist in mixed

strategies. This leads us to the concept of sharing-rule equilibrium, which induces a Nash equilibrium

whenever the game is better-reply secure.

The existence of a sharing-rule equilibrium in any quasiconcave game without any topological as-

sumptions on the payoff functions is a second result of our paper. This answers another open question in

Jackson et al. [17], who, after extending Simon and Zame’s solution to game with incomplete information,

remark that their “results concern only the existence of solutions in mixed strategies and that they “have

little to say about the existence of solutions in pure strategies”. Technically, the proof of existence of a

sharing-rule equilibrium is a direct consequence of Reny’s [28] existence result.

A third contribution is an equivalence result similar to the previous one, in mixed strategies. This

requires the introduction of the finite deviation equilibrium concept. We link it to the useful idea of

strategic approximation recently studied by Reny [30].

The last important contribution concerns approximated equilibria. Actually, the existence of a

sharing-rule equilibrium in any quasiconcave compact game leads naturally to a new class of games in

which an approximated equilibrium always exists. These are games satisfying the following weaker form

of better-reply security: for every non-approximated equilibrium (x∗, u∗), some player i has a strategy

yielding a payoff strictly above u∗i even if the others deviate slightly from x∗.

Our paper is organized as follows. In Section 2, we outline the main approaches of the literature

(Reny [28], Simon-Zame [32] and Prokopovych [27]). In Section 3, we unify Reny and Simon-Zame in

pure strategy games by introducing Reny and sharing-rule equilibrium concepts. Section 4 is devoted to

the existence of approximated equilibria in pure strategies. In Section 5, we consider the mixed strategy

case. We introduce the finite deviation equilibrium concept and use it (1) to unify Reny and Simon-

Zame, (2) to show the existence of a strategic approximation in a large class of games, and (3) to provide

conditions for the existence of approximated equilibria in mixed strategies. In Section 6, we refine Reny’s

equilibrium (in pure strategies) in three different directions. One of them concerns the non-quasiconcave

case, which is illustrated with Hotelling’s location game. Another is related to the recent extension of

Reny by Barelli and Soza [5]. The last extension proves a general existence result which refines and

implies many recent extensions of Reny’s better-reply security condition [3, 5, 9, 10, 28, 29]. Importantly,

the proof of this extension is almost standard since based on a classical fixed theorem combined with a

new selection lemma. The last section (appendix) provides the most technical proofs.

To illustrate the results, a general class of two-player games (diagonal games) is introduced in Sec-

tion 4 (in pure strategies and complete information) and Section 5 (in mixed strategies with incomplete

information). It includes almost all known models of competitions, in particular Bertrand, location, bar-

gaining, Cournot with capacities, auctions and timing games, among others. As a byproduct, we show the

existence of an approximated mixed equilibrium in any two-player auction with incomplete information.

Recall that such games may have no Nash equilibrium, as shown in [15, 18]. For instance, in a first price

auction with complete information, the rational behavior is for the player with the highest evaluation

to bid slightly above the second highest evaluation, which provides an approximated equilibrium. This

paper proves that the existence of an approximated equilibrium is indeed guaranteed in a large class of

two-player auction games.
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2 Three Approaches to Discontinuous Games

A game in strategic form G = ((Xi)i∈N , (ui)i∈N ) is given by a finite set N of players, and for each player

i, a set Xi of pure strategies and a payoff function ui : X =
∏

i∈N Xi → R. This paper assumes G to be

compact: for every i ∈ N , Xi is a compact subset of a topological vector space and ui is bounded.2

Definition: x ∈ X is a Nash equilibrium if for every i ∈ N , Vi(x−i) := supdi∈Xi
ui(di, x−i) ≤

ui(x),

where x−i = (xj)j 6=i. A game G is quasiconcave if for every i, Xi is convex and for every x−i ∈ X−i :=

Πj 6=iXj , the mapping ui(·, x−i) is quasiconcave. The game is continuous if for every i, ui is continuous3.

Nash-Glicksberg’s theorem (in pure strategies): any continuous, quasiconcave and

compact game G admits a Nash equilibrium.

The rest of the section presents three different extensions of this result. Our paper links them into

one general idea.

2.1 Better-Reply Security

In many discontinuous games, a Nash equilibrium exists (Bertrand price competition, auctions, location

games, concession games, wars of attrition among many). Reny’s theorem [28] provides an explanation

for this.

Formally, let Γ = {(x, u(x)) : x ∈ X} denote the graph of G and Γ be the closure of Γ. Since G is

compact, Γ is compact as well. Define the “secure payoff level” of player i when he plays di and when

the other players play x−i as follows:

ui(di, x−i) = lim inf
x′−i→x−i

ui(di, x
′
−i).

4

This is the payoff that player i can almost guarantee by playing di, if the other players are allowed to

deviate slightly from x−i.

Definition: G is better-reply secure if whenever (x, v) ∈ Γ and x is not a Nash equilibrium,

some player i ∈ N can secure5 a payoff strictly above vi, i.e. there exists di ∈ Xi such that

ui(di, x−i) > vi.

It is easy to verify that any continuous game is better-reply secure.

Reny’s theorem [28]: any better-reply secure, quasiconcave and compact game admits a

Nash equilibrium.

2Some results require the strategy sets to be metric and/or Hausdorff.
3X is endowed with the product topology.
4The notation lim inf

x′−i→x−i

could be misleading since the strategy spaces are not necessarily metric: con-

vergence should be understood in the sense of nets. A topological definition of lim inf is the following:
lim inf

x′−i→x−i

ui(di, x
′
−i) = sup

V ∈V(x−i)
inf

x′−i∈V
ui(di, x

′
−i), where V(x−i) denotes the set of neighborhoods of x−i.

5Player i can secure a payoff above α ∈ R if there exists di ∈ Xi and a neighborhood V−i of x−i such that for every
x′−i ∈ V−i, ui(di, x

′
−i) ≥ α.
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In his paper, Reny gives two useful sufficient conditions under which a game is better-reply secure:

payoff security and reciprocal upper semicontinuity.

Definition: (i) G is reciprocally upper semicontinuous if, whenever (x, v) ∈ Γ and u(x) ≤ v,

then u(x) = v. (ii) G is payoff secure6 at x−i ∈ X−i if Vi(x−i) = Vi(x−i), where Vi(x−i) :=

supdi∈Xi
ui(di, x−i).

2.2 Approximated Equilibrium

A natural relaxation of Nash equilibrium is the following.

Definition: (x, v) ∈ Γ is an approximated equilibrium if there exists a sequence7 (xn)n∈N of

X such that:

(i) for every n ∈ N∗, xn is a 1
n -equilibrium, that is: for every player i ∈ N and every deviation

di ∈ Xi, ui(di, x
n
−i) ≤ ui(xn) + 1

n .

(ii) the sequence (xn, u(xn)) converges to (x, v).

Several classes of games do not have a Nash equilibrium but do admit an approximated equilibrium

(two-player undiscounted stochastic games [34, 35], two-player timing games [22], among others). How-

ever, in the literature, few topological conditions for the existence of an approximated equilibrium exist.

This subsection describes such a result. One of the main objectives of our paper is to extend this theorem

using Reny’s better-reply security idea and apply it to a large class of two-player games.

Definition: a game G has the marginal continuity property if Vi is continuous for every i.

Prokopovych’s theorem [27]: any payoff secure, quasiconcave and compact game that has

the marginal continuity property admits an approximated equilibrium.

A continuous game is payoff secure and has the marginal continuity property. Moreover, continuity

insures that approximated and Nash equilibria coincide. Consequently, Prokopovych’s theorem is an

extension of Nash-Glicksberg’s theorem. First-price auction (with complete information) and asymmetric

Bertrand’s competition do not have a Nash equilibrium but have an approximated equilibrium (see

example 3). They are payoff secure and have the marginal continuity property. However, the following

known location game [32] is not payoff secure, but does have an approximated equilibrium. Our extension

of Prokopovych’s theorem applies to this example (see Section 3).

Example 1. The length interval [0, 4] represents an interstate highway. The strategy set of player

1 (a psychologist from California) is X = [0, 3] (representing the Californian highway stretch). The

strategy set of player 2 (a psychologist from Oregon) is Y = [3, 4] (the Oregon part of the highway). The

payoff function of player 1 is u1(x, y) = x+y
2 if x < y and u1(3, 3) = 2. The payoff function of player

2 is u2(x, y) = 4 − u1(x, y). The strategy profile xn = (3 − 1
n , 3), corresponding to the vector payoff

vn = (3 − 1
2n , 1 + 1

2n ), is a 1
2n -equilibrium. Consequently, (x = (3, 3), v = (3, 1)) is an approximated

equilibrium. However, the game is not payoff secure for player 2 at x = (3, 3).

6Actually, Reny defines a game G to be payoff secure if for every x ∈ X, for every ε > 0, every player i ∈ N can secure
a payoff above ui(x)− ε. we can check that this implies Vi(x−i) = Vi(x−i) for every x ∈ X, the converse being not true.

7Again, the definition is stated in terms of sequences, while we should use convergence in the sense of nets.
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2.3 Endogenous Tie-Breaking Rule

The California location game above is introduced by Simon and Zame [32] to illustrate their equilibrium

notion. They propose to change slightly the game by exhibiting an alternative tie-breaking rule at

discontinuity points so that the auxiliary game admits a Nash equilibrium.

Example 2. (California location game, continued) The California location game, defined above,

is constant-sum, discontinuous and has no Nash equilibrium. Define a new payoff function q as follows:

q(x) = u(x) for every x 6= (3, 3) and q(3, 3) = (3, 1). The pure strategy profile (3, 3) is a Nash equilibrium

of the game defined by q. The new sharing rule at x = (3, 3) has a simple interpretation: it corresponds

to giving each psychologist his/her natural market share.

Simon and Zame do not assume the game to be quasiconcave, but allow the use of mixed strategies.

Formally, G is metric if strategy sets are Hausdorff and metrizable and payoff functions are measurable.

Denote by Mi = ∆(Xi) the set of Borel probability measures on Xi (usually called the set of mixed

strategies of player i). This is a compact Hausdorff metrizable set under the weak* topology. Let

M = ΠiMi. A mixed Nash equilibrium of G is a (pure) Nash equilibrium of its mixed extension G′ =

((Mi)i∈N , (ui)i∈N ), where payoff functions are extended multi-linearly to M .

Definition: A couple (σ, q) is a solution (call it a sharing-rule mixed equilibrium) of G if

σ ∈ M is a mixed equilibrium of the auxiliary game G̃ = ((Xi)i∈N , (qi)i∈N ), where the

auxiliary payoff functions q = (qi)i∈N must satisfy:8

(SR): ∀y ∈ X, q(y) ∈ coΓy,

where, Γx = {v ∈ RN : (x, v) ∈ Γ} is the x-section of Γ.

Condition (SR) has two implications that justify the term sharing rule: if u is continuous at x,

q(x) = u(x); if
∑
i∈N

ui(x) is continuous then
∑
i∈N

qi(x) =
∑
i∈N

ui(x).

Simon and Zame’s theorem [32]: any metric and compact game admits a sharing-rule

mixed equilibrium.

Again, this is an extension of the Nash-Glicksberg’s theorem in mixed strategies: when the game is

continuous, the auxiliary and the original games coincide. In that case, the theorem states that:

Nash-Glicksberg’s theorem (in mixed): any continuous, metric and compact game ad-

mits a mixed Nash equilibrium.

Jackson et al. [17] extend Simon and Zame’s theorem to games with incomplete information. In

their paper, they interpret a tie-breaking rule as a proxy for the outcome of an unmodeled second stage

game. As example, they recall the analysis of first-price auctions with incomplete information for a single

indivisible object. Maskin and Riley [23] add to the sealed-bid stage a second stage where bidders with the

highest bid in the first stage play a Vickrey auction. In the private value setting, their dominant strategy

8Where co stands for the convex hull.
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is to bid their true values. Consequently, the second stage induces a tie-breaking rule where the bidder

with the highest value wins the object. More generally, a tie-breaking rule may be implemented by asking

players to send a cheap message (their private values in auctions), in addition to their strategies (bids).

The messages will be used only to break ties (as in the second stage of Maskin and Riley’s mechanism).

3 Sharing-Rule Equilibrium in Pure Strategies

As explained in the introduction, the relation between Simon-Zame and Reny’s existence results is an

important open question. The aim of this section is to give a formal equivalence between these two

results in pure strategies, the mixed-strategy case being treated in Section 5. The link with approximated

equilibrium and in particular with Prokopovych’s theorem is presented in the next section.

Example 3. In a Bertrand duopoly, two firms i = 1, 2 choose prices pi ∈ [0, a] (a > 0). Assume a linear

demand a −min(p1, p2) and marginal costs c1 < c2 <
a+c1

2 . The game has no pure Nash equilibrium if

we assume that the firm charging the lowest price supplies the entire market. Nevertheless, the game is

quasiconcave and compact. This game has a solution à la Simon-Zame, with a strategy profile (c2, c2)

and with payoff function q(c2, c2) = ((a − c2)(c2 − c1), 0), while q(x) = u(x) elsewhere. This seems to

be the intuitive solution of the game and it may be related to another standard tool to circumvent the

non-existence of a Nash equilibrium: just assume a smallest monetary unit δ > 0. Then, the strat-

egy profile (c2 − δ, c2) is a Nash equilibrium of this discretized game. The associated payoff vector is

((c2 − δ − c1)(a− c2 + δ), 0). As δ goes to zero, we obtain the Simon-Zame’s solution.

Several remarks are of interest. Both examples (California location and Bertrand’s duopoly) yield a

solution (à la Simon and Zame) in pure strategies, yet Simon-Zame equilibrium notion is defined in mixed

strategies. Second, the solution happens to be an approximated equilibrium in both cases (in example

2, consider the sequence of 1
2n -Nash equilibria (3 − 1

n , 3), and in example 3, the sequence (c2 − 1
n , c2)).

Third, both games are not better-reply secure, because they are quasiconcave, compact, but have no

Nash equilibrium.

The next definition extends Simon-Zame’s solution to games in pure strategies.

Definition 1 (x, v) ∈ Γ is a sharing-rule equilibrium if x is a (pure) Nash equilibrium of an auxiliary

game G̃ = ((Xi)i∈N , (qi)i∈N ), where:

(i) v = q(x) is the associated vector payoff.

(ii) For every y ∈ X, q(y) ∈ Γy.

(iii) For every i ∈ N and every di ∈ Xi, qi(di, x−i) ≥ ui(di, x−i).

In other words, a sharing-rule equilibrium is a pure strategy profile x and a payoff vector v such

that x is a classical Nash equilibrium of an auxiliary game G̃ and v is the associated payoff vector at

x. Without conditions on G̃, any strategy profile could be made a Nash equilibrium of some auxiliary

game. To reduce the number of solutions, the new game must be as close as possible to the original game.

Condition (ii) says that q(y) is a limit point of some u(yn) as yn goes to y. Consequently, only payoffs

at discontinuity points of u are modified. Hence it is similar to condition (SR) in Simon and Zame, but

no convex hull is required. Condition (iii) asks the payoff function of a player in the auxiliary game to

7



remain above the security payoff level in the original game. This is not required by Simon and Zame.

The following example shows its importance.

Example 4. Consider a one-player game who maximizes over [0, 1] the following discontinuous payoff

function: u(x) = 0 if x < 1, and u(1) = 1. The rational solution is clearly the profile x = 1 yielding the

highest possible payoff. But the constant payoff function q = 0 satisfies Condition (ii) above. So, any

mixed strategy profile σ is a solution à la Simon-Zame. Condition (iii) implies that the unique possible

auxiliary payoff function is q = u, and the only equilibrium strategy of the auxiliary game is x = 1.

More generally, in a one-player game, the upper semicontinuous regularization of u, defined by

uu.s.c.(x) = lim sup
x′→x

u(x′), satisfies (ii) and (iii). Thus, if x maximizes uu.s.c., then (x, uu.s.c.(x)) is a

sharing-rule equilibrium. For two players or more, the payoff profile q = (uu.s.c.i )i∈N may not satisfy (ii)

or even (SR). Examples are easy to construct.

To link sharing-rule equilibrium with Reny’s better-reply security and prove its existence, we introduce

the following new equilibrium concept.

Definition 2 (x, v) ∈ Γ is a Reny equilibrium if

∀i ∈ N, Vi(x−i) := sup
di∈Xi

ui(di, x−i) ≤ vi.

Theorem 1. Any quasiconcave and compact game G admits a Reny equilibrium.

Existence is a straightforward consequence of Reny’s [28] theorem. Indeed, assume, by contradiction,

that there is no Reny equilibrium. This implies that the game is better-reply secure. Consequently, from

Reny [28], there exists a Nash equilibrium, which is obviously a Reny equilibrium: a contradiction.

Theorem 2. Any quasiconcave and compact game G admits a sharing-rule equilibrium.

Let us prove Theorem 2. From Theorem 1, there exists a Reny equilibrium (x, v) ∈ Γ. Then, we

can build the sharing-rule equilibrium as follows. For every i ∈ N and di ∈ Xi, denote by S(di, x−i)

the space of sequences (xn−i)n∈N of X−i converging to x−i such that limn→+∞ ui(di, x
n
−i) = ui(di, x−i).

Then, define q : X → RN by

q(y) =


v if y = x,

any limit point of (u(di, x
n
−i))n∈IN if y = (di, x−i) for some i ∈ N, di 6= xi, (x

n
−i)n∈N ∈ S(di, x−i),

q(y) = u(y) otherwise.

Now, let us prove that x is a sharing-rule equilibrium profile associated to q. Since (x, v) ∈ Γ, and

by definition of q, condition (ii) of Definition 1 is satisfied at x. Obviously, it is satisfied at every y

different from x for at least two components, and also at every (di, x−i) with di 6= xi, from the def-

inition of q(di, x−i) in this case. To prove condition (iii) of Definition 1, let i ∈ N and di ∈ Xi. If

di = xi then qi(di, x−i) = qi(x) = vi ≥ ui(x) because (x, v) is a Reny equilibrium. If di 6= xi then

qi(di, x−i) = ui(di, x−i) so that condition (iii) holds. The proof is complete.
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The following proposition links Reny, Nash, approximated and sharing-rule equilibria.

Proposition 3

i) Reny and sharing-rule equilibria coincide.

ii) If x ∈ X is a Nash equilibrium, (x, u(x)) is a Reny equilibrium.

iii) If (x, v) ∈ Γ is an approximated equilibrium, (x, v) is a Reny equilibrium.

iv) A game is better-reply secure if and only if Nash and Reny equilibria coincide.

Proof. Part i) is a consequence of the last proof and the definition of a sharing-rule equilibrium. For ii),

if x ∈ X is a Nash equilibrium, then ui(x) ≥ ui(di, x−i) ≥ ui(di, x−i) for every player i ∈ N and every

deviation di ∈ Xi. For iii), if (x, v) ∈ Γ is an approximated equilibrium, let (xn)n∈N be a sequence of
1
n -equilibria such that (xn, u(xn)) converges to (x, v). By definition, ui(di, x

n
−i) ≤ ui(x

n) + 1
n for every

n ∈ N, for every player i ∈ N and every deviation di ∈ Xi. Passing to the infimum limit when n tends

to infinity, we obtain ui(di, x−i) ≤ vi. To finish, iv) is a straightforward consequence of the definitions of

Reny equilibrium and better-reply security.

Thus, the Reny equilibrium has an appealing interpretation as a sharing rule and constitutes a neces-

sary condition for a profile to constitute a Nash equilibrium. Moreover, the notion of a Reny equilibrium

may be used to simplify some proofs in the literature. To illustrate this, let us prove that a payoff

secure and reciprocally upper semicontinuous game is better-reply secure: if (x, v) is a Reny equilib-

rium, then sup
di∈Xi

ui(di, x−i) ≤ vi for every player i ∈ N . Since the game is payoff secure, we obtain

sup
di∈Xi

ui(di, x−i) ≤ vi. Taking d = x, we deduce that u(x) ≤ v. Since the game is reciprocally upper

semicontinuous, v = u(x). Consequently, x is a Nash equilibrium.

The next section uses Reny equilibria (or equivalently sharing-rule equilibria) to establish conditions

for existence of approximated equilibria in quasiconcave compact games and explains why in Bertrand

duopoly (and many similar games), sharing-rule equilibria and approximated equilibria coincide.

4 Approximately Better-Reply Secure Games

The previous section shows that a game is better-reply secure if and only if Nash and Reny equilibria

coincide. Following this idea, introduce the following class of games.

Definition 4 G is approximately better-reply secure if Reny and approximated equilibria coincide. Equiv-

alently, if whenever (x, v) ∈ Γ is not an approximated equilibrium, then there exists a player i ∈ N and

di ∈ Xi such that ui(di, x−i) > vi.

This is a natural relaxation of Reny’s definition. Existence of a Reny equilibrium implies:

Theorem 3. Any approximately better-reply secure, quasiconcave and compact game admits an approx-

imated equilibrium.

The following example of Dasgupta and Maskin [13] illustrates the result.

9



Example 5. There are two players, X1 = X2 = [0, 1] and the payoff functions are defined as follows:

ui(x1, x2) =

{
0 if x1 = x2 = 1,

xi otherwise.

No pure Nash equilibrium exists. However, the game is approximately better-reply secure: (x =

(1, 1), v = (1, 1)) is the unique Reny and approximated equilibrium. It is, in our opinion, the intuitive

solution of the game.

Let us give two applications. The first encompasses Prokopovych’s theorem and California location

game, the second implies the existence of an approximated equilibrium in a general class of two-player

games.

Proposition 5 Let G be a quasiconcave and compact game G where:

(i) The function Vi(x−i) is continuous.

(ii) If x ∈ X is not a Nash equilibrium, some player i ∈ N can secure a payoff strictly above ui(x).

(iii) G is payoff secure except on a finite set of profiles.

Then G is approximately better-reply secure.

Proof. Let (x, v) be a Reny equilibrium. Remark that from (ii), if (x, u(x)) is a Reny equilibrium, then

x is a Nash equilibrium. Thus, if v = u(x), from (ii), x is a Nash equilibrium and so is an approximated

equilibrium. Suppose v 6= u(x). Consequently, there exists a sequence of distinct points (xn, u(xn))

converging to (x, v). From iii), supdi∈Xi
ui(di, x

n
−i) = supdi∈Xi

ui(di, x
n
−i) for n large enough, and from

i), the limit is supdi∈Xi
ui(di, x−i). Consequently, (x, v) is an approximated equilibrium.

This implies Prokopovych’s theorem: if Vi(x−i) = Vi(x−i) is continuous, conditions i), ii) and iii) are

satisfied. The California location game does not satisfy Prokopovych’s assumptions (it is payoff secure

except at (3, 3)), but satisfies i), ii) and iii).

Consider now the following class of two-player games on the unit square.

Example 6. Let fi, gi and hi be three mappings from X = [0, 1]× [0, 1] to R, i = 1, 2. The payoff of

player i is

ui(xi, x−i) =


fi(xi, x−i) if x−i > xi,

gi(xi, x−i) if x−i < xi,

hi(xi, x−i) if x−i = xi.

Call such a model a diagonal game, denoted G = ((fi, gi, hi)i=1,2). It includes most two-player

models of competition with complete information such as: auctions, Bertrand games, spatial games,

Cournot games with capacities and timing games. The following proposition (proved in Appendix 8.1)

provides the existence of an approximated equilibrium for a large class of diagonal games.

10



g1

f1

h1

x = 0 x = 1
y = 0

y = 1

f2

g2
h2

x = 0 x = 1
y = 0

y = 1

Figure 1: Representation of u1(x, y) and u2(x, y) in Example 6

Proposition 6 Any quasiconcave diagonal game satisfying (i) and (ii) below is approximately better-

reply secure, where:

(i) fi and gi are continuous, i = 1, 2.

(ii) hi(xi, xi) ∈ co{fi(xi, xi), gi(xi, xi)} for every (xi, xi) ∈ [0, 1]× [0, 1].

Suppose for instance that gi(., x−i) is non-increasing and fi(., x−i) is non-decreasing on [0, 1] (for every

x−i ∈ X−i and i = 1, 2): under Condition (ii) above, the diagonal game is quasiconcave, and Proposition

6 can be applied whenever f and g are continuous. This is to be compared with Example 3.1 in Reny [28],

where under similar conditions, a Nash equilibrium is proved to exist in the smaller class of timing games.

The following examples prove that without condition (i) or (ii) in Proposition 6, an approximated

equilibrium may fail to exist. When (ii) is not satisfied but h is supposed to be continuous, we can prove

that an approximated equilibrium still exists, using a refinement of Reny equilibrium (see Section 6.1).

When the game fails to be quasiconcave, existence of an approximated equilibrium must be studied in

mixed strategies (see next section).

Example 7. Consider the two-player game where the strategy spaces are X = Y = [0, 1], and the

payoff functions ui are defined below and illustrated in Figure 1:

0

0

1

x = 0 x = 1
y = 0

y = 1

1

0
2

1

x = 0 x = 1
y = 0

y = 1

Figure 1: Representation of u1(x, y) and u2(x, y) in Example 7

u1(x, y) =

{
0 if x 6= y

1 if x = y
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u2(x, y) =


2 if x < y

1 if x ≥ y and y 6= 1

0 if x = y = 1

This is a quasiconcave and compact diagonal game where condition (ii) of Proposition 6 is not satis-

fied. The game has no pure approximated equilibrium.

Importantly, continuity of f(x, y) only on the half space {(x, y) ∈ [0, 1] × [0, 1] : x < y} may not

guarantee the existence of an approximated equilibrium, as the following example shows.

Example 8. The following diagonal symmetric game is quasiconcave, compact and satisfies all

assumptions but i), since here, the mapping f(x, y) = x
y has no continuous extension on [0, 1]× [0, 1].

u1(x, y) =


x
y if x < y

1
2 1x>0 if x = y

1
2 if x > y

u2(x, y) = u1(y, x)

The game has no approximated pure equilibrium: indeed, no player i will play 0 at an ε-equilibrium

(for ε < 1
2 ), since he would obtain 0, although he could guarantee 1/2 (playing 1 if the other player j plays

y = 0, and just below y if y > 0). Now, given a strategy x > 0 of player i, player j should play some y

just below x and get a payoff close to 1 while the other player obtains 1
2 . Consequently, no ε-equilibrium

exists for ε < 1
2 . We can check that (x = (0, 0), v = (1

2 ,
1
2 )) is the unique Reny equilibrium, and is also a

1
2 -equilibrium.

Our last example proves that Prokopovych’s theorem cannot be applied to the class of diagonal games

covered by Proposition 6.

Example 9. Consider the two-player game where the strategy spaces are X = Y = [0, 1], and the

payoff functions ui are defined below:

u1(x, y) =


2 + x if x < y

1 if x = y

0 if x > y

u2(x, y) = y

This game satisfies the assumptions of Proposition 6. The only approximated equilibrium is (x =

(1, 1), v = (3, 1)) (which is, in our opinion, the natural solution of the game). However, Prokopovych’s

theorem cannot be applied, because V1(x2) = supd1∈[0,1] u1(d1, x2) is discontinuous at x2 = 0.
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5 Games in Mixed Strategies

In this section, we introduce the concept of finite mixed deviation equilibrium. This equilibrium notion

allows Reny and Simon-Zame results to be unified in mixed strategies and is applied to provide conditions

under which a game admits a strategic approximation.

The fundamental idea of strategic approximation reveals itself to be extremely powerful in showing

existence of Nash or approximated equilibrium, as will be seen in the framework of two-player diagonal

games and auctions with incomplete information.

5.1 Finite Mixed Deviation Equilibria

Throughout this section, G is a metric compact game, G′ denotes its mixed extension and Γ′ is the closure

of the graph of G′.

Definition 7 (m, v) ∈ Γ′ is a finite mixed deviation equilibrium if for every open set Vm,v that contains

(m, v) and every finite set Di ⊂ Mi, i = 1, ..., N , of mixed strategies, there exist finite sets D′i ⊂ Mi

containing Di (i = 1, ..., N) and m′, a mixed Nash equilibrium of the game restricted to D′, such that

(m′, u(m′)) ∈ Vm,v.

Theorem 4. Any metric compact game G admits a finite mixed deviation equilibrium.

Proof. The proof uses a finite discretization of the game, and a limit argument: let D be the set of

all finite subsets Πi∈NDi of M . Consider the inclusion relationship on D (which is reflexive, transitive

and binary). Then, each pair Πi∈NDi and Πi∈ND
′
i in D has an upper bound Πi∈N (Di ∪D′i) in D. The

couple (D,⊂) is called a directed set. To every D = Πi∈NDi ∈ D, we can associate (mD, u(mD)), where

mD is a Nash mixed equilibrium of the finite game restricted to D. This defines a mapping from D to

Γ′, called a net (of Γ′). Then, a limit point (m, v) ∈ Γ′ of this net, denoted (mD, u(mD))D∈D, is defined

by the following property: for every neighborhood Vm,v of (m, v) and every D = Πi∈NDi ∈ D, there

exists D′ ∈ D with D ⊂ D′ such that (mD′ , u(mD′)) ∈ Vm,v. Such a limit point (m, v) exists due to

compactness of Γ′. Then (m, v) is clearly a finite mixed deviation equilibrium.

Similarly, if we require the deviations sets Di and D′i to be pure strategy sets in the definition of a finite

mixed deviation equilibrium, we shall say that (m, v) is a finite pure deviations equilibrium (F.P.D.E).

Its existence is proved similarly.

The concept of finite mixed deviation equilibrium is intuitive: it says that the mixed profile m with

associated payoff vector v is “almost” a usual Nash mixed equilibrium. The concept requires that for

any finite set of mixed deviations Di ⊂Mi, there is a profile m′, which is as close to m as desirable, with

a payoff u(m′) as close to v as desirable, such that m′ is a Nash in a finite game D′ larger than D.

Definition 8 G has the weak finite deviation property if finite mixed deviation equilibria and Nash equi-

libria coincide.

A first motivation for this definition is to encompass the following class of games introduced by Reny

[29], which generalizes better-reply security in mixed strategies as follows:
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Definition: G has the finite deviation property if whenever m∗ ∈M is not a Nash equilibrium

of G′, then there exists m1, ...,mK ∈M and a neighborhood U of m∗ such that for all m′ ∈ U
there is a player i and k such that ui(m

k
i ,m

′
−i) > ui(m

′).

Theorem 5.

i) Every metric compact game which has the weak finite deviation property admits a Nash equilibrium.

ii) For every mixed Nash equilibrium m of G′, (m,u(m)) is a finite mixed deviation equilibrium.

iii) G is better reply-secure ⇒ G has the finite deviation property ⇒ G has the weak finite deviation

property.

Proof. Property i) is a consequence of Theorem 4. To prove ii), let m be a mixed Nash equilibrium of

G′, V be an open neighborhood of (m,u(m)) and Di ⊂ Mi, i = 1, ..., N , be finite mixed strategy sets.

Then m is a Nash equilibrium of Πi∈N (Di∪{mi}), thus (m,u(m)) is a finite mixed deviation equilibrium.

Last, to prove the second implications of iii), assume G has the finite deviation property and m is not a

Nash, then there exists m1, ...,mK ∈M and a neighborhood U of m such that for all m′ there is a player

i and k such that ui(m
k
i ,m

′
−i) > ui(m

′). Let (m, v) ∈ Γ′ , let V be an open neighborhood of (m, v) such

that (m′, v) ∈ V implies m′ ∈ U : this proves that (m, v) is not a finite mixed deviation equilibrium. The

proof of the other statements is left to the reader.

The following theorem, proved in Appendix 8.2, shows that finite mixed deviation equilibrium unifies

Simon-Zame and Reny existence results and so answers affirmatively to Jackson and Swinkel’s question

[19]. Also, keeping in mind that a finite mixed deviation equilibrium is nothing more than a limit point of

Nash equilibria of a sequence of approximation of the game’s strategy space, Theorem 6 makes precise the

following idea in Reny [30]: “A rather distinct approach to approximating infinite games can be pursued

by exploiting the techniques introduced in Simon and Zame, where payoffs are sometimes redefined at

points of discontinuity.”

Theorem 6. Any finite mixed deviation equilibrium is a solution à la Simon-Zame and is a Reny

equilibrium of the mixed extension of G.

The following example proves that finite mixed deviation equilibrium is a strict improvement of Reny

equilibrium and Simon-Zame’s solution.

Example 10. (California location game, continued). Let G = (X,Y, u1, u2) be the California

location game, and consider the following modification G̃ = (X,Y, ũ1, ũ2) of G: ũ1(x, y) = u1(x, y) if x

is rational, and ũ1(x, y) = 0 otherwise. Similarly, ũ2(x, y) = u2(x, y) if y is rational, and ũ2(x, y) = 0

otherwise. Then every completely mixed strategy profile is a Reny and a solution à la Simon-Zame

(associated to the payoff 0). This game is not quasiconcave, and the mixed extension is not better reply

secure (because there is no Nash equilibrium). We now check that there is only one finite mixed deviation

equilibrium (m, v), for m = (3, 3) and v = (3, 1), and this corresponds to the unique approximated

equilibrium of this game. Indeed, for any finite discretization Dn
1 and Dn

2 of X and Y , and V any

neighborhood of ((3, 1), (3, 1)), define D
′n
1 = Dn

1 ∪ {3− ε} and D
′n
2 = Dn

2 ∪ {3}. For ε > 0 small enough,
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(3 − ε, 3) is a mixed Nash equilibrium of the finite game restricted to D
′n
1 × D

′n
2 , with ((3 − ε, 3), (3 −

ε
2 , 1 + ε

2 )) ∈ V .

5.2 Strategic Approximation

To understand the key idea of strategic approximation, we should come back to its origin. Simon and

Zame construct their solution by taking a limit point of Nash equilibria of a sequence of discretizations.

Dagsputa and Maskin [12] establish conditions under which limit points of Nash of any sequence of

discretizations by finite games is a Nash mixed equilibrium of G. Simon [31] relaxes the requirement

by establishing conditions under which any limit points of Nash of some sequence of discretizations by

finite games is a Nash mixed equilibrium of G. In particular, he proves that any payoff secure and

reciprocal upper semicontinuous compact and metric game in mixed strategies has this property. Reny

[30] provides weaker conditions (close to better-reply security) under which a strategic approximation

or a finite-support strategic approximation exist: here, a finite-support strategic approximation of G

(resp. strategic approximation of G) is a sequence of finite sets (Dn
i ⊂ Xi)i∈N of pure strategy (resp.

(Dn
i ⊂Mi)i∈N of mixed strategies) such that any limit point of Nash mixed equilibria of Gn = (Dn

i , ui)i∈N

is a Nash mixed equilibrium of G.

In the previous subsection, we have introduced finite mixed deviation equilibrium, which has several

usefull properties: it exists, is a Nash for general classes of games, and permits Reny and Simon-Zame

to be unified in mixed strategies. Thus, it is natural to try to extend the idea of strategic approximation

to this equilibrium notion. First note that from the proof of the existence of a finite mixed deviation

equilibrium m (Theorem 4) and the fact the Γ′ is compact and metric, there exists some sequence {Dn}n
of finite subsets of M such that m is the weak limit of some sequence of Nash equilibria of the restriction

of G to Dn
i . Could the approximation be chosen so that any limit point of any sequence of Nash equilibria

is a finite mixed deviation equilibrium?

Definition 9 G admits an F.M.D.E. strategic approximation if there is a sequence of finite sets {Dn ⊂
M}n of mixed strategies such that for any larger sequence {D′ni ⊃ Dn

i }n, any limit point of mixed equilibria

of G
′n = (D

′n
i , ui)i∈N is an F.M.D.E of G.

Theorem 10 Every compact-metric game admits an F.M.D.E. strategic approximation.

Proof. The proof is similar to the one in Reny [30] (Theorem 4.1). If (m, v) ∈ Γ′ is not a finite mixed

deviation equilibrium, then there is V (m,v) a neighborhood of (m, v) and a finite set D such that for any

D′ that contains D and any equilibrium m′ of the game restricted to D′, (m′, u(m′)) is not in V (m,v).

Thus, the set of non-finite mixed deviation equilibria is open. Consequently, there is a countable basis

{V (mn,vn)}n that covers the set of non F.M.D.E, to which we can associate a sequence of finite sets {Dn}n.

Without any loss of generality, we can assume this sequence of sets to be increasing. Consequently, if

{mn}n is a sequence of equilibria associated to D
′n
i ⊃ Dn

i , then (mn, u(mn)) is not in V (mk,vk) for all

k ≤ n. Consequently, every limit point of the sequence must be a finite mixed deviation equilibrium.

The following remarks are in order:

• For games with the weak finite deviation property (in particular for mixed better-reply secure games,
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and for games with the finite mixed deviation property), an F.M.D.E. strategic approximation is a

(Nash) strategic approximation of G′ (thus, we obtain Theorem 4.1 in Reny [30]).

• Every sequence of Nash equilibria of the F.M.D.E. strategic approximation converges (up to a

subsequence) to a solution à la Simon-Zame (just use in the proof of theorem 6 the F.M.D.E.

strategic approximation).

• Theorem 10 can be extended to Reny’s finite support deviation property as follows. For every

compact-metric game, there exists an F.P.D.E. strategic approximation defined as follows: a se-

quence of finite sets (Dn
i ⊂ Xi)i∈N of pure strategies such that any limit point of mixed equilibria

of Gn = (Dn
i , ui)i∈N is a finite pure deviation equilibrium of G. Consequently, for games for which

F.P.D.E. and mixed Nash equilibria coincide (in particular for games with the finite pure deviation

property), an F.M.D.E. strategic approximation is a finite-support strategic approximation of G′ à

la Reny (which gives Theorem 5.1 in Reny [30]).

The same logic applies to approximated equilibria: for games in which finite mixed deviation equilibria

and approximated equilibria coincide, we obtain the existence of an approximated strategic approximation,

defined as follows.

Definition 11 A game G has an approximated strategic approximation if there is a sequence of mixed

discretizations whose mixed equilibria have approximated equilibria of G as accumulation points.

What should be concluded? A more general approach to prove that a game admits an approximated

equilibrium, consists in finding a strategic approximation instead of checking that it is approximately

better-reply secure. The following proposition illustrates this idea:

Proposition 12 Any diagonal game where f , g and h are continuous admits an approximated strategic

approximation and, consequently, an approximated equilibrium in mixed strategies.

The proposition, proved in Appendix 8.3, extends a similar result in Laraki et al. [22] for timing

games. Some remarks are of importance:

• Laraki et al. [22] provide a 3-player timing game without approximated mixed equilibrium. Thus,

the existence result above does not extend to 3-player diagonal games without additional assump-

tions.

• The well-known Sion-Wolfe’s [33] zero-sum game on the square without a value shows that the

existence of an approximated equilibrium fails when the game admits two lines of discontinuities

instead of only one (the diagonal).

• The proof and so the result could be extended to two-player games on the square where disconti-

nuities are along a one dimensional curve given by some continuous one-to-one function y = φ(x)

instead of the diagonal y = x. A similar observation could be made in pure strategies. This al-

lows coverage of games such as the California location game (which can easily be mapped to a

quasiconcave compact game on the square with one line of discontinuity).
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In applications such as auctions, diagonal games are of incomplete information. It is thus natural to

study the following extension of the previous model.

Example 11. A diagonal game with incomplete information is defined as follows. There are two

players. Each player i has a finite set of types Ti. At stage 0, a profile of types t = (t1, t2) is drawn

according to some joint probability distribution p on T = T1 × T2, and each player i is informed about

his own type ti. At stage 1, players chose simultaneously an element in the unit interval [0, 1] (bid, time,

price, quantity, location, etc.). The payoff function of player i type-dependent is:

ui(ti, tj , xi, xj) = gi(ti, tj , xi, xj) 1xi>xj
+ fi(ti, tj , xi, xj) 1xi<xj

+ hi(ti, tj , x) 1xi=xj=x.

The following proposition is proved in Appendix 8.4

Proposition 13 Any diagonal game with incomplete information that satisfies conditions i), ii) and iii)

below admits an approximated strategic approximation and, consequently, an approximated mixed equilib-

rium, where:

i) there is i = 1, 2 such that for all t = (ti, tj) ∈ T , hi(ti, tj , 0) ≤ gi(ti, tj , 0, 0);

ii) there is i = 1, 2 such that for all ti ∈ Ti, x = 1 is never the unique best response of ti;

iii) f and g are continuous.

All standard models of auctions satisfy the following: a) if the other player bids 0, it is always better

to bid slightly more and win the auction at almost no cost; b) Assumption ii) is satisfied whenever all

values for all types are strictly smaller than the maximal bid (here x = 1). For example x = 1 is weakly

dominated in second price auctions and strictly dominated in first price and all-pay auctions.

Some remarks are of importance:

• First price auction with complete information has no Nash equilibrium and it is generally admitted

in the community that the player with the highest value must bid a little bit higher than the second

highest value. This is an approximated equilibrium.

• Fanga and Morris [15] provide a two-player type dependent first price auction and independent

values without a Nash equilibrium. Our proposition implies that their game has an approximated

equilibrium.

• As the proof shows, Proposition 13 is still valid if ii) is replaced with:

ii’) there is i = 1, 2 such that for all t = (ti, tj) ∈ T , hi(ti, tj , 1) ≥ fi(ti, tj , 1, 1).

This condition is satisfied in first and second price auctions but not in all-pay auctions. That is

why our proposition is stated with Condition i).

• The strategic approximation constructed in the proof is such that there will be zero probability that

the two players submit the same bid. The resulting approximated equilibrium is thus independent

on the value of the tie-breaking rule h, as soon as assumption i) is satisfied.
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• Barelli et al. [4] combine tie-breaking rules and better-reply security ideas to prove existence of

Nash or approximated equilibria in a general class of zero-sum games including majority voting and

Colonel Blotto games.

The following is a minimal counterexample showing that without assumptions i) or ii), an approxi-

mated equilibrium fails to exist!

Example 12.

We consider a zero-sum timing game which may be viewed as a diagonal game with constant payoff

functions f , g and h.

Each player should decide when to stop the game between 0 and 1. The game stops at the first

moment when one of the two players stops. If both players stop simultaneously before the exit time t = 1

or no player stops before time t = 1, then there is a tie (payoff is given by h).

Player 2 has two types A and B with equal probabilities. Player 1 has only one type. If player 1

stops first he gets f = 1. If player 1 stops second he gets g = −1. Only the payoff when the players stop

simultaneously depend on the type of player 2. If the type is A, player 1 has an advantage and gets the

payoff h = 3 and if the type is B, player 1 has a disadvantage and gets the payoff h = −2.

−1

1

3

x = 0 x = 1
y = 0

y = 1

−1

1
−2

x = 0 x = 1
y = 0

y = 1

Figure 1: Representation of u1(x, y) of type A and B.

Let us show that the max min ≤ − 1
2 and that the min max ≥ − 1

4 , so that the game has no value and

so no approximated equilibrium.

Start with the maxmin. Let α be the probability with which player 1 stops at x = 0 (so with

probability (1− α) he stops after zero). If α = 0, player 2 by stoping at time zero gets 1 (and so player

1 gets −1). If α > 0, type A for player 2 can stop uniformly between 0 and some ε where ε is very small

so that with high probability, if the game has not been stopped at time zero, he is stopped by player 2

(just after zero). Assume that type B of player 2 stops at time zero. Payoff of player 1 is thus very close

to α( 1
2 × 1 + 1

2 ×−2) + (1− α)×−1. Consequently, the best strategy for player 1 against such behavior

by player 2 is to stop at t = 0 with probability 1 so that max min ≤ − 1
2 .

Let us now compute the min max. Let us restrict player 1 to playing best-replies to the following set

of strategies : (1) to stop at time t = 0 or (2) to stop uniformly between 0 and some ε very small, which

depends of course on the strategy of player 2. Knowing this behavior, type B must stop at time zero.

Let β be the probability that type A stops at time zero. The payoff of player 1 if he stops at 0 (choose

option 1) is 1
2 ×−2 + 1

2 × (β× 3 + (1−β)× 1) = −1
2 +β, while if he chooses option 2 his payoff is close to

1
2 ×−1 + 1

2 (β ×−1 + (1− β)× 1) = −β. Thus, the optimal β for type B against this behavior of player

1 must be equalizing and so is β = 1
4 . Consequently, min max ≥ − 1

4 .
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6 Some Extensions in Pure Strategies

There have been many extensions of Reny’s B.R.S. existence result. In this section, we explain how to

adapt the previous results and deal with these extensions.

6.1 Barelli-Soza Equilibrium

The Reny security condition is strong: it asks for existence of a deviation di with the property that

ui(di, x
′
−i) > vi for every x′ in some neighborhood of x. Barelli and Soza propose a natural improvement:

they just allow di to depend continuously on x′−i, meaning that ui(di(x
′
−i), x

′
−i) > vi for every x′ in some

neighborhood of x, where di(.) is a continuous function from a neighborhood of x−i to Xi.

In fact, Barelli and Soza go further and ask for existence of a “Kakutani” multivalued mapping9 Φi(.)

from a neighborhood of x−i to Xi, such that ui(d
′
i, x
′
−i) > vi for every x′ in some neighborhood of x and

every d′i ∈ Φi(x
′
−i).

Definition (Barelli-Soza [3, 5]): a game G is generalized better-reply secure if whenever

(x, v) ∈ Γ and x is not a Nash equilibrium, then there is a player i, a neighborhood U of x−i,

Φi a Kakutani’s mapping from U to Xi, and αi > vi, such that for every x′ in the graph of

Φi, ui(x
′) > αi.

Then Barelli and Soza prove the following theorem.

Barelli-Soza’s theorem [3, 5]: if G is quasiconcave, compact and generalized better-reply

secure, then it admits a Nash equilibrium.

In Section 2, Reny’s better-reply security assumption is defined using the lower semicontinuous reg-

ularization ui of ui. Similarly, one can define generalized better-reply security using the following subtle

regularization ui of ui:

∀(xi, x−i) ∈ X, ui(xi, x−i) := supU∈V(x−i) supΦi∈WU (xi,x−i) infx′∈GrΦi
ui(x

′), (1)

where V(x−i) denotes the set of neighborhoods of x−i and WU (xi, x−i) is the set of multi-valued

mappings Φi from U to Xi such that xi ∈ Φi(x−i), and which are Kakutani mapping.

From the definition of ui, G is generalized better-reply secure if whenever (x, v) ∈ Γ and x is not a

Nash equilibrium, then there is a player i and di ∈ Xi such that

ui(di, x−i) > vi.

In the spirit of Definition 2, we can define.

Definition 14 A Barelli-Soza equilibrium is a couple (x, v) ∈ Γ such that:

∀i ∈ N, sup
di∈Xi

ui(di, x−i) ≤ vi.

9Φi is a Kakutani mapping if it has a closed graph, with non-empty and convex values.
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From Barelli-Soza’s Theorem above, we deduce the existence of a Barelli-Soza equilibrium (exactly as

we have deduced the existence of a Reny equilibrium from Reny’s existence result).10 Similarly, we can

refine the existence of a sharing-rule equilibrium, substituting ui for ui in Definition 1.

Finally, observe that Barelli-Soza equilibrium refines Reny equilibrium simply because ui ≤ ui (one

can take constant mappings Φi = xi in the supremum of Equation (1) above). This is a strict refinement

as the following example shows.

Example 13. Consider a two-player diagonal game with X1 = X2 = [0, 1], ui(xi, x−i) = 0 if xi 6= x−i

and ui(xi, x−i) = 1 otherwise. Every strategy profile is a Reny equilibrium, because ui = 0 for every i,

and ui = 0 on a dense subset of X. On the other hand, the set of Barelli-Soza equilibria, which coincides

with the set of Nash equilibria, is equal to the diagonal. Indeed, ui = ui for every i, since for every

(xi, xi), we can take Φi(x
′
−i) = x′−i in the supremum of Equation (1).

Note that it is not possible to skip the Kakutani regularity requirement on Φi in Definition 14, and

still have existence, as it is proved in Appendix 8.7.

The existence of a Barelli-Soza equilibrium drives to a re-interpretation of generalized better-reply

security notion, since a game G is generalized better-reply secure if and only if the set of Nash equilibria

and the set of Barelli-Soza equilibria coincide. But the interest of Barelli-Soza equilibrium goes beyond

this: as for Reny equilibrium, this is a tool to prove the existence of approximated equilibria. The fol-

lowing class of diagonal games, which differs from the class of Proposition 6, is an illustration.

Proposition 15 For any quasiconcave diagonal game such that fi, gi and hi are continuous, Barelli-Soza

and approximated equilibria coincide (so that the game admits an approximated equilibrium).

This result (proved in Appendix 8.5) is not covered by Barelli-Soza existence result, because some

games in the class may possess no Nash equilibrium, as the following example illustrates. Consider the

quasiconcave two-player diagonal game where the strategy spaces are X = Y = [0, 1], and the payoff

functions ui are defined by

u1(x, y) =


1 + x− y if x < y

0 if x = y

−1 if x > y

u2(x, y) = y.

The only optimal strategy of player 2 is y = 1, which gives no optimal strategy for player 1. Thus,

there is no Nash equilibrium, although fi, gi and hi are continuous. On the other hand, there is an

approximated equilibrium (x = (1, 1), v = (1, 1)) , since (1− ε, 1) is ε−optimal for player 1 and optimal

for player 2. We let the reader check that it is the unique approximated equilibrium, and also the unique

Barelli-Soza equilibrium.

10In Appendix 8.6 is given an independent proof of the existence of a Barelli-Soza equilibrium. As a matter of fact, it
proves the existence of a tight equilibrium (defined in Section 6.3), which refines simultaneously Barelli-Soza equilibrium,
and a recent extension of Reny’s work ([29]).
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6.2 Non-Quasiconcave Payoffs

Many games in the literature have non-quasiconcave and discontinuous payoff functions, while they still

have a Nash or an approximated equilibrium in pure strategies. This subsection explains how the tools

presented in the last sections can be adapted to that case, using a quasi-concavification approach. This

also provides a new interpretation of some recent existence results in the literature [5, 8, 24].

For every game G = ((Xi)i∈N , (ui)i∈N ), we define the quasiconcave game qcav(G) as

qcav(G) = ((Xi)i∈N , (qcav(ui))i∈N )

where for every x−i ∈ X−i, qcav(ui)(., x−i) is the quasiconcave envelop of ui(., x−i) with respect to player

i’s strategy profile, i.e. the smallest quasiconcave mapping above ui(., x−i).
11

Definition 16 For every game G, a quasi-equilibrium of G is a Reny equilibrium of qcav(G).

From Theorem 1, we derive for every game G the existence of a quasi-equilibrium.

This leads to many Nash existence results in the literature. By defining the class of games G for

which the set of Nash and quasi-equilibria coincide, one obtains the class of strongly better-reply secure

games introduced by Bich ([8]). The existence results in Barelli-Soza [3] and Mc-lennan et al. [24] can

be obtained from the quasiconcave case, in a similar way.

As an application, consider a standard Hotelling game.

Example 14. On a line of length l, two sellers i = 1, 2 of a homogeneous product are located at l
2 − ε

and l
2 + ε, where ε ∈ [0, l

2 ]. For simplicity, we consider only the symmetric case. Customers are supposed

to be uniformly distributed on [0, l], and each customer chooses the seller with the lowest delivery price.

Let c be the transportation rate, and pi the mill price of seller i (who is player i). Under standard

assumptions, the payoff of player i can be written:

ui(pi, p−i) =
l

2
pi +

pi(p−i − pi)
2c

if | pi − p−i |≤ 2cε,

ui(pi, p−i) = lpi if pi < p−i − 2cε

and

ui(pi, p−i) = 0 if pi > p−i + 2cε.

D’aspremont et al. [14] proved that there exists no equilibrium when sellers are close to each other

(more precisely, when ε < l
4 ). Remarkably, this is exactly the case for which Nash and quasi-equilibria

coincide, as the following proposition states.

Proposition 17 The set of Nash and quasi-equilibria of G coincide in the Hotelling game if and only if

ε ≥ l
4 (which holds from [14] if and only if G has a Nash equilibrium).

11Formally,
qcav(ui)(x) = sup{min{ui(yk, x−i)}nk=1},

where the supremum is taken over all n ∈ N∗ and all families {y1, ..., yn} of Xi such that xi ∈ co{y1, ..., yn}. Hence, the
game G is quasiconcave if and only if qcav(ui) = ui for every i ∈ N .
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The following points explain the proposition and provide more details (the formal proofs of our

statement are left to the reader).

• For ε ∈ [ l4 ,
l
2 ], (cl, cl) is the only Nash and quasi-equilibrium of G: the payoff of player i (given the

Nash strategy cl of the other player −i) is represented on Figure 1, 2 and 3.

0 cl 2cl
pi

ui(pi, cl)

0

Figure 1: Graph of ui(., cl) for ε = l
2 .

0 p(ε) cl
pi

ui(pi, cl)

2cl
0

Figure 2: Graph of ui(., cl) for ε ∈] l2 ,
l
4 [,

where p(ε) = cl − 2cε.

0 r(ε)

q(ε)

q(ε)+cl
2

pi

ui(pi, q(ε))

2cl
0

Figure 3: Graph of ui(., q(ε)) for ε ∈ [0, l
4 ],

where r(ε) = q(ε)− 2cε and

q(ε) = 3cl −
√

8c2l2 − 16c2lε.

• For ε ∈] l
4+
√

20
, l

4 [, the only quasi-equilibrium is (q(ε), q(ε)) where q(ε) = 3cl −
√

8c2l2 − 16c2lε; it

is not a Nash equilibrium. For every η > 0, it provides an η−equilibrium for ε < l
4 close enough to

l
4 .

• For ε ∈ [0, l
4+
√

20
], the situation is more complicated: (q(ε), q(ε)) is also a quasi-equilibrium, but

there can be more. For example, (r(ε), r(ε) − 2cε) or (r(ε) − 2cε, r(ε)) are quasi equilibria, where

r(ε) = 3lcε−2cε2
l
2 +ε

). The following Figure 4 illustrates the example of (r(ε), r(ε) − 2cε) (which is

not a Nash equilibrium); player 1 strategy is optimal, and player 2 strategy is close to an optimal

strategy, in the sense that it is the limit of an ε-optimal strategy when ε tends to 0. For every

η > 0, it provides an η−equilibrium for ε > 0 small enough.
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0 r(ε)− 4cε
p1

u1(p1, r(ε)− 2cε)

r(ε)
0

Graph of u1(., r(ε)− 2cε) for ε ≤ l
4+
√

20

0 r(ε)− 2cε
p2

u2(r(ε), p2)

r(ε) + 2cε
0

Graph of u2(r(ε), .) for ε ≤ l
4+
√

20
.

Recall that in his seminal paper, Hotelling proposes (cl, cl) as a Nash equilibrium even for ε < l
4 ,

although it is not even a quasi-equilibrium.

6.3 Reny’s Lower Single Deviation Property

Reny proposes the following refinement of better-reply security.

Definition (Reny [29]): G has the lower single deviation property if whenever x ∈ X is not

a Nash equilibrium, there exists d ∈ X and a neighborhood V of x such that for every z ∈ V ,

there exists a player i, such that

∀x′ ∈ V, ui(di, x′−i) > ui(z)

Then Reny proves the following.

Reny’s theorem [29]: Any quasiconcave, compact game that has the lower single deviation

property admits a Nash equilibrium.

Note that if G is better-reply secure, then it has the lower single deviation property. Indeed, by

contradiction, assume that there exists x ∈ X which is not a Nash equilibrium and such that for every

d ∈ X and every neighborhood V of x, there exists z ∈ V such that for every player i, there exists x′ ∈ V
such that:

ui(di, x
′
−i) ≤ ui(z) ≤ ui(z)

Then, shrinking V to x in the above equation, and taking v to be a limit in the sense of nets of u(z),

we obtain easily that (x, v) is a Reny equilibrium, thus a Nash equilibrium, which is contradictory.

The following example proves that lower single deviation property is a strict refinement of better-reply

security:

Example 15. Consider a two-player diagonal game with X1 = X2 = [0, 1],
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u1(x, y) =


0 if x < y or (x, y) = (0, 0)

1− x if x = y > 0

1 if x > y

and u2(x, y) = u1(y, x).

1

0

0

1− x

x = 0 x = 1
y = 0

y = 1

0
0

1

1− x

x = 0 x = 1
y = 0

y = 1

Figure 1: Representation of u1(x, y) and u2(x, y) in Example 15

G is neither better-reply secure nor generalized better-reply secure. Indeed, consider the sequence of

strategy profile ( 1
n ,

1
n ). At the limit we get (x, v) = ((0, 0), (1, 1)) ∈ Γ. No player can secure strictly more

than 1 at (0, 0), although (0, 0) is not a Nash equilibrium. On the other side, this game has the lower

single deviation property, since one has

u1(x, y) =

 0 if x ≤ y

1 if x > y

and

u2(x, y) = u1(y, x) for every (x, y) ∈ [0, 1]× [0, 1],

and we let the reader check that G has the lower single deviation property, taking d = (1, 1) in the

definition.

In this subsection, we provide a refinement of Reny equilibrium that implies the two refinements above

(Reny and Barelli-Soza).12 First define, for every Φi ∈WU (xi, x−i):

uΦi
i (xi, x−i) := supU∈V(x−i) infx′∈GrΦi

ui(x
′), (2)

Theorem 7. Every quasiconcave and compact game G admits a tight equilibrium: that is, there

exists x ∈ X such that for every neighborhood V of x and every (Φi)i∈N in Πi∈NWV (x−i), there exists

z ∈ V such that for every i ∈ N there exists x′ ∈ V and d′i ∈ Φi(x
′
−i) such that uΦi

i (d′i, x
′
−i) ≤ ui(z).

The proof is given in Appendix 8.6, and is the direct consequence of a new selection lemma combined

with Kakutani [20] fixed-point theorem. Note the following consequences:

12Our refinement can be adapted to the non-quasiconcave case, as explained in the previous subsection, so that it covers
most of the recent literature.
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• For every player i and every di ∈ Xi, if we take Φi(x
′
−i) = di above, we obtain as a particular

case the existence, for every quasiconcave and compact game G, of x ∈ X such that: for every

neighborhood V of x and every d ∈ X, there exists z ∈ V such that for every i ∈ N , there exists

x′ ∈ V such that ui(di, x
′
−i) ≤ ui(z). Applying this to the payoff functions ui (which has the same

quasiconcavity property as ui), we obtain the existence of a Nash equilibrium when the game has

the lower single deviation assumption, as the reader can check.

• Shrinking V to x in the definition of a tight equilibrium, and taking v to be a limit in the sense of

nets of u(z), we obtain the existence of a Barelli-Soza equilibrium (x, v).

As a consequence, our paper is mathematically self contained.

7 Conclusion

The main contribution of this paper is to propose a unifying framework that encompasses Simon-Zame

and Reny in pure and mixed strategies, and to apply it to obtain new existence results of approximated

Nash equilibria. We think that it makes more explicit the relationship between better-reply security,

sharing-rules and approximated equilibria. In particular, the limit payoff in Reny’s better-reply security

can be interpreted as a tie-breaking rule, but also, for a large number of games, as a limit of payoffs of

approximated equilibria. In the future, an important question would be to characterize more precisely

the class of approximately better-reply secure games.

8 Appendix

8.1 Proof of Proposition 6

We first need the following lemma:

Lemma 18 Let G = ((fi, gi, hi)i=1,2) be a diagonal game satisfying i) and ii) of Proposition 6. Then:

a) G is payoff secure at every x. In particular, supdi∈[0,1] ui(di, x−i) = supdi∈[0,1] ui(di, x−i).

b) For every x−i ∈]0, 1[, the function Vi(x−i) = supdi∈[0,1] ui(di, x−i) is continuous at x−i.

c) For every i = 1, 2, if fi(0, 0) ≤ gi(0, 0) then Vi(x−i) is continuous at x−i = 0.

d) For every i = 1, 2, if fi(0, 0) > gi(0, 0) then:

(i) for every ε > 0, supdi∈[0,1] ui(di, x−i) ≤ ui(0, x−i) + ε for x−i > 0 small enough.

(ii) supdi∈[0,1] ui(di, 0) = ui(0, 0). In particular, if fi(0, 0) > gi(0, 0) is true for both players, then

(0, 0) is a Nash equilibrium.

Proof of Lemma 18. a) First remark that G = ((fi, gi, hi)i=1,2) is payoff secure at every x = (xi, x−i) ∈
[0, 1] × [0, 1] for which xi 6= x−i (because the payoff functions ui are continuous at such x). Thus, we

have to prove payoff security at (xi, xi) ∈ [0, 1] × [0, 1]. First assume xi ∈]0, 1[. From hi(xi, xi) ∈
co{fi(xi, xi), gi(xi, xi)}, for every ε > 0, player i can secure ui(xi, xi)− ε = hi(xi, xi)− ε, playing xi + η

or xi − η (for η small enough). We now treat the case xi = 0: from hi(0, 0) ∈ co{fi(0, 0), gi(0, 0)},
either hi(0, 0) ≤ gi(0, 0), and player i can secure ui(0, 0) − ε (playing xi + η for η small enough), or
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hi(0, 0) ≤ fi(0, 0): in this case, player i can secure ui(0, 0) − ε = hi(0, 0) − ε, playing (0, 0), because for

η > 0 small enough, ui(0, η) = fi(0, η) > hi(0, 0)− ε.
b) Let x−i ∈]0, 1[. From hi(xi, xi) ∈ co{fi(xi, xi), gi(xi, xi)} and from the continuity of fi and gi, we get

Vi(x−i) := sup
di∈[0,1]

ui(di, x−i) = max{ sup
di∈[0,x−i]

fi(di, x−i), sup
di∈[x−i,1]

gi(di, x−i)}. (3)

Thus, from Berge Maximum Theorem (see [1]), the mapping supdi∈[0,1] ui(di, x−i) is continuous at every

x−i ∈]0, 1[.

c) Suppose fi(0, 0) ≤ gi(0, 0) for some i ∈ {1, 2}. From hi(0, 0) ∈ co{fi(0, 0), gi(0, 0)}, we get fi(0, 0) ≤
hi(0, 0) ≤ gi(0, 0). Fix ε > 0. Since fi and gi are continuous, we obtain

hi(xi, xi) ≤ gi(xi, xi) + ε (4)

and

fi(xi, xi) ≤ gi(xi, xi) + ε (5)

for xi small enough.

The definition of ui, the continuity of gi and hi(0, 0) ≤ gi(0, 0) give, for xi ≥ 0 small enough:

sup
di∈[0,1]

ui(di, 0) = max{hi(0, 0), sup
di∈[0,1]

gi(di, 0)} = sup
di∈[0,1]

gi(di, 0) ≥ sup
di∈[0,1]

gi(di, xi)− ε (6)

From the continuity of fi and gi, and from Inequalities 4 and 5, we get, for xi > 0 small enough:

sup
di∈[xi,1]

gi(di, xi) ≥ gi(xi, xi) > hi(xi, xi)− ε (7)

and

sup
di∈[xi,1]

gi(di, xi) ≥ gi(xi, xi) ≥ sup
di∈[0,xi]

fi(di, xi)− 2ε (8)

Consequently, from the definition of ui, the previous inequalities imply

sup
di∈[0,1]

ui(di, xi) = max{ sup
di∈[0,x−i]

fi(di, x−i), hi(xi, xi), sup
di∈[x−i,1]

gi(di, x−i)} ≤ sup
di∈[0,1]

gi(di, xi) + 2ε (9)

for xi > 0 small enough. From Inequalities 6 and 9, we get

sup
di∈[0,1]

ui(di, xi) ≤ sup
di∈[0,1]

ui(di, 0) + 3ε

for xi ≥ 0 small enough, which proves that Vi(x−i) = supdi∈[0,1] ui(di, x−i) is upper semicontinuous at

x−i = 0. But from a), Vi(.) is also lower semicontinuous, as the supremum of a family of lower semicon-

tinuous mappings. This finally proves that Vi is continuous.
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d) Suppose for example i = 1. We use the following Claim:

Claim 1 If l is a quasiconcave function from [0, 1] to R and l(y) < l(x) for some x < y in [0, 1] then for

every z ∈ [y, 1], l(z) ≤ l(y). The proof is straightforward: indeed, for every z = λy + (1 − λ)1, where

λ ∈ [0, 1], the quasiconcavity of l gives l(y) ≥ min{l(x), l(z)}, because y ∈ [x, z]. Since l(y) < l(x), we

obtain l(y) ≥ l(z).

Proof of d) i) The inequality f1(0, 0) > g1(0, 0) implies f1(0, x2) > g1(x2, x2) for x2 ≥ 0 small enough.

Applying Claim 1 to u1(., x2), we obtain:

sup
d1∈[x2,1]

g1(d1, x2) = g1(x2, x2) (10)

Let ε > 0. The continuity of f1 leads to

sup
d1∈[0,x2]

f1(d1, x2) ≤ f1(0, x2) + ε (11)

for x2 > 0 small enough. Hence, from h1(x1, x1) ∈ co{f1(x1, x1), g1(x1, x1)}, we obtain

sup
d1∈[0,1]

u1(d1, x2) = max{ sup
d1∈[0,x2]

f1(d1, x2), h1(x2, x2), sup
d1∈[x2,1]

g1(d1, x2)} ≤ f1(0, x2) + ε = u1(0, x2) + ε

(12)

for x2 > 0 small enough.

Proof of d) ii) From the continuity of g1, passing to the limit x2 → 0 in Equation 10, we obtain

supd1∈[0,1] g1(d1, 0) = g1(0, 0). Since h1(0, 0) ∈ [g1(0, 0), f1(0, 0)], this gives

sup
d1∈[0,1]

u1(d1, 0) = max{h1(0, 0), sup
d1∈[0,1]

g1(d1, 0)} ≤ h1(0, 0) = u1(0, 0),

which proves (ii).

Proof of Proposition 6. Let (x1, x2, v1, v2) ∈ Γ be a Reny equilibrium of G, and prove it to be an

approximated equilibrium. From the definition of a Reny equilibrium and from point a) of Lemma 18,

we get:

Vi(x−i) = sup
di∈[0,1]

ui(di, x−i) ≤ vi, i = 1, 2. (13)

Step 1. Assume x1 6= x2. In this case, ui is continuous at x = (x1, x2), vi = ui(x), and Inequation 13

means that x is a Nash equilibrium.

Step 2. Assume x1 = x2 ∈]0, 1[. From b) of Lemma 18, the function Vi(x−i) = supdi∈[0,1] ui(di, x−i) is

continuous at x1 = x2 for every i ∈ {1, 2}. Consequently, from Inequation 13 and since (x1, x1, v1, v2) is in

the closure of the graph of the payoff functions, for every ε > 0, there exists (x′1, x
′
2, u1(x′1, x

′
2), u2(x′1, x

′
2))
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close enough to (x1, x1, v1, v2) such that:

Vi(x
′
−i) = sup

di∈[0,1]

ui(di, x
′
−i) ≤ ui(x′1, x′2) + ε, i = 1, 2. (14)

Therefore, (x1, x1) is an approximated equilibrium.

Step 3. To finish, suppose (x1, x2) ∈ {(0, 0), (1, 1)}. We consider only the case (x1, x2) = (0, 0), the case

(x1, x2) = (1, 1) being similar. Depending on the local configuration of the payoff functions around (0, 0),

we should examine 9 cases: fi(0, 0) < gi(0, 0), fi(0, 0) = gi(0, 0) and fi(0, 0) > gi(0, 0), for every i = 1, 2.

For symmetry reason (permuting players if necessary), only the 3 following cases have to be considered:

First Case. fi(0, 0) ≤ gi(0, 0) for every i = 1, 2. From c) of Lemma 18, Vi(x−i) is continuous at x−i = 0

for every player i. Thus, we are exactly in the situation of Step 2, and (0, 0) is an approximated equilib-

rium.

Second Case. fi(0, 0) > gi(0, 0) for every i = 1, 2. From d) of Lemma 18, this implies that (0, 0) is a

Nash equilibrium.

Third Case. f1(0, 0) > g1(0, 0) and f2(0, 0) ≤ g2(0, 0). Since (x1, x1, v1, v2) is in the closure of the

graph of the payoff functions, v2 = limn→+∞ u2(xn) for some sequence of strategy profiles xn converging

to (0, 0). From h2(xi, xi) ∈ co{f2(xi, xi), g2(xi, xi)}, we get u2(xn) ≤ max{f2(xn), g2(xn)}. Thus, from

the continuity of f2 and g2, we obtain

v2 ≤ g2(0, 0). (15)

Thus, taking ε > 0, and from Inequation 13 for i = 2,

sup
d2∈[0,1]

u2(0, d2) ≤ v2 ≤ g2(0, 0) ≤ g2(0, x2) + ε = u2(0, x2) + ε. (16)

for x2 > 0 small enough. But from Lemma 18 (d) i), supd1∈[0,1] u1(d1, x2) ≤ u1(0, x2) + ε for x2 > 0

small enough, i.e. (0, x2) is an ε−equilibrium.

8.2 Proof of Theorem 6

Let (m, v) be a finite mixed deviation equilibrium. First let us prove that it is a Reny equilibrium of the

mixed extension of the game: for every deviation d ∈M , and any neighborhood V of (m, v), the definition

of a finite mixed deviation equilibrium gives mV ∈ M such that: (1) for every i, ui(di,m
V
−i) ≤ ui(m

V );

(2) (mV , u(mV )) ∈ V . Shrinking V to (m, v) implies that ui(di,m−i) ≤ vi for every d ∈M , i.e. (m, v) is

a Reny equilibrium of the mixed extension of G.

Now, let us prove that (m, v) induces a solution à la Simon-Zame. Since M is metric, there exists

a countable decreasing basis of neighborhoods V n of (m, v) in Γ′. Consider a sequence Dn = Πi∈ID
n
i

converging to X for the Hausdorff distance. By definition of a finite mixed deviation equilibrium, for

every integer n, there exists a finite set D
′n = Πi∈ID

′n
i of M containing Dn, and a probability mn
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which is a Nash of the game restricted to D
′n, and such that (mn, u(mn)) ∈ V n. Recall that Simon

and Zame’s [32] existence proof consists in approximating the game by a finite one in pure-strategies

(here Dn), and considering a weak limit of a sequence (mn) of Nash equilibria of this approximation.

We cannot apply Simon and Zame’s proof directly to the Nash equilibria mn of the finite games D′n,

because D′n is a mixed-strategy game. But D
′n ⊃ Dn: thus, no player i has a deviation in Dn

i against

mn, and we shall prove that this property is sufficient to adapt Simon-Zame’s proof. Remark that the

sequence (mn) converges (strongly and weakly) to m. Let E be the space of RN -valued vector measure

on X, endowed with the weak* topology. Consider the sequence (u.mn)n∈N of the compact space E

(here, u.mn denotes the RN -valued measure on X defined by u.mn(F ) =
∫
F
u dmn for every Borelian

set F of X). Without any loss of generality, up to a subsequence, this sequence converges to some

measure ν. From Lemma 2, p.867 (Simon-Zame [32]), there exists a Borel measurable selection q of

Q, the multivalued function from X to RN , defined by Q(x) =co Γx, such that the ν = q.m (remark

that the proof of this lemma does not use the support of mn, but only the fact that u is a selection

of Q). Thus, q is a sharing rule (in the sense of Simon-Zame) of the game G. Define, for every player

i, Hi = {x ∈ Xi :
∫
qid(δx × m−i) >

∫
qid(mi × m−i)}. We prove mi(Hi) = 0: otherwise, consider

K ⊂ Hi ⊂ U , where K is compact, U open, mi(U − K) < ε with ε > 0, and with mi(K) > 0. Let

f : Xi → [0, 1] be a continuous function which is identically equal to 1 on K and 0 on the complement

of U . Consider the strategy βn
i =

fmn
i∫

fdmn
i

: it is a better response to mn
−i for n large enough and ε > 0

small enough, which contradicts the fact that mn is a Nash of the game restricted to D
′n. From Simon

Zame ([32], Step 5 and Step 6), there exists a modification q̃ of q, such that q = q̃ except on a set of

m−measure 0, such that m is a Nash equilibrium of the game G̃ = ((Xi)i∈N , (q̃i)i∈N ), and q̃(m) = q(m).

More precisely, take p̃i a Borel measurable selection of Q which minimizes the i-th component of Q, define

T = {x ∈ X : xi ∈ Hi for at least two indices i ∈ N}, define q̃(x) = p̃i(x) if x ∈ Hi ×X−i but x /∈ T ,

and q̃(x) = q(x) otherwise. To prove m is a Nash of G̃, assume that some player i has a better pure

response than mi, denoted δx, to m−i. Then the case x /∈ Hi yields an easy contradiction. For the second

case, simply consider a sequence xn converging to x such that xn ∈ Dn
i (here, we use that Dn = Πi∈ID

n
i

converges to X for the Hausdorff distance): an easy limit argument proves that δxn is a better response

than mn
i to mn

−i for n large enough, a contradiction with the choice of mn.

8.3 Proof of Proposition 12

The proof is done by constructing a strategic approximation. Call x ∈ [0, 1] a right local equilibrium if

hi(x, x) > gi(x, x) for every i = 1, 2 and a left local equilibrium if hi(x, x) > fi(x, x) for every i = 1, 2.

Thus, if players are supposed to play (x, x) and if x is a right local equilibrium, no player has an interest

to deviate to some strategy in some right neighborhood of x (but he may have a profitable deviation

outside that neighborhood) and similarly for left equilibria.

Let x0 be the largest element in [0, 1] such that all x < x0 are right local equilibria and y0 be the

smallest element in [0, 1] such that all y > y0 are left local equilibria. Observe that x0 may be 0 and y0

could be 1.

By continuity of f , g and h, if x0 < 1 then hi(x0, x0) ≤ gi(x0, x0) for some i ∈ {0, 1} and similarly, if

y0 > 0 then hi(y0, y0) ≤ fi(y0, y0) for some i ∈ {0, 1}. We now examine three different cases:
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First case. x0 > y0. Let D be some finite discretization of [0, 1] with a mesh smaller than η > 0 so

that payoff functions f and g do not change by more than ε
2 if a player moves by no more than η and

such that if x < x0 is in D, then hi(x, x) > gi(y, x) for all x < y < x + η and if x > y0 is in D, then

hi(x, x) > fi(y, x) for all x > y > x + η. Without any loss of generality, we can assume that 0 and 1

belong to D.

Let us show that for any mixed strategy σj of player j that belongs to D, there is an ε-best reply of

player i in the entire game G that belongs to D. This will imply that any mixed equilibrium of the game

restricted to D is an ε-equilibrium of the full game, so that D is a strategic approximation that leads to

approximated equilibria (i.e., the game admits an approximated strategic approximation).

Let y ∈ [0, 1] be some ε/2-best reply to σj of player i which is not in D (if such strategy does not exist,

this is finished). Then either y < x0 or y > y0. In the first case, let z be the highest element in D smaller

than y, so that hi(z, z) > fi(y, z) by assumption of the discretization and since z is a right equilibrium.

Since player j plays a probability distribution supported on D, moving from y to z for player i induces

for him a higher payoff from the event associated to player j playing z and at most a change of ε
2 on the

events where player j is playing a strategy in D different from z. Thus, z is an ε-best reply for player i.

A similar argument applies to y > y0 (use the left equilibrium property). Remark also that the argument

is the same for both players.

Second case. x0 < y0, which implies that hk(x0) ≤ gk(x0, x0) and hl(y0) ≤ fl(y0, y0) for some k ∈
{1, 2} and l ∈ {1, 2}. By continuity, we get hk(x0) < gk(x, x0) + ε

4 for every x ∈]x0, x0 + η[ and

hl(y0) < fl(y, y0) + ε
4 for every y ∈]y0 − η, y0[.

Thus, there are four cases to check, depending on the values of k and l. Let us solve explicitly the

case k = 1 and l = 2. The same idea of construction could be done in the other cases, with a small

adaptation in the strategic approximation explained below.

Fix ε > 0 and let x0 = t0 < s0 < t1, ... < sK−1 < tK = y0 be a discretization of [x0, y0] with a mesh

smaller than some η > 0 so that payoff functions f and g do not change by more than ε/4 if the pure

strategy moves by no more than η. As in the first case, let D be a finite discretization of [0, x0[∪]y0, 1]

with a mesh smaller than η > 0 so that payoff functions f and g do not change by more than ε
2 if the

pure strategy moves by no more than η and such that if x < x0 is in D, then hi(x, x) > gi(y, x) for all

x < y < x + η and if x > y0 is in D, then hi(x, x) > fi(y, x) for all x > y > x + η. Assume 0 and 1

belongs to D.

In the strategic approximation we consider, player 1 is restricted to play in D or uniformly on one

of the intervals [tk, sk], k = 0, ...,K − 1, or to choose tK = y0. Player 2 is restricted to play in D or

uniformly on one of the intervals [sk, tk+1], k = 0, ...,K − 1, or to choose t0 = x0. Observe that the

intervals where players are uniformly mixing are disjoint and alternate.

Let σ be some strategy of player 2 in the restricted game. Let us show that player 1 has an ε-best

response against σ in the full game G that belongs to his authorized set of strategies. Let y be some ε/4

pure best response of player 1 in G, which is not in the discretization D. Several subcases have to be

examined:

First subcase. If y < x0 or y > y0, we proceed as in the first case to construct an ε-best reply in D.

Second subcase. If y is in some interval ]sk, tk+1[ of player 2 (k ∈ {0, 1, ...,K − 1}), and if
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player 2 is choosing that interval with positive probability, the payoff of 1 coming from that interval

is, up to ε/4, a convex combination of his payoff if he chooses tk+1 and his payoff if he chooses sk:

more precisely, if η is a uniform strategy on [sk, tk+1], u1(y, η) =
∫ y

sk
g1(y, α)dα +

∫ tk+1

y
f1(y, α)dα =∫ y

sk
g1(y, α)dα − y−sk

tk+1−sk

∫ tk+1

sk
g1(y, α)dα +

∫ tk+1

y
f1(y, α)dα − tk+1−y

tk+1−sk

∫ tk+1

sk
f1(y, α)dα + c where c =

y−sk
tk+1−sk

∫ tk+1

sk
g1(y, α)dα + tk+1−y

tk+1−sk

∫ tk+1

sk
f1(y, α)dα, i.e. c is a convex combination of player 1’s payoff

if he chooses tk and his payoff if he chooses sk (player 2 playing η.) But∫ y

sk

g1(y, α)dα− y − sk
tk+1 − sk

∫ tk+1

sk

g1(y, α)dα = (y − sk)(g1(y, α1)− g1(y, α′1))

and ∫ tk+1

y

f1(y, α)dα− tk+1 − y
tk+1 − sk

∫ tk+1

sk

f1(y, α)dα = (tk+1 − y)(f1(y, α2)− f1(y, α′2))

for some α1, α
′
1 ∈ [sk, y] and α2, α

′
2 ∈ [y, tk+1]. Thus, from the choice of the discretization, we obtain

| u1(y, η)− c |≤ ε
4 .

Now, the payoff of player 1 coming from Player 2 playing in the other intervals or in D changes by no

more that ε/4 when he moves in the interval [tk, sk+1]. Consequently, if player 1 has a 3
4ε-best response

at the extreme points tk or sk+1 of the interval. If that strategy is y0, this is fine since it is authorized

for player 1. If not, then as seen, we can restrict the analysis to 3
4ε-best responses z that belongs to some

interval [tk, sk], which is the next case:

Third subcase. Let z ∈ [tk, sk] being a 3
4ε-best response, for some k ∈ {0, 1, ...,K − 1}. If k > 0,

by assumption, there is zero probability that player 2 stops in that interval and so player 1’s payoff does

not move by more that ε/4 if he plays uniformly in [tk, sk] (which is authorized for player 1) instead of

playing z. This gives a ε-best response. If k = 0, if player 2 is playing x0 with positive probability and

player 1 is playing z = x0, then player 1 does not lose more than ε/4 by playing slightly more than x0

instead of x0 (since h1(x0) < g1(x, x0) + ε
4 for every x ∈]x0, x0 + η[.). Thus, we still have the case where

z belongs to the interval ]t0, s0[. But, again, since his payoff moves continuously in that interval, playing

uniformly in it is an ε-best response.

The proof for player 2 is similar (we use the fact that h2(y0) < f2(y, y0) + ε
4 for every y ∈]y0− η, y0[).

The three remaining cases for k and l are solved similarly, by a judicious choice of who of the two

players is allowed to stop at x0 and y0: if k = 2 and l = 1, then player 1 can stop at x0 and player 2

at y0; if k = 2 and l = 2, (only) player 1 is allowed to stop at both x0 and y0; if k = 1 and l = 1, only

player 2 is allowed to stop at both points. If some player can stop at x0 then it is the other player who is

authorized to stop uniformly in the small interval of the dicretization just after x0, and the intervals in

which players can stop uniformly alternate until the point y0, and the last interval belongs to the player

who is not allowed to stop at y0.

Third case. x0 = y0, implying hk(x0) < gk(x, x0) + ε
4 for x ∈]x0, x0 + η[ and hl(x0) < fl(x, x0) + ε

4 for

x ∈]x0 − η, x0[ for some k ∈ {1, 2} and l ∈ {1, 2} (if x0 is 0 or 1, then only one of the inequalities holds).

Suppose for example that h1(x0) < g1(x, x0) + ε
4 for x ∈]x0, x0 + η[. Let D1 = {0 = t0 < ... < tK} be a

discretization on the left of x0, not including x0, and empty if x0 = 0; let D2 = {s0 < ... < sK = 1} be a

discretization on the right of x0, not including x0, and empty if y0 = 1. Again, without any loss of gener-
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ality, assume that the mesh of the discretizations is smaller than η > 0, so that payoff functions f and g

do not change by more than ε
2 if a player moves by no more than η. Consider a strategic approximation

where Player 2 is allowed to play in D1 ∪D2 ∪ {x0} and player 1 to play in D1 ∪D2 or to mix uniformly

in the length [x0, s0]. Let y ∈ [0, 1] be some ε/2-best reply of player 1 to some mixed strategy of player 2

which is not in D (if such strategy does not exist, this is finished). If y < x0, moving from y to the highest

element in D1 smaller than y gives an ε-best reply for player 1. If y > x0, moving from y to the smallest

element in D1 larger than y gives an ε-best reply for player 1. Last, if y = x0, playing uniformly in [x0, y0]

instead of playing x0 is an ε-best reply for player 1, because of h1(x0) < g1(x, x0) + ε
4 for x ∈]x0, x0 + η[.

Similarly, let z ∈ [0, 1] be some ε/2-best reply of player 2 to some mixed strategy of player 1. If z < x0 or

z > x0, then player 2 has an ε-best reply in D1 ∪D2 ∪{x0}, moving slightly above or below (this is simi-

lar to player 1). This finishes the case k = 1, and permuting player 1 and 2, we get similarly the case k = 2.

8.4 Proof of Proposition 13

The proof is similar to Case 2 in the complete information case, and use the construction of a strategic

approximation. There are four possibilities for i) and ii). Suppose i) is satisfied for player 1 and ii) for 2.

The strategic approximation should be adapted in the other 3 cases, as in the proof of Proposition 12.

Take the following discretization of [0, 1]: 0 = s0 < t0 < s1 < t1 < ... < tK < sK+1 = 1. The mesh

is supposed smaller than some η where f and g do not move by more that ε/4 when bids move by less

than η and such that for every t ∈ T , h1(t1, t2, 0) < g1(t1, t2, x, 0) + ε
4 when 0 < x < η.

In the strategic approximation, player 1 is restricted to play uniformly on one of the intervals [sk, tk],

k = 0, ...,K, or to choose x = 1. Player 2 is restricted to play uniformly on one of the intervals [tk, sk+1],

k = 0, ...,K, or to choose x = 0.

This leads to a game where each player has K+1 possible mixed actions and one pure action. Observe

that the intervals where players are mixing are disjoint and alternate (player 1 can stop uniformly in the

first interval, player 2 in the second, player 1 in the third, etc.).

Let σ be some mixed strategy profile of player 2 in the finite game. Show that any type t1 has an

ε-best response against σ in the full game that belongs to his set of authorized strategies.

Let x be some ε/4 pure best response of some type t1 of player 1. If that strategy is in the interval

]tk, sk+1[ of player 2, and if some type of player 2 is choosing that interval with positive probability, the

payoff of t1 coming from that interval is, up to ε/4, a convex combination of his payoff if he chooses tk

and his payoff if he chooses sk+1 (recall that payoff functions are continuous and that all types of player 2

are restricted to the uniform distribution on that interval). The payoff of type t1 coming from the other

intervals moves by no more that ε/4 when he moves in the interval [tk, sk+1]. Consequently, if type t1

has an ε/4-best response in ]tk, sk+1[, he has a 3
4ε best response at the extreme points of the interval. If

that strategy is 1, this is fine since that strategy is authorized for player 1. If not, then we can without

loss of generality restrict the analysis to 3
4ε-best responses that lies in some interval [sk, tk] (of player 1).

If k > 0, by assumption, there is zero probability that player 2 stops in that interval and so player 1’s

payoff does not move by more that ε/4: playing uniformly in that interval is an ε-best response. If x = 0

and if some type of player 2 is playing 0 with positive probability, player 1 does not loose so much by

playing slightly more than 0 instead of 0. There still remains the case where x belongs to the interval
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]s0, t0[. But, again, since his payoff moves continuously in the interval, playing uniformly in it is an ε-best

response. The proof for player 2 is the same, except that we need to use assumption ii) to conclude that

player 2 can always have a best reply different from 1.

8.5 Proof of Proposition 15

This existence result is an adaptation of the proof of Proposition 6. First of all, we adapt Lemma 18 as

follows:

Lemma 19 Let G = ((fi, gi, hi)i=1,2) be a diagonal game such that fi, gi and hi are continuous. Then:

a) supdi∈[0,1] ui(di, x−i) = supdi∈[0,1] ui(di, x−i).

b) For every x−i ∈]0, 1[, the function Vi(x−i) = supdi∈[0,1] ui(di, x−i) is continuous at x−i.

c) For every i = 1, 2, if fi(0, 0) ≤ gi(0, 0) then Vi(x−i) is continuous at x−i = 0.

d) For every i = 1, 2, if fi(0, 0) > gi(0, 0) then:

(i) either hi(0, 0) ≤ fi(0, 0) and for every ε > 0, supdi∈[0,1] ui(di, x−i) ≤ ui(0, x−i) + ε for x−i ≥ 0

small enough (ε can be taken equal to 0 if x−i = 0).

(ii) or hi(0, 0) > fi(0, 0), and supdi∈[0,1] ui(di, x−i) = ui(x−i, x−i) for x−i ≥ 0 small enough.

Thus, in both cases (i) and (ii), supdi∈[0,1] ui(di, 0) = ui(0, 0).

Proof of Lemma 19. a) We can simply adapt the point a) of Lemma 18 to the following generalized

notion of payoff security: the game G is said generalized payoff secure at x if for every ε > 0 there exists

a Kakutani’s mappings from U (some neighborhood of x−i) to Xi such that ui(d
′
i, x
′
−i) > ui(x) − ε for

every x′−i ∈ U and every d′i ∈ Φ(x′−i). Then G = ((fi, gi, hi)i=1,2) is generalized payoff secure at every

x ∈ X: if x is not on the diagonal, this is because ui is continuous at such x, and if x = (xi, xi), we can

take Φ(xi) = xi. This implies a).

b) Let x−i ∈]0, 1[. The definition of ui gives

Vi(x−i) := sup
di∈[0,1]

ui(di, x−i) = max{ sup
di∈[0,x−i]

fi(di, x−i), hi(x−i, x−i), sup
di∈[x−i,1]

gi(di, x−i)}. (17)

Thus, from Berge Maximum Theorem (see [1]), the mapping supdi∈[0,1] ui(di, x−i) is continuous at every

x−i ∈]0, 1[.

c) Suppose fi(0, 0) ≤ gi(0, 0) for some i ∈ {1, 2}. If hi(0, 0) ≤ gi(0, 0), then the continuity of Vi at (0, 0)

is obtained as in the proof of c) of Lemma 18 (since Inequations 4 and 5 are still true, from the continuity

of fi, gi and hi). If hi(0, 0) > gi(0, 0), then Vi(xi) = hi(xi, xi) on some neighborhood of 0, which proves

the continuity of Vi at 0.

d) i) Similar to the proof of d) i) in Lemma 18. Indeed, in the proof of Equation 12, we only need

h1(x2, x2) < f1(0, x2) + ε for x2 > 0 small enough, which is true by continuity.

ii) If hi(0, 0) > fi(0, 0) then by continuity Vi(xi) = hi(xi, xi) on some neighborhood of 0.
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Proof of Proposition 19. let (x1, x2, v1, v2) ∈ Γ be a BS equilibrium of G, and prove it to be an

approximated equilibrium. From the definition of a Reny equilibrium and from point a) of Lemma 19,

we get

Vi(x−i) = sup
di∈[0,1]

ui(di, x−i) ≤ vi, i = 1, 2. (18)

Similarly to the proof of Proposition 6, we need to consider only the cases where (x1, x2) = (0, 0) and

the case f1(0, 0) > g1(0, 0) and f2(0, 0) ≤ g2(0, 0), the other cases being similar to those of the proof of

Proposition 6 (up to a permutation of players). Remark that f1(0, 0) > g1(0, 0) implies

sup
d1∈[0,1]

u1(d1, 0) = u1(0, 0) (19)

from d) of Lemma 19, i.e. 0 is a best response of player 1 against x2 = 0.

Now, we examine 2 different subcases, depending on h2(0, 0):

Subcase 1. Suppose h2(0, 0) ≥ g2(0, 0). Since (0, 0, v1, v2) is in the closure of the graph of the payoff

functions, v2 = limn→+∞ u2(xn) for some sequence of strategy profiles xn converging to (0, 0). Thus,

from h2(0, 0) ≥ g2(0, 0) ≥ f2(0, 0), and by continuity, we get v2 ≤ u2(0, 0) = h2(0, 0). From Inequations

18, this implies that 0 is a best response of player 2 against x1 = 0, thus (0, 0) is a Nash equilibrium.

Subcase 2. Now, suppose h2(0, 0) < g2(0, 0). First, assume that h1(0, 0) ≤ f1(0, 0). We can mimic the

proof of Proposition 6, Case 3 (since hi(xi, xi) ∈ co{fi(xi, xi), gi(xi, xi)} is only used to prove Inequation

9 (i.e. v2 ≤ g2(0, 0)), which can be proved here directly as in Subcase 1 above): this implies that (0, 0)

is an approximated equilibrium. Second, assume that h1(0, 0) > f1(0, 0). Equation 18 implies that

h1(0, 0) = u1(0, 0) ≤ supdi∈[0,1] ui(di, x−i) ≤ vi. Again, since (0, 0, v1, v2) is in the closure of the graph of

the payoff functions, v1 = limn→+∞ u1(xn) for some sequence of strategy profiles xn converging to (0, 0).

Thus, from h1(0, 0) > f1(0, 0) > g1(0, 0), and by continuity, xn is on the diagonal for n large enough.

Thus v2 = h2(0, 0) = u2(0, 0), and (0, 0) is a Nash equilibrium.

8.6 Proof of Theorem 7

The proof of Theorem 7 will be based on the selection lemma below. Given y = (yi)i∈N ∈ RN and

y′ = (y′i)i∈N ∈ RN , define y ∨ y′ = (max{yi, y′i})i∈N ∈ RN . A multivalued mapping Ψ from X to RN is

called ∨-stable if y ∨ y′ ∈ Ψ(x) whenever x ∈ X and (y, y′) ∈ Ψ(x)×Ψ(x).

Lemma 20 Let X be a compact subset of a topological vector space. Let Ψ be a ∨-stable multivalued

mapping from X to RN such that for every x ∈ RN , there exists a neighborhood V of x such that

∩x′∈V Ψ(x′) 6= ∅. Then Ψ admits a selection ψ = (ψi)i∈N such that for every i ∈ N and every α ∈ RN ,

the set {x ∈ X : ∀i ∈ N, ψi(x) ≤ αi} is open in X.

Proof. For every x ∈ X, let V (x) be a compact13 neighborhood of x such that ∩x′∈V (x)Ψ(x′) 6=
∅, and choose y(x) ∈ ∩x′∈V (x)Ψ(x′). Since X is compact, there exist some compact neighborhoods

13 Without any loss of generality, since X admits a compact basis of neighborhoods at every x ∈ X, taking a smaller
neighborhood if necessary, we can assume V (x) compact.
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V (x1), ..., V (xn) of x1, ..., xn, whose interiors cover X. For every x ∈ X, define

ψ(x) = ∨k:x∈V (xk)y(xk). (20)

Since Ψ is ∨-stable, the mapping ψ : X → RN is a selection of Ψ. Now, we claim that for every i ∈ N
and every α ∈ RN , the set

Y := {x ∈ X : ∀i ∈ N, ψi(x) ≤ αi} (21)

is an open subset of X. For every x̄ ∈ Y , it suffices to prove that

V := (∪k:x̄∈V (xk)V (xk)) ∩ (∩k′:x̄/∈V (xk′ )
cV (xk′)) (22)

is a neighborhood of x̄, and is included in Y .

First, V is clearly a neighborhood of x̄ in X: indeed, x̄ belongs the interior of some V (xk) (since

the interiors of V (x1), ..., V (xn) cover X), thus ∪k:x̄∈V (xk)V (xk) is a neighborhood of x̄. Moreover,

∩k′:x̄/∈V (xk′ )
cV (xk′) is a finite intersection of (open) neighborhoods of x̄.

Second, fix y ∈ V , and prove y ∈ Y , i.e. ψi(y) ≤ αi for every i ∈ I. From the definition of ψi (Equa-

tion 20), this can be written equivalently: for every i ∈ I, for every k such that y ∈ V (xk), yi(xk) ≤ αi.

To prove this last inequality, fix i ∈ I and k such that y ∈ V (xk): the definition of V , ψ(x̄) and Y gives

x̄ ∈ V (xk), yi(xk) ≤ ψi(x̄) and ψi(x̄) ≤ αi, so that yi(xk) ≤ αi.

Now, we prove Theorem 7 by contradiction: assumeG has no tight equilibrium. Define the multivalued

mapping Ψ from X to RN as follows (where N (x) denotes the set of open neighborhoods of x ∈ X): for

every strategy profile x ∈ X,

Ψ(x) = {α ∈ RN : ∃V ∈ N (x), ∃(Φi)i∈N ∈ Πi∈NWV (x−i) : (1) inf
(d′i,x

′
−i)∈GrΦi

uΦi
i (d′i, x

′
−i) ≥ αi

(2) ∀z ∈ V, ∃i0 : αi0 > ui0(z)}.

We now check that Lemma 20 can be applied to Ψ.

Step 1: Ψ has non-empty values: indeed, by assumption, there is no tight equilibrium: given x ∈ X, it

follows that there exists a neighborhood V of x (which can be assumed to be compact) and (Φi)i∈N in

Πi∈NWV (x−i) such that for every z ∈ V , there exists i0 ∈ N such that:

∀(d′i0 , x
′
−i0) ∈ GrΦi0 , u

Φi0
i0

(d′i0 , x
′
−i0) > ui0(z). (23)

For every i ∈ N , define αi = inf(d′i,x
′
−i)∈GrΦi

uΦi
i (d′i, x

′
−i), so that Condition (1) in the definition of

Ψ(x) is satisfied. Furthermore, since the restriction of uΦ
i to the compact set {(d′i, x′−i) ∈ Xi × V−i : d′i ∈

Φi(x
′
−i)} is lower semicontinuous, αi = uΦi

i (d′i, x
′
−i) for some (d′i, x

′
−i) ∈ GrΦi. Consequently, for every

z ∈ V , Inequality 23 implies αi0 > ui0(z) for some i0 ∈ N , i.e. Condition (2) is also satisfied.
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Step 2: Ψ is a ∨-stable multivalued mapping: take x ∈ X, α and α′ in Ψ(x). From the definition

of Ψ(x), there exists V ∈ N (x) (resp. V ′ ∈ N (x)), and there exists (Φi)i∈N ∈ Πi∈NWV (x−i) (resp.

(Φ′i)i∈N ∈ Πi∈NWV ′(x−i)), both satisfying:

inf
(d′i,x

′
−i)∈GrΦi

uΦi
i (d′i, x

′
−i) ≥ αi (24)

∀z ∈ V, ∃i0 : αi0 > ui0(z) (25)

inf
(d′i,x

′
−i)∈GrΦ′i

u
Φ′i
i (d′i, x

′
−i) ≥ α′i (26)

∀z ∈ V ′, ∃i0 : α′i0 > ui0(z) (27)

For every i ∈ N , define Φ′′i ∈ WV (x−i) as follows: Φ′′i (x) = Φi(x) if αi ≥ α′i and Φ′′i (x) = Φ′i(x)

otherwise. Define V ′′ = V ′∩V and α′′ = α∨α′. To prove that α′′ ∈ Ψ(x), prove that Φ′′ and V ′′ satisfies

the two conditions in the definition of α′′ ∈ Ψ(x). First, Inequation 25 and Inequation 27 gives: for every

z ∈ V ′′, there exists i0 such that α′′i0 > ui0(z), which proves Condition (2). Second, given i ∈ N , the case

αi ≥ α′i implies

inf
(d′i,x

′
−i)∈GrΦ′′i

u
Φ′′i
i (d′i, x

′
−i) ≥ inf

(d′i,x
′
−i)∈GrΦi

uΦi
i (d′i, x

′
−i) ≥ αi = α′′i ,

the case αi < α′i being similar. This proves Condition (1). Finally, α′′ = α ∨ α′ ∈ Ψ(x), i.e. Ψ is a

∨-stable multivalued mapping.

Step 3 : Ψ has open pre-images: it is immediate from the definition of Ψ.

From Lemma 20, we get a selection α : X → RN of Ψ, which satisfies the openness condition of

Lemma 20. To finish the proof of Theorem 7, we apply a fixed-point theorem à la Kakutani [20] to the

following multivalued mapping Ψ′. Define, for every x ∈ X:

Ψ′(x) = co{d ∈ X : ∃V ∈ N (x) and (Φi)i∈N ∈ Πi∈NWV (x−i)

such that for every i ∈ N, (di)i∈N ∈ Πi∈NΦi(x−i) and inf
(d′i,x

′
−i)∈GrΦi

uΦi
i (d′i, x

′
−i) ≥ sup

x′′∈V
αi(x

′′)}.

First check that for every x ∈ X, there exists some local selection of Ψ′ with non-empty, compact,

convex values and which has a closed graph. The definition of α gives V ∈ N (x) and Φ = (Φi)i∈N ∈
Πi∈NWV (x−i) such that for every i ∈ N , the following inequality is true: inf(d′i,x

′
−i)∈GrΦi

uΦi
i (d′i, x

′
−i) ≥

αi(x). But α has been chosen so that the set {x ∈ X : inf(d′i,x
′
−i)∈GrΦi

uΦi
i (d′i, x

′
−i)) ≥ αi(x)} is open,

consequently Πi∈NΦi(x−i) ⊂ Ψ′(x) (taking V smaller if necessary), and Πi∈NΦi(x−i) is the local selection

of Ψ′ we are looking for. Second, Ψ′ has convex images by definition.

Consequently, we can apply the following generalization of Kakutani’s theorem to Ψ′. A multivalued

mapping F from X to X is called Kakutani if it has non-empty, compact, convex values and has a closed
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graph.

Theorem 21 Let X be a compact subspace of a topological vector space which is locally convex and

Hausdorff . Let F from X to X, with convex values, and such that for every x ∈ X, there exists a local

multivalued selection G of F around x. Then F admits a fixed point.

Proof. From the compactness of X, there exists a finite subset {x1, ..., xK} of X, and for every

k = 1, ...,K, there exists Gk a Kakutani multivalued selection of F from some neighborhood Vxk
of

xk to X, where Vx1
, ..., VxK

is a finite covering of X. Let β1, ..., βK a partition of unit subordinate to

the covering Vx1
, ..., VxK

. Thus, each βk is a continuous function from X in [0, 1], with support in Vxk
,

such that for every x ∈ X,
∑K

k=1 βk(x) = 1. Define G(x) =
∑K

k=1 βk(x)Gk(x). It is clearly a Kakutani

multivalued selection of F (because F has convex values). From Kakutani’s Theorem, it admits a fixed

point, which is a fixed point of F .

Applying the fixed-point theorem above, Ψ′ admits a fixed point x̄ ∈ X. This means that there

exists d(1), ..., d(K) in X and some non-negative real numbers λ(1), ..., λ(K) with
∑K

k=1 λ(k) = 1 and

x̄ =

K∑
k=1

λ(k)d(k), and such that for every k = 1, ...,K, there is some V ∈ N (x) and some (Φi)i∈N ∈

Πi∈NWV (x−i) such that ui(di(k), x̄−i) ≥ uΦi
i (di(k), x̄−i) ≥ αi(x̄) (the first inequality being a consequence

of the definition of uΦi
i ). Recall that the mapping ui(., x̄−i) is quasi concave. Consequently, from the above

inequalities for every k = 1, ...,K, we obtain ui(x̄) ≥ αi(x̄) for every i ∈ N , which yields a contradiction

with Condition (2) in the definition of Ψ, i.e. the fact that for every z in some neighborhood V ′ of x̄,

there exists i0 ∈ N such that αi0(x̄) > ui0(z).

8.7 Kakutani regularity requirement in Barelli-Soza equilibrium

Observe that (x, v) ∈ Γ is a Barelli-Soza equilibrium if and only if, for every i:

sup
V ∈V(x−i)

sup
Φi∈WV

inf
(di,x′−i)∈GrΦi

ui(di, x
′
−i) ≤ vi,

where WV is the set of Kakutani mappings from V to Xi. The following lemma prove that a Barelli-Soza

equilibrium may not exist if WV is replaced by ΩV , the set of multi-valued mapping from V to Xi:

Lemma 22 In a zero-sum game, there exists (x, v) ∈ Γ such that

sup
V ∈V(x−i)

sup
Φi∈ΩV

inf
(di,x′−i)∈GrΦi

ui(di, x
′
−i) ≤ vi (28)

if and only if the game has a value.

Consequently, since there are quasiconcave games in pure or mixed strategies without a value, a

Barelli-Soza equilibrium may not exist without the regularity requirement on Φi. To prove the lemma,

first prove

sup
V ∈V(x−i)

sup
Φi∈ΩV

inf
(di,x′−i)∈GrΦi

ui(di, x
′
−i) = sup

V ∈V(x−i)

inf
x′−i∈V

sup
di∈Xi

ui(di, x
′
−i).
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Let βi = sup
Φi∈ΩV

inf
(di,x′−i)∈GrΦi

ui(di, x
′
−i) and αi = inf

x′−i∈V
sup

di∈Xi

ui(di, x
′
−i). For every x′−i ∈ X−i, take

Φi(x
′
−i) ∈ {di ∈ Xi : ui(di, x

′
−i) ≥ supdi∈Xi

ui(di, x
′
−i) − ε} in the supremum defining βi: it gives

βi ≥ αi − ε. The converse inequality βi ≤ αi is straightforward, and proves the equality above.

Now, let S (resp. T ) denote the compact set of strategies of player 1 (resp. 2) and let f = u1 = −u2

be a bounded payoff function. Let ((s, t), (v,−v)) ∈ Γ satisfy Equation 28, i.e.

sup
V ∈V(t)

inf
t′∈V

sup
s∈S

f(s, t′) ≤ v

and

inf
V ∈V(s)

sup
s′∈V

inf
t∈T

f(s′, t) ≥ v.

Taking V = T in the first supremum and V = S in the second one, we obtain:

inf
t′∈T

sup
s′∈S

f(s′, t′) ≤ v ≤ sup
s′∈S

inf
t′∈T

f(s′, t′),

that is, the game has a value. The converse is straighforward.
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