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The Sanchez–Lacombe equation of state is known to describe the thermodynamic properties of molecular fluids of arbitrary size, especially 
polymer–solvent phase behavior. However, it is rarely used for modeling solid–supercritical fluid equilibria. In this work, it is shown that a 
proper estimation of the EoS characteristic parameters together with a thermodynamically consistent expression of fugacity coefficients 
allows a satisfactory correlation of the solubility of solids in the supercritical phase. Binary mixtures containing carbon dioxide, ethane, 
ethylene and xenon were considered for this purpose. In a first step, the consistency of experimental data was checked using variance 
analysis. Then, different mixing rules were considered and results compared with those obtained with the Peng–Robinson equation. Finally, 
the lower and upper boundaries of the solid–liquid–vapor regions (LCEP and UCEP) were also determined and compared with experimental 
values.
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1. Introduction

Due to technical extractive supercritical fluid improve-

ments, a good understanding of solid-supercritical fluid

equilibrium is necessary for the development and design of

separative processes [1]. The solubility of the solute in the

supercritical solvent is one of the most important equilibrium

properties, since it provides the extractability limit or solute

concentration, which can be used as a basis for the design of

the extractive process.

Taking into account the high range of pressures involved

in these chemical processes, the estimation of the solubility of

low volatile compounds in supercritical fluids (SFC) should

be performed by means of an equation of state. Extensive

studies were developed in literature for the modeling of the

solubility of solids using cubic equations of state (EoS) since

they offer the best compromise between accuracy, reliability,

∗ Corresponding author. Tel.: +33 4 91 82 91 49; fax: +33 4 91 82 91 52.
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simplicity and efficiency of computation. Two main topics

were widely considered according to the nature of the solid

compound involved in the process: for complex molecules,

such as those of biological interest, the major problem dis-

cussed in literature is the estimation of the pure component

properties, like sublimation pressures [2] or critical parame-

ters [3,4]; in the case of simpler molecules for which thermo-

dynamic properties can be easily measured, literature studies

are mainly concerned with the choice of the best EoS [5–7]

and corresponding mixing rules [8,9].

The form of mixing rules that extend the use of EoS devel-

oped for pure fluids to mixtures is, as reported by Anderko

[6], more important than the particular relationship P(T, v)

characterizing each EoS. The most commonly used mixing

rules are the conventional van der Waals rules, but they fail in

describing highly non-ideal mixtures. Several attempts have

been made in literature to overcome these limitations, by in-

troducing composition dependence [10,11] or density depen-

dence [9] of the EoS parameters. In a previous work, Ashour

et al. [8] have shown that incorporating additional parameters
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in the cubic EoS does not significantly improve the prediction

of the solubility of the solid in the SCF. However, this study

did not take into account the dependence of the interaction

EoS parameters with respect to temperature.

The purpose of this work is to check the capability of

the Sanchez–Lacombe equation of state [12] for modeling

solid–supercritical fluid equilibrium. This equation derives

from the “lattice fluid theory” and is known to describe ther-

modynamic properties of molecular fluids of arbitrary size,

mainly polymer–solvent phase behavior. However, this equa-

tion is scarcely used for industrial purposes. For instance,

concerning the modeling of solids in SCF, Mc Hugh et al. [13]

provided a first attempt to correlate binary mixtures using a

single mixing rule with temperature independent parameters;

in that work, EoS parameters were fitted to the UCEP of the

naphthalene–xenon system, so that a poor prediction of the

solubility was observed.

The main problem encountered with the Sanchez–

Lacombe EoS is the lack of characteristic parameter values

available in literature, which constitutes a serious limitation

for its technical use. To overcome this limitation, predictive

methods [14–16] were developed for the EoS parameter es-

timation. In addition, it was shown [17] that chemical poten-

tials for mixtures proposed in literature are not thermodynam-

ically consistent; hence, expressions of fugacity coefficients

were established for the Sanchez–Lacombe equation allow-

ing a consistent calculation of phase equilibrium occurring

in mixtures.

In this work, different mixing rules associated with the

Sanchez–Lacombe EoS were considered and results com-

pared with those obtained with the Peng–Robinson equation

[18]. For this purpose, binary mixtures of solids with super-

critical carbon dioxide, ethane, ethylene and xenon were in-

vestigated. In order to provide a reliable comparison of mod-

els, the consistency of experimental data was preliminary

checked by means of variance analysis [19,20]. Isothermal

data sets were first correlated separately, in view of com-

paring the various mixing rules independently on tempera-

ture. The influence of temperature was then investigated by

correlating solubility data by means of temperature depen-

dent parameters. Finally, the lower and upper boundaries of

the solid–liquid–vapor regions were also estimated and com-

pared with experimental values.

2. Modeling by means of equations of state

The modeling of the solubility y2 of a solid component

(2) in a supercritical phase requires solving the following

equilibrium condition:

y2 =
ϕ2(T, P sub

2 )P sub
2 (T )

Pϕ2(T, P, y2)
exp

(

vs
2(P − P sub

2 (T ))

RT

)

(1)

where P sub
2 (T ) is the sublimation pressure of component (2)

and vs
2 its molar volume at temperature T; it is assumed that

vs
2 is independent on pressure P. The fugacity coefficients

ϕ2(T, P sub
2 ) and ϕ2 (T,P,y2) are respectively those of compo-

nent (2) as a pure species at P sub
2 (T ) and in the supercritical

mixture at pressure P; they should be estimated thanks to an

equation of state.

As shown in Fig. 1, which represents the phase equilibrium

diagram for a solid-SCF binary mixture, Eq. (1) is valid in the

whole range of molar fractions and pressures only for tem-

peratures TB between the lower and upper critical end points

(LCEP and UCEP); at these temperatures, the P–x curves

are still influenced by the vapor–liquid equilibria occurring

at temperatures TA < TLCEP or TC > TUCEP, which exhibit a

critical point with a zero slope of the pressure. Efficient algo-

rithms were proposed in literature [21,22] to determine the

LCEP and UCEP temperatures characterized by the equality

of the fugacities of all components in the solid (S), liquid (L)

and gas (G) phases.

The Sanchez–Lacombe EoS [12] (SL), which derives from

the lattice fluid theory, is written:

P = −RT

(

r − 1

v

)

− RT
1

v∗
ln

(

1 −
rv∗

v

)

−
ε∗v∗r2

v2
(2)

Fig. 1. Phase equilibrium diagram for a solid–SCF binary mixture (from Xu et al. [21]).
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where r, v∗, ε∗ are the characteristic EoS parameters, respec-

tively, the component segment number, the segment volume

and the mer–mer interaction energy.

The fugacity coefficient of a component i in the mixture

is expressed by the relation proposed by Neau [17]:

lnϕi(T, v, x) = −ln z+ ri

[

−2
ρ̃

T̃
− ln(1 − ρ̃)

]

+

(

z− 1

r

)

[

nr

v∗

(

∂v∗

∂ni

)

nj,T

]

−
ρ̃

T̃

[

nr

ε∗

(

∂ε∗

∂ni

)

nj,T

]

(3)

where the compressibility factor z is given by

z =
Pv

RT
= r

[

−
1

ρ̃
ln(1 − ρ̃) −

(

1 −
1

r

)

−
ρ̃

T̃

]

,

ρ̃ =
rv∗

v
, T̃ =

RT

ε∗
(4)

For mixtures, the molar segment number r is defined from

the segment fractions φi as

r =
∑

xiri, φi =
xiri

r
(5)

The expressions of the partial derivatives in Eq. (3) are given

in Table 1 for the different mixing rules considered in this

work:

• Classical mixing rules. Two kinds of mixing rules were

considered:

◦ “kij” mixing rule, from Sanchez and Panayiotou [23],

which assumes (Eq. (6)) a quadratic expression for the

interaction parameter ε∗ and a linear relation for the

segment volume v∗ with respect to the segment fractions

φi.

◦ “kij, lij” mixing rule, from Mc Hugh and Krukonis [1],

in which both parameters ε* and v∗ have a quadratic de-

pendence with respect to the segment fractions (Eq. (7)).

• Composition dependent mixing rules. Recently, Neau [24]

has suggested to correlate phase equilibria occurring in

high dissymmetric systems by using mixing rules depend-

ing on binary interaction parameters kij(x), similar to those

used with cubic equations of state [10,11]. Among them,

we have considered:

◦ “k
(0)
ij , k

(1)
ij ” mixing rule, in which ε* is a quadratic func-

tion of the segment fractions, while the segment volume

v∗ is expressed by a linear relation (Eq. (8)).

◦ “k
(0)
ij , k

(1)
ij , lij” mixing rule, especially suitable for mix-

tures containing components very different in size,

where both ε* and v∗ are quadratic functions (Eq. (9)).

For the comparison with the Peng–Robinson equation

[18] (PR), the temperature function proposed by Soave

[25] for the interaction energy parameter a was considered.

The following mixing rules were investigated:

• Conventional van der Waals mixing rules, corresponding

to a quadratic expression of parameter a with respect to

mole fractions xi, and:

Table 1

Partial derivatives of mixture parameters for the Sanchez–Lacombe EoS

“kij” mixing rule (Sanchez and Panayiotou [23])

v∗ =
∑

i φiv
∗
ii,

nr

v∗

(

∂v∗

∂ni

)

nj ,T

=
1

v∗
[ri(−v

∗ + v∗ii)], ε
∗ =

∑

i

∑

j

φiφjε
∗
ij,

nr

ε∗

(

∂ε∗

∂ni

)

nj ,T

=
1

ε∗
2ri



−ε∗ +
∑

j

φjε
∗
ij



 ,

ε∗ij =
ε∗ii + ε

∗
jj

2
−
RTkij

2 (6)

“kij, lij” mixing rule (Mc Hugh and Krukonis [1])

v∗ =
∑

i

∑

j φiφjv
∗
ij,

nr

v∗

(

∂v∗

∂ni

)

nj ,T

=
1

v∗



2ri



−v∗ +
∑

j

φjv
∗
ij







 , v∗ij =
(v∗ii + v

∗
jj)(1 − lij)

2
,

ε∗v∗ =
∑

i

∑

j

φiφjε
∗
ijv

∗
ij,

nr

ε∗

(

∂ε∗

∂ni

)

nj ,T

=
1

ε∗v∗



2ri



−ε∗v∗ +
∑

j

φj(εv)
∗
ij







 −

[

nr

v∗

(

∂v∗

∂ni

)

nj ,T

]

, ε∗ij = (ε∗iiε
∗
jj)

1/2
(1 − kij) (7)

“k
(0)
ij , k

(1)
ij ” mixing rule (Neau [24])

v∗ =
∑

i φiv
∗
ii,

[

nr

v∗

(

∂v∗

∂ni

)

nj ,T

]

(as for Eq. (6)), ε∗ =
∑

i

∑

j φiφjε
∗
ij(x), ε

∗
ij(x) = (ε∗iiε

∗
jj)

1/2(1 − kij(x)),

kij(x) = k
(0)
ij + (1 − δij)

∑

m φm(k
(1)
mi + k

(1)
mj ),

nr

ε∗

(

∂ε∗

∂ni

)

nj ,T

=
1

ε∗



2ri



−ε∗ +
∑

j

φjε
∗
ij(x)









−
1

ε∗



ri
∑

j

∑

l

φjφl

{

δjl

[

(k
(1)
ij + k

(1)
il ) −

∑

m

φm(k
(1)
mj + k

(1)
ml )

]}



 (8)

“k
(0)
ij , k

(1)
ij , lij” mixing rule (Neau [24])

v∗ =
∑

i

∑

j φiφjv
∗
ij,

[

nr

v∗

(

∂v∗

∂ni

)

nj ,T

]

(as for Eq. (7)), ε∗ =
∑

i

∑

j φiφjε
∗
ij(x),

[

nr

ε∗

(

∂ε∗

∂ni

)

nj ,T

]

(as for Eq. (8)) (9)
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◦ a linear covolume b, for the “kij” mixing rule,

◦ a quadratic dependence of b for the “kij, lij” mixing rule.

• Composition dependent mixing rules, in which the kij bi-

nary interaction parameter of a is considered as a function

kij(x) of the molar fraction of the mixture. The method was

originally proposed by Adachi and Sugie [10] and general-

ized by Hernández-Garduza et al. [11], in order to avoid the

invariance problem pointed out by Michelsen and Kisten-

macher [26]. For binary mixtures studied in this work, the

generalized Adachi and Sugie mixing rule was considered:

kij(x) = k
(0)
ij + (1 − δij)

∑

xm

(

k
(1)
mi + k

(1)
mj

)

,

k
(0)
ji = k

(0)
ij , k

(1)
ji = −k

(1)
ij (10)

where δij is the Kronecker symbol. As for the

Sanchez–Lacombe EoS, two versions were studied:

◦ “k
(0)
ij , k

(1)
ij ” mixing rule associated with a linear covol-

ume b,

◦ “k
(0)
ij , k

(1)
ij , lij” mixing rule where b is a quadratic function

of molar fractions.

It must be recalled that the binary parameters of all above

mixing rules have no physical meaning, so that they must be

tuned on experimental phase equilibrium data. In addition,

these parameters show appreciable temperature dependence;

as recommended in a previous work [11] for cubic equations,

a satisfactory correlation of data in a wide range of tempera-

tures can be achieved using for kij, as well as for lij, k
(0)
ij and

k
(1)
ij the following expressions:

kij = k′ij + k′′ij

(

T0

T
− 1

)

(11)

where T0 is a reference temperature, usually chosen in the

range of experimental data.

3. Application to binary systems

The binary mixtures of solids with supercritical carbon

dioxide, ethane, ethylene and xenon considered in this work

are detailed in Table 2. As mentioned in Section 1, the con-

sistency of experimental data was preliminary checked by

means of variance analysis [19,20]; the general method is

described in the following section. The last section is con-

cerned with the pure component parameter estimation.

3.1. Consistency test of experimental data

The general method is illustrated in the case of car-

bon dioxide–naphthalene system at 308.15 K, for which

numerous measurements were performed in literature (see

Table 2). The consistency analysis is performed in two

steps:

• Analysis of each data set measured by one author at a given

temperature. In this first step, experimental errors are esti-

mated and, if necessary, doubtful measurements are elim-

inated. The method recalled in Appendix A, consists in

correlating experimental solubility data y
exp

2 (Eq. (1)) with

Table 2

Data base for the correlation of solubility data in SCF

Binary system Temperature range (K) N Reference

Global 308 K 318 K 343 K

CO2–biphenyl 308–330 31 15 8 [31,32]

CO2–naphthalene 308–328 175 70 33 [31–42]

CO2–2,3-m-naphthalene 308–328 20 10 5 [43–44]

CO2–2,6-m-naphthalene 308–328 23 9 5 [43,45]

CO2–fluorene 308–343 23 6 8 [46]

CO2–phenanthrene 303–343 129 7 5 7 [34,43,46,47]

CO2–anthracene 308–343 118 5 6 9 [46–48]

CO2–pyrene 308–343 119 6 8 [46–47]

CO2–n-octacosane 308–325 45 10 8 [49]

CO2–benzoic acid 308–328 43 9 12 [43,50]

C2H6–biphenyl 308–318 10 5 5 [50]

C2H6–naphthalene 318–328 53 20 [46,50]

C2H6–anthracene 308–343 14 4 7 [46]

C2H6–n-octacosane 308 6 6 [44]

C2H6–benzoic acid 318–338 15 5 [43]

C2H4–fluorene 298–343 24 [46]

C2H4–phenanthrene 298–343 6 2 [46]

C2H4–pyrene 318–343 15 8 [46]

C2H4–benzoic acid 318–338 15 5 [43]

Xe–naphthalene 308–318 21 1 17 [13]

905 164 144 39

N is the number of experimental data respectively, for the global range of temperatures and at 308.15, 318.15 and 343.15 K.
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Fig. 2. Carbon dioxide–naphthalene system: deviations�y2/σ(y2) between experimental and estimated values of solubility (Eq. (A.1)). (a) Correlation of single

data sets at 308.15 K in step (1). (b) Correlation of the whole data set at 308.15 K in step (2).

respect to pressure P using a polynomial form (Eq. (A.1)),

the degree of which, not fixed in advance, should be high

enough in order to avoid systematic errors. For each exper-

imental point i, the deviation �y2i between the measured

value y
exp

2i and the calculated one ycal
2i should be of the same

magnitude as the resulting error σ(y2i) (Eq. (A.3)). A value

of the ratio |�y2i/σ(y2i)| greater than 2.0 gives evidence of

a systematic error, and this measure should be eliminated.

The principle of the method is illustrated in Fig. 2a for the

data of Tsekhanskaya et al. [39,40], for which three wrong

determinations were detected in this step.

• Check of the consistency of the whole data set. In a second

step, all data measured by different authors are correlated

using a single polynomial form (Eq. (A.1)). In the case of

perfectly consistent data, relative deviations |�y2i/σ(y2i)|

should also be smaller than 2.0. This procedure is illus-

trated in Fig. 2b, where inconsistent data were evidenced

and eliminated for the further correlation of this system at

this temperature.

3.2. Pure component parameters

The properties of the pure solids considered in this work

are described in Table 3. Both the solid volumes vs
2 and sub-

limation pressures P sub
2 (T ) were taken from literature. How-

ever, it is worth recalling that these pressures become rapidly

unknown for heavy compounds, like biological ones; in that

case, P sub
2 (T ) can be estimated from the predictive method

proposed by Neau et al. [2]; with this method, the sublimation

pressure is calculated by means of the Clapeyron equation,

in which the characteristic parameters are obtained from the

fusion properties and the vaporization curve derived from the

equation of state.

The Sanchez–Lacombe EoS parameters used for the corre-

lation of solubility data are also reported in Table 3. They were

estimated using the methods proposed by Neau et al. [27] for

the light components (supercritical fluids) and by Rigal et al.

[15,28] for the heaviest ones (solid components). Other sets

of parameters could have been considered: literature values

Table 3

Sanchez–Lacombe EoS parameters and referenced pure solid properties

Component ε∗(J/mol) v∗ (cm3/mol) r vs (cm3/mol) Asuba Bsuba

Carbon dioxide 2276.66 3.638 8.564

Ethane 2444.62 7.865 6.653

Ethylene 2273.34 7.238 6.518

Xenon 2943.30 11.854 3.644

Biphenyl [51] 5280.12 14.985 11.708 131.0 9.4068 4262.0

Naphthalene [50] 5509.75 12.407 9.600 110.0 8.5830 3733.9

2,3-Dimethylnaphthalene [51] 5604.69 13.069 11.245 154.7 9.0646 4302.5

2,6-Dimethylnaphthalene [51] 5540.04 13.069 11.244 139.2 9.4286 4419.5

Fluorene [51] 5866.55 10.676 11.821 139.3 9.2046 4561.8

Phenanthrene [51] 6354.58 13.804 11.378 151.0 9.6310 4873.4

Anthracene [51] 6372.58 13.804 11.378 142.6 7.1464 4397.6

Pyrene [51] 6732.91 14.733 11.980 158.5 8.3946 4904.0

n-Octacosane [44] 5295.78 17.360 22.989 489.4 29.4613 12834.4

Benzoic Acid [52] 4920.81 6.196 15.431 96.5 9.4080 4618.1

a log(Psub) (bar) = Asub − Bsub/T.
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Table 4

Deviations on saturation pressures �Psat (%) and liquid saturated volumes

�vsat (%) using different estimation methods for the Sanchez–Lacombe EoS

parameters

Methods �Psat (%) �vsat (%)

CO2
a Naphthaleneb,c CO2

a Naphthalened

This work 0.90 3.85 11.46 0.92

Gauter–Heidemann 1.08 3.01 23.34 13.04

Literature 24.97 – 5.04 –

a Angus et al. [53].
b Fowler et al. [54].
c Camin and Rossini [55].
d API [56].

[23], available for a restricted number of components, or es-

timations derived from the method proposed by Gauter and

Heidemann [16]. The EoS parameters were selected taking

into account the quality of the saturation properties predicted

with the different procedures. As an example, results obtained

for carbon dioxide and naphthalene are reported in Table 4.

It clearly appears that literature values should be avoided and

that the two other methods provide equivalent satisfactory

correlations of vapor pressures, so that they will lead to sim-

ilar solubility estimations. However, it must be noted, even

if it has no influence on the present modeling, that the main

advantage of the methods considered in this work is the im-

proved representation of saturated liquid volumes.

For the Peng–Robinson equation, the values of Tc, Pc and

ω were mainly taken from literature [29]; when no data were

available, as it was the case for polycondensed aromatics,

EoS parameters were predicted by means of the group con-

tribution method of Avaullée et al. [30] especially efficient

for hydrocarbons.

4. Results and discussion

Binary interaction parameters were obtained by minimiz-

ing the objective function:

Fobj =

N
∑

i=1

[

�y2i

y
exp

2i

]2

, �y2i = y
exp

2i − ycal
2i (12)

where y
exp

2i and ycal
2i are respectively the experimental solu-

bilities of the solids in SCF and those estimated by means of

Eq. (1).

4.1. Correlation of isothermal data

The comparison of the correlation of isothermal data, re-

spectively at 308.15, 318.15 and 343.15 K, using tempera-

ture independent parameters are reported in Table 5 for the

Sanchez–Lacombe and Peng–Robinson equations. The inter-

est of this preliminary study is twice. First of all, the devi-

ations given in this table can be considered as the reference

level which can be expected, at these temperatures, when cor-

relating in the next section the global data sets with respect

to temperature. Second, even if the order of magnitude of the

deviations depends on the temperature considered, their evo-

lution gives evidence of the same trend with respect to the

different modelings.

The Sanchez–Lacombe EoS fails in correlating sol-

ubility data using a single binary interaction parame-

ter “kij”; the same behavior is also observed with the

Peng–Robinson EoS, as it was already mentioned by Ashour

et al. [8]. For this reason, this simple mixing rule will

not be considered for further calculations with respect to

temperature.

Both equations, SL and PR, require taking into account, at

least two binary interaction parameters. However, the global

behavior of the two EoS with respect to the “kij, lij” or “k
(0)
ij ,

k
(1)
ij ” mixing rules is somewhat different:

• In the case of the cubic equation and dissymmetric systems,

the consideration of a quadratic mixing rule for represent-

ing the covolume b is more important than the choice of a

complex mixing rule for the interaction parameter a. This

remark is illustrated in Table 5, where the “kij, lij” mixing

rule provides better global results.

• On the contrary, the Sanchez–Lacombe equation appears

to be more influenced by the choice of a more complex

mixing rule for the energy parameter ε* rather than for the

segment volume v∗; indeed, as shown in Table 5, the “k
(0)
ij ,

k
(1)
ij ” mixing rule usually leads to a better correlation of

solubility data. This behavior is significant of the superi-

ority of this equation in representing liquid volumes, even

for dissymmetric systems.

Finally, similar improved results can be obtained with

both SL and PR equations using a three binary interac-

tion parameter mixing rule of the type “k
(0)
ij , k

(1)
ij , lij”. In

many cases, the use of this composition dependent mixing

Table 5

Global relative deviations�y2 (%) obtained at 308.15, 318.15 and 343.15 K with the Sanchez–Lacombe (SL) and the Peng–Robinson (PR) EoS using temperature

independent parameters

Mixing rules Data at 308.15 K Data at 318.15 K Data at 343.15 K

SL PR SL PR SL PR

“kij” 27.79 17.86 35.68 23.83 34.29 32.22

“kij, lij” 10.94 8.56 10.69 8.66 19.18 19.32

“k
(0)
ij , k

(1)
ij ” 8.09 10.68 9.63 11.17 17.84 23.85

“k
(0)
ij , k

(1)
ij , lij” 6.91 7.06 8.85 8.44 14.38 11.93
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Fig. 3. (a) Carbon dioxide–naphthalene system: correlation of solubility data at 308.15 K. (a) Sanchez–Lacombe EoS and the following parameters: (1)

k12 = 0.2120, l12 = − 0.2455, (2) k
(0)
12 = 2.1248, k

(1)
12 = 2.2787 and (3) k

(0)
12 = 1.4979, k

(1)
12 = 1.6129, l12 = − 0.0886. (b) Peng–Robinson EoS and the following

parameters: (1) k12 = 0.0396, l12 = − 0.1135, (2) k
(0)
12 = 0.4975, k

(1)
12 = 0.4270 and (3) k

(0)
12 = 0.4850, k

(1)
12 = 0.4152, l12 = − 0.0030.

rule allows to obtain more reliable results by means of the

Sanchez–Lacombe equation.

Even if composition dependent mixing rules appear to

be globally the best solution for the correlation of solu-

bility data of solids in SCF, especially in the case of the

Sanchez–Lacombe equation, their practical use should be

restricted to specific cases. Indeed, composition dependent

mixing rules are well adapted to the correlation or predic-

tion of data covering a large domain of molar fractions, as is

shown in Fig. 3 for the system carbon dioxide–naphthalene.

However, in many cases, the range of molar fractions is so

narrow, that it is quite illusory to correlate solubility data

by means of a complex model; doing that will only lead to

unmeaningful k
(0)
ij and k

(1)
ij parameters, as is shown in Fig. 4.

As a consequence, in the next section, the comparison of

EoS for the correlation of global data sets will be restricted

to the “kij, lij” mixing rule.

4.2. Correlation of global data sets

Results obtained by correlating the global data sets pre-

sented in Table 2 are described in Table 6 and in Figs. 5 and 6.

For the selected “kij, lij” mixing rule the correlation of ex-

perimental data was performed assuming: first, independent

binary interaction parameters, as is usually done in literature,

then temperature dependent functions. In this work, different

“kij(T), lij”, “kij, lij(T)” and “kij(T), lij(T)” mixing rules were

considered. The reference temperature T0 in Eq. (11) was

318.15 K, it means the middle temperature range for most

systems (Table 2). In order to check the influence of the pa-

rameter temperature dependence, results obtained for the pre-

diction of data sets at the extreme temperatures, 308.15 and

343.15 K selected in Table 5, are also recalled in Table 6.

Whatever the EoS considered, reliable correlations of sol-

ubility data at different temperatures cannot be obtained

Fig. 4. (a) Carbon dioxide–phenanthrene system: correlation of solubility data at 308.15 K. (a) Sanchez–Lacombe EoS and the following parameters: (1)

k12 = 0.2542, l12 = − 0.2671, (2) k
(0)
12 = 25.1721, k

(1)
12 = 25.3514 and (3) k

(0)
12 = 26.5314, k

(1)
12 = 26.7182, l12 = 0.0156. (b) Peng–Robinson EoS and the following

parameters: (1) k12 = 0.1697, l12 = − 0.0701, (2) k
(0)
12 = −1.4596, k

(1)
12 = −1.6048 and (3) k

(0)
12 = 47.2160, k

(1)
12 = 46.6878, l12 = 1.3422.
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Table 6

Correlation of global data sets using different mixing rules with the Sanchez–Lacombe (SL) and the Peng–Robinson (PR) EoS: relative deviations �y2 (%)

obtained for the correlation of the global data sets and the prediction of data at 308.15 and 343.15 K

Mixing rules N Global data sets Prediction at 308.15 K Prediction at 343.15 K

SL PR SL PR SL PR

Temperature independent

“kij, lij” 2 22.09 15.34 19.77 14.79 44.92 35.30

Temperature dependent

“kij(T), lij” 3 11.92 11.31 11.04 9.28 22.13 21.55

“kij, lij(T)” 3 12.36 11.47 11.97 9.14 22.94 22.89

“kij(T), lij(T)” 4 12.39 11.00 11.10 8.97 22.19 21.68

Reference deviations obtained by correlating

isothermal data (Table 5)

10.94 8.56 19.18 19.32

N is the number of parameters.

considering temperature independent binary parameters.

This conclusion is in agreement with the results obtained

by Ashour et al. [8] who observed mean deviations merely

around 20% for different mixing rules associated with cubic

EoS. From this point of view, the Sanchez–Lacombe EoS ap-

pears to be more sensible to the influence of temperature; in-

deed, the prediction of data at 308.15 and 343.15 K obtained

with these independent parameters is considerably deterio-

rated: respectively, 19.77% and 44.92%, instead of 10.94%

and 19.18% obtained by correlating isothermal data.

Thanks to the temperature dependence considered in Eq.

(11) for interaction parameters, the correlation of global sol-

ubility data is highly improved; which allows predicting at

308.15 and 343.15 K solubilities quite similar to those ob-

tained by the isothermal correlation. Results given in Table 6

show that the use of three parameters with the “kij(T), lij” or

“kij, lij(T)” mixing rules is sufficient for providing a satisfac-

Fig. 5. Solubility of benzoic acid(2) in carbon dioxide. Correlation us-

ing “kij(T), lij” mixing rule with: – Sanchez–Lacombe EoS (Table 7), ···

Peng–Robinson EoS (k12
′ = − 0.0722, k12

′′ = 0.3570, l12 = − 0.2096).

tory correlation and prediction of solubility data in a wide

range of temperatures. The consideration of four parameters

with the “kij(T), lij(T)” mixing rule does not improve signifi-

cantly the results.

In Table 7, the deviations on solubility data obtained with

the Sanchez–Lacombe EoS using the “kij(T), lij” mixing rule

are reported for all systems considered. The values of the

corresponding binary interaction parameters are also given.

4.3. Prediction of LCEP and UCEP temperatures

Binary interaction parameters determined previously us-

ing the “kij(T), lij” mixing rule (Table 7) were considered

for the prediction of the LCEP and UCEP of naphthalene

in carbon dioxide, ethane and xenon. Results obtained with

Fig. 6. Solubility of naphthalene(2) in xenon. Correlation using “kij(T), lij”

mixing rule with: – Sanchez–Lacombe EoS (Table 7), ··· Peng–Robinson

EoS (k12
′ = 0.0087, k12

′′ = 0.1192, l12 = − 0.0292).
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Table 7

Relative deviations �y2 (%) obtained with the Sanchez–Lacombe EoS and the “kij(T), lij” mixing rule, together with the binary interaction parameters

Binary system N �y2 (%) k′
12 k′′

12 l12

CO2–biphenyl 31 10.51 0.1840 0.1580 0.0067

CO2–naphthalene 175 9.43 0.1985 0.2509 −0.2162

CO2–2,3-m-naphthalene 20 10.88 0.2259 0.0907 −0.2729

CO2–2,6-m-naphthalene 23 27.47 0.2285 0.1858 −0.3110

CO2–fluorene 23 12.63 0.2279 0.1722 −0.4510

CO2–phenanthrene 129 11.50 0.2434 0.0959 −0.2301

CO2–anthracene 118 11.39 0.2471 0.2755 −0.1589

CO2–pyrene 119 10.43 0.2615 0.1518 −0.2040

CO2–n-octacosane 45 10.05 0.2711 0.0465 −0.3562

CO2–benzoic acid 43 8.65 0.1191 0.2753 −0.4264

C2H6–biphenyl 10 14.26 0.0740 0.1496 −0.1069

C2H6–naphthalene 53 19.30 0.0678 0.2893 −0.2188

C2H6–anthracene 14 10.69 0.1197 0.2430 −0.1998

C2H6–n-octacosane 6 32.36 0.1249 0.0101 −0.4677

C2H6–benzoic acid 15 13.32 −0.1455 0.1563 0.1817

C2H4–fluorene 24 24.66 0.0759 0.1801 −0.3545

C2H4–phenanthrene 6 1.96 0.2020 −0.1635 −0.0330

C2H4–pyrene 15 14.21 0.1457 0.1632 −0.3614

C2H4–benzoic acid 15 3.83 0.0340 0.2542 −0.4361

Xe–naphthalene 21 9.36 0.0283 −0.0214 −0.0372

N is the number of experimental data for each binary system.

the Sanchez–Lacombe and the Peng–Robinson EoS are com-

pared with literature values in Table 8.

Both equations provide quite similar results for the tem-

peratures and pressures of both LCEP and UCEP. Concerning

the agreement with experimental values:

The prediction of critical temperatures is rather satisfac-

tory, with a general tendency of predicting slightly lower

TLCEP and higher TUCEP. For a practical point of view, both

equations extend the domain of temperatures where the two

solid and SCF phases are in equilibrium in the whole range

of molar fractions and pressures.

For critical pressures, the prediction of PLCEP seems to

be consistent, which is not the case of the PUCEP which is

greatly underestimated.

The case of the system xenon–naphthalene is especially

interesting, since the UCEP was previously correlated by Mc

Table 8

Comparison between experimental and calculated LCEP and UCEP by

means of the Sanchez–Lacombe (SL) and the Peng–Robinson (PR) EoS

Systems Experimental SL PR

CO2–naphthalene

TLCEP (K) 307.65 [57] 304.20 306.0

PLCEP (bar) – 72.0 76.0

TUCEP (K) 333.25 [1] 347.0 341.0

PUCEP (bar) 256.0 [1] 52.0 51.0

C2H6–naphthalene

TLCEP (K) 309.95 [49] 305.0 305.0

PLCEP (bar) 52.2 [49] 49.0 49.0

TUCEP (K) 329.65 [49] 338.0 327.0

PUCEP (bar) 124.1 [49] 83.0 87.0

Xe–naphthalene

TUCEP (K) 319.50 [13] 320.0 321.0

PUCEP (bar) 136.8 [13] 128.0 120.

Hugh et al. [13] with the Sanchez–Lacombe equation. In

that work, temperature independent interaction parameters

kij and lij were tuned on the UCEP of this system, so that

a poor prediction of the solubility was observed. Indeed, as

was discussed in the previous section and is shown in Table 6,

temperature independent parameters cannot provide a good

prediction of solubility data over a wide range of tempera-

tures. On the contrary, results presented in Table 8 show that

a satisfactory prediction of both UCEP and solubility data

can be achieved with the same SL equation, but using tem-

perature dependent parameters determined from solubility

data.

5. Conclusion

The purpose of this work was to check the Sanchez–

Lacombe equation for the correlation of the solubility of

solids in supercritical fluids, using a proper estimation of

EoS parameters and a consistent expression of fugacity co-

efficients [17]. The Peng–Robinson equation was considered

as a reference equation for this study.

Several mixing rules were considered, among which clas-

sical “kij, lij” and composition dependent “k
(0)
ij , k

(1)
ij , lij” ones.

It was shown that, in many cases, the range of solubility data

is too narrow to allow estimating meaningful k
(0)
ij and k

(1)
ij val-

ues. The correlation of data in a large range of temperatures by

means of classical mixing rules requires taking into account

a temperature dependence of binary interaction parameters.

It was observed that, with the proposed temperature function,

only three parameters associated with the “kij(T), lij” or “kij,

lij(T)” mixing rules allow to predict solubility data with an ac-

curacy comparable to that of isothermal correlation. Results

obtained in the same conditions with the Peng–Robinson EoS
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are of the same accuracy, under the condition that a temper-

ature dependence of EoS parameters should be considered.

The lower and upper boundaries of the solid–liquid–vapor

regions (LCEP and UCEP) were also calculated, using the

temperature dependent EoS parameters preliminary deter-

mined from the correlation of solubility data. Both the

Sanchez–Lacombe and the Peng–Robinson EoS provide the

order of magnitude of these temperatures.

List of symbols

a attractive parameter in cubic equation of state

b covolume

Fobj objective function

kij binary interaction parameter for the parameters a or

ε*

lij binary interaction parameter for the covolume b or

characteristic volume v∗

P pressure

r segment number in Sanchez–Lacombe equation of

state

R ideal gas constant

T temperature

T0 reference temperature

v molar volume

v∗ segment volume in Sanchez–Lacombe equation of

state

y2 solubility of the solid component in the supercritical

phase

z compressibility factor

Greek letters

ε* interaction energy in Sanchez–Lacombe equation of

state

ϕ fugacity coefficient

φ segment fraction

ρ density

σ resulting error

σe experimental error

Subscript

W weighted function

Superscript

cal calculated

exp experimental

s solid state

sat saturation

sub sublimation
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Appendix A

Solubility data y2 were correlated with respect to pres-

sure P, using the polynomial form especially adapted to the

variance analysis [19,20]:

y2 =

m
∑

j=1

AjYj,

Yj = 2XYj−1 −
4(j − 2)2

4(j − 2)2 − 1
Yj−2 (j > 2) (A.1)

where Yj is a function of the reduced centered variable X

defined between the minimum and maximum pressure values

Pmin and Pmax:

X =
2P − (Pmax + Pmin)

Pmax − Pmin

, Y1 =
1

2
, Y2 = X (A.2)

For a given value of the polynomial degree m (Eq. (A.1)), the

resulting error σ(y2i) on each experimental solubility data

y
exp

2i is expressed by the error propagation law of Gauss:

σ2(y2i) = σ2
e (y2i) +

(

∂y2

∂P

)2

i

σ2
e (Pi) (A.3)

where σe(y2i) and σe(Pi) are respectively the experimental

errors on the measured solubility and pressure. According to

Eq. (A.1), the partial derivative is

∂y2

∂P
=

m
∑

j=1

Aj

{

2

[

X

(

∂Yj−1

∂P

)

+ Yj−1

(

∂X

∂P

)]

−
4(j − 2)2

4(j − 2)2 − 1

(

∂Yj−2

∂P

)

}

(A.4)

with
(

∂X

∂P

)

=
2

Pmax − Pmin

,
∂Y1

∂P
= 0,

∂Y2

∂P
=
∂X

∂P
(A.5)

For a satisfactory estimation of the absolute or relative ex-

perimental errors on solubility and pressure, the weighted

objective function F
obj
W calculated from N experimental data:

F
obj
W =

N
∑

i=1

[

�y2i

σ(y2i)

]2

, �y2i = y
exp

2i − ycal
2i (A.6)

should be around N–m, according to the properties of the

Chi-square distribution. Starting from estimations given by

the authors, a corrective factor can be introduced in order to

fulfill this condition.
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