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Articulated Object Tracking By Rendering Consistent Appearance Parts

Zachary Pezzementi Sandrine Voros Gregory D. Hager

Abstract— We describe a general methodology for tracking
3-dimensional objects in monocular and stereo video that makes
use of GPU-accelerated filtering and rendering in combination
with machine learning techniques. The method operates on
targets consisting of kinematic chains with known geometry.
The tracked target is divided into one or more areas of consis-
tent appearance. The appearance of each area is represented
by a classifier trained to assign a class-conditional probability
to image feature vectors. A search is then performed on the
configuration space of the target to find the maximum likelihood
configuration. In the search, candidate hypotheses are evaluated
by rendering a 3D model of the target object and measuring
its consistency with the class probability map. The method is
demonstrated for tool tracking on videos from two surgical
domains, as well as in a human hand-tracking task.

I. I NTRODUCTION

There are many applications in which the fundamental
problem is to track an articulated object with changing
appearance in a changing background. Examples range from
tracking rigid objects in motion [15] to tracking robot arms
or hands [30], [6] to tracking one or more humans in images
[10]. In almost all cases, it is reasonable to assume that
a reasonably accurate kinematic model is available for the
target in question. However, what is not known, a priori, is
the appearance of the target and, more importantly, what dis-
tinguishes the target most effectively from the background.

The problem of simultaneously learning and tracking a
model has seen a great deal of activity in recent years. Early
work developed per-pixel generative models for the fore-
ground only [25] (resp. background only [33]). Background
(resp. foreground) objects were then detected as “outliers”
to the process. More recent work such as [37] develops
both foreground and background appearance models using
spatially augmented GMMS. In work specific to tracking,
[1] and [12] develop and maintain an ensemble of weak
classifiers over time by re-weighting, adding or rejecting
classifiers. Lu [24] maintains a “bags of image patches” ap-
pearance model using a temporal-adaptive importance resam-
pling procedure. In general, in these approaches a classifier
is trained over a set of images using selected features (for
instance color histograms in [38] or a combination of local
orientation histogram and pixel colors in [1]), to identifyand
discriminate foreground from background.

In the work cited above, the tracked target has no a priori
geometric structure, and tracking amounts to maintaining
some notion of location or rough target outline over time.
Often, there is a need for information beyond location. Early
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work in human tracking made use of local features such as
edges [15], [10] to optimize over body pose, building upon
several systems for tracking rigid or low-DOF articulated 3D
objects which rely upon visual contours [9], [29], [22], [28].
Although this may work for models with well-defined edges
before uncluttered backgrounds, these contours can not be
reliably detected in many real-world settings. For instance,
the surgical setting from which most of our examples are
drawn is rife with features which are detected as spurious
edges by all standard edge detectors, as seen in Figure 1,
and which would confuse any solely edge-based approach.
Dealing with so many outliers would likely be very expen-
sive. These same challenging visual effects, specularities and
inconsistent lighting, occlusion, and small depth of field,
pose problems for other local features as well. We opt,
instead, to take a more “image-based” approach, making use
of all visible parts of the target object, rather than only those
which are most distinctive.

Also in the human tracking field, other local features such
as optical flow [21], template-matching [3] or object texture
[2] have been employed. Other work has explored interest
point correspondences [13], [35]. The 3D pose recovery is
then either formulated as an inverse kinematics problem or
a constrained optimization problem, the latter formulation
typically being more robust over time [10]. Recent work on
human tracking [31] uses conditional Bayesian mixtures of
kernel-induced experts to build “bottom-up” discriminative
models of pose probabilities from features taken from the
silhouette of the target. In [27], the authors detect a model
of parts consisting of parallel edges, then learn appearance
models from those detections to use for tracking within the
sequence. However, in most of this work, the focus is on
detection, and tracking is treated as a “sequential detection
problem” rather than an optimization over the configuration
space of the target.

Thus, despite this volume of work, it is unfortunately
still the case that there are few general-purpose tools for
robust and efficient tracking of kinematic structures with
fully or approximately known geometry and unknown ap-
pearance. Our work aims to create such a tool by com-
bining statistical learning methods to create a generative
model of appearance similar to [6], [24], [32], [38] with
a structured, kinematically-based optimization to best align
the geometric model with the data as [11] or [2]. Since
the geometry of the model is known, one can view this
problem as one of projecting the model into one or more
images, then associating each projected part with a model of
approximately uniform appearance, using image information.
As we will show, our algorithms rely on relatively simple



image filtering, 3D projection, and appearance evaluation
algorithms. As a result, most calculations can be performed
by commodity GPU hardware, making the achievement of
real-time performance relatively straightforward.

II. T RACKING FROM RENDEREDMAPS

Our tracking method consists of two components: 1) an
appearance modeling step that computes a probability of
class membership for each appearance class and for each
pixel, and 2) an optimization step or filtering step that
computes the configuration of the object from this probability
map. Here, we present the underpinnings of the latter and
defer our discussion of appearance classification to Section
III-A.

As a starting point, we note that any serial chain mech-
anism consisting of rigid bodies can be represented by a
minimal set of variables that in turn define the object’s
configuration space [23]. In what follows, letx denote some
parameterization of the configuration of an object. We denote
an image byI and, pixel-related feature vectors in the image
by v ∈ I. Let C denote a parameterization of an appearance
model on image feature vectors and letθf = {C1, C2, . . . Cm}
represent the set of appearance models for a “foreground”
object in question. We denote the background appearance
class byB and defineθ = θf ∪ {B}. We assume that,
for each appearance class in question, we can “render” the
area of the target into the image to create a mask which in
turn identifies a set of these feature vectors. We writeC(x)
(resp.B(x)) to denote the set of pixel vectors in the image
corresponding to the mask generated for a given class and
an object configuration. These form a strict partition on all
feature vectors in an image. Finally, we distinguish between
estimated quantities and random variables by writing them
with a “hat” over them, i.e.̂x vs. x.

There are a variety of estimation-theoretic paradigms for
posing and solving the problem of configuration estimation.
Two of immediate interest are 1) maximum likelihood es-
timation and 2) time-series filters that rely on importance
sampling. Both methods rely on the ability to evaluate
the likelihood function at a particular object configuration.
Assuming independence of feature vectors given a classifi-
cation, the likelihood function can be written as

P (I | x, θ) =
∏

C∈{θ}

∏

v∈C(x)

P (v | C) (1)

DefineL(v, C) = − log P (v | C). Taking the negative log of
(1), we have

− log P (I | x, θ) =
∑

C∈θ

∑

v∈C(x)

L(v | C) (2)

=
∑

C∈θf

∑

v∈C(x)

L(v | C) +
∑

v∈I

L(v | B)

−
∑

C∈θf

∑

v∈C(x)

L(v | B) (3)

=c +
∑

C∈θf

∑

v∈C(x)

(L(v | C) − L(v | B)) (4)

wherec is a constant factor that varies from image to image,
but is independent ofx within a given image.

As a consequence, we can now write (1) in an equivalent
form as

P (I | x, θ) = κ
∏

C∈θf

∏

v∈C(x)

P (v | C)

P (v | B)
(5)

It is interesting to note that, for a single foreground class,
the resulting expression takes the form of a likelihood ratio.

One way of performing tracking is to simply compute the
maximum likelihood pose at each step, i.e. to solve

x̂ = arg max
x

P (I | x, θ) (6)

= arg min
x

∑

C∈θf

∑

v∈C(x)

L(v | C) − L(v | B) (7)

In general, this optimization can be quite complex, as the
search space can be high-dimensional and the objective
function is not guaranteed to be convex. Our current methods
for solving it are described in Section III. However, for
special cases, the solution is immediate. For example, when
computing image location (i.e. object translation when mo-
tion lies approximately in a plane) with a single foreground
class we can consider the mask as a kernel. Then, (7) can
be solved by finding the location of the global maximum
when convolving the target mask over the difference between
foreground and background classification log probabilities.
Local optimization can be easily accomplished using the
mean shift algorithm [4]. Indeed, exactly this approach is
applied in [24].

Finally, we note that, given a method for sampling the
likelihood function, methods for developing a particle filter
for tracking configuration are well-established [8].

III. I MPLEMENTATION

The previous section provides a very general framework
for the design of articulated tracking design from learned
appearance models. We now turn to the specific choices
made in our current implementation. We first describe our
appearance modeling Section III-A, then discuss rendering
and optimization details in Section III-B.

A. Appearance Learning

Our appearance model computes class-conditional prob-
abilities from color and texture features extracted from the
image, as described in the applications in Section IV. We
currently assume at least one labeled image of the target
is available. Using the labeled image, we apply linear dis-
criminant analysis (LDA) to compute a linear dimensional
reduction using the most discriminating features. Then, one
of many possible statistical learning techniques is used to
train a model capable of producing class probability esti-
mates. In the example applications that follow in Section
IV, both histograms and Gaussian mixture models are used,
though the field of machine learning provides a wealth of
other possibilities.

The initial model training is currently done by hand by
aligning or hand-segmenting a model to one or more images



Fig. 1. Typical edge detection results on an image from the laparoscopic
surgery domain. The input is the second image from Figure 2. On the left
are two parameter settings for the Sobel filter and on the righttwo settings
for the Canny detector. In all cases, the tool shaft is not well-detected, and
many edges are detected in the background in the vicinity of the tool tip.

Fig. 2. Hand-segmented images from the da Vinci laparoscopic surgery
domain used to train appearance models. In the first row, a single foreground
class is used and is labelled green. The second row shows 3 foreground
classes: green is tool shaft, cyan is wrist, and blue is finger.

of the data set, as shown in Figure 2. As we discuss in
Section V, more automated training is possible, but we have
not fully developed this aspect of the method yet.

In the results presented in this paper, we have found
it sufficient to train models on one or two images in the
sequence without further adaptation. Preliminary tests did
not show a large variation in the performance of different
classifiers on this task.

B. Rendering and Optimization Details

In our implementation, the image mask is evaluated
by standard graphical rendering techniques given a 3-
dimensional model of the object: the object models were
created in Pro/ENGINEER from measurements of the objects
and exported as Wavefront triangular meshes. Articulated
objects were modeled by part and then configured at render-
time. Rendering was performed using OpenGL to take advan-

Operation Time/Op (ms) Num. Ops. Total (ms)
11x11 filter 3.8 4 15.2
3x3 filter 0.16 4 0.64
Probability 1 1 1
Render 0.1 max max
Image Mask 0.1 max max
Image Sum 0.3 max max

TABLE I

THE APPROXIMATE TIME REQUIRED TO PERFORM WHOLE-IMAGE

(640-X-480) OPERATIONS ON OUR TEST SYSTEMGPU (GEFORCE

8600GTS). PROBABILITY REFERS TO COMPUTING A CLASS

PROBABILITY MAP AND CONSISTS OF ANLDA PROJECTION AND TABLE

LOOKUPS. RENDER REFERS TO GENERATING AN IMAGE OF THE OBJECT

MODEL. IMAGE MASK IS AN ELEMENT-WISE MULTIPLICATION OF A

RENDERED IMAGE WITH A PROBABILITY MAP, AND IMAGE SUM IS

SUMMATION OF ALL ELEMENTS IN AN IMAGE . NUM . OPS. GIVES THE

NUMBER OF TIMES EACH OPERATION MUST BE PERFORMED ONA FRAME

OF VIDEO, WITH ” MAX ” MEANING AS MANY AS POSSIBLE IN THE TIME

AVAILABLE . TOTAL GIVES THE OVERALL AMOUNT OF TIME SPENT ON

THAT OPERATION EACH FRAME.

tage of hardware-acceleration. For stereo video sequences,
this step required a known camera calibration to establish
the relationship between the 3D model and its projection
on the image plane. Camera(s) calibration(s) were obtained
using Matlab/OpenCV Calibration Toolbox [34].

The results in this paper are all generated using maximum
likelihood estimation. In order to optimize (1), we electedto
use the Nelder-Mead downhill simplex method [26] since
it requires the computation of only function values, not
derivatives, and is robust to noisy minimization functions.
Since we are projecting the entire tool into the image, local
optimization from the previous target configuration typically
converges reliably, provided there is sufficient overlap from
the previous frame. Given the relatively slow motion, and
the relatively high dimensionality of the problem, we found
that spatial importance sampling did not provide a noticeable
improvement over MLE.

In addition to the use of hardware-based rendering, we
have performed preliminary tests of the time required for
each step of the algorithm using a GPU implementation of
GLSL shaders [17]. Our current results are shown in Table I.
The time required for applying whole-image filters of two
sizes is given, as well as the number of such operations
required for feature extraction. The timing of the generation
of the probability map is also estimated, as well as the two
parts of the image dot product that make up the evaluation
of the objective function. The rows of Table II show the
number of computations of the objective function expected to
be possible at each frame-rate, based on those timings, with
real-time performance expected in the final configuration,
that of a high-end gaming system.

The hardware of the testing machine consisted of a dual-
core 3-GHz Intel CPU, 2GB of RAM and an nVIDIA
GeForce 8600GTS for graphics processing. Input images
were 640-x-480 resolution. Runtime on each sequence was



Device 30 fps 15 fps 10 fps 5 fps 2 fps
8600GTS 33 100 166 366 966
8800GTX 233 380 584 1291 3515
2x8800GTX 500 913 1384 2891 7515

TABLE II

NUMBER OF COMPUTATIONS OF THE OBJECTIVE FUNCTION EXPECTED

TO BE POSSIBLE AT EACH FRAME-RATE. EACH DEVICE IS AN NVIDIA

GEFORCE MODEL. 8600GTSIS THE TEST MACHINE, AND THE OTHER

TWO ARE EXTRAPOLATED VALUES BASED ON HARDWARE DIFFERENCES.

around 800ms for feature extraction and classification and 4
to 5 seconds for minimization in each frame. A realistic GPU
implementation could make use of a higher-end graphics
card such as a GeForce 8800GTX which has four times as
many stream processors as the test system’s card as well
as additional video memory. The last two rows of Table II
assume speed-up factors of 4 and 8 from substituting one
or two of these cards respectively. Other optimizations, such
as down-sampling of the input images or only classifying
pixels in the neighborhood of the target, as well as hand-
optimization of the operations presented above or implemen-
tation in CUDA [5], could yield significant further speed-
ups. Real-time performance could therefore be achieved for
relatively high-dimensional models using widely-available
hardware.

In summary, the parameters that a user must set consist
of the following: For appearance modeling, the number of
appearance classes to use to represent the model must be
chosen, as well as the number of components to use in
the mixture model and the size of the feature extraction
filters (which should be related to the size of input images).
For optimization, assuming the use of downhill simplex,
one must set the initial simplex and choose the termination
conditions, i.e. convergeance criteria for absolute erroror its
derivative, or maximum iterations.

IV. RESULTS

We have applied the tracking method to a variety of
monocular and stereo tracking problems. These include
monocular tool tracking in microscopic sequences, tracking
two articulated tools in stereoscopic video of robotic surgery,
and monocular hand tracking. We also provide results from
a simulated video data set. Each of the complete video
sequences is available in the supplementary materials, as well
as via web on the CIRL web-site.

On the simulated sequence, the ground truth configuration
is known, and accuracy is measured by the magnitude
of difference in the configuration estimate from the true
configuration, ||x̂−x||

||x|| . Since the true configuration is not
available for the real sequences, accuracy is instead estimated
by the pixel overlap of the rendered tool model and a hand
segmentation of the sample images, shown in Table III. Here,
we use the information retrieval metrics recall, precisionand
the probability of error, PE [20], defined in terms of true
positives,TP , true negatives,TN , false positives,FP , and

Sequence Precision Recall PE Config
Retinal 0.708 0.850 0.007 -
Simulated 0.924 0.966 0.016 0.010
Lap-S 0.733 0.926 0.044 -
Lap-M 0.895 0.750 0.017 -
Hand 0.942 0.882 0.014 -

TABLE III

THE FIRST3 COLUMNS SHOW AVERAGE IMAGE OVERLAP ACCURACY ON

SAMPLED IMAGES FROM EACH VIDEO SEQUENCE. F INDICATES THE

F-MEASURE (F = 2(P ×R)/(P + R)). CONFIG GIVES THE AVERAGE

ERROR IN THE CONFIGURATION SPACE, NORMALIZED BY THE AVERAGE

MAGNITUDE OF THE TRUE CONFIGURATION VECTOR, AND IS ONLY

AVAILABLE FOR THE SIMULATED SEQUENCE. EACH MEASURE IS

RANGED [0, 1]. LAP-S AND LAP-M ARE THE LAPAROSCOPIC SURGERY

SEQUENCES WITH A SINGLE OR MULTIPLE FOREGROUND CLASSES

RESPECTIVELY. IN THE MULTI -CLASS CASE, ALL PARTS OF THE

RENDERED TOOL ARE CONSIDERED“ POSITIVE” INSTANCES.

false negatives,FN , as

Precision=
TP

TP + FP
(8)

Recall=
TP

TP + FN
(9)

PE = (TP + FN) FN + (TN + FP )FP (10)

where we consider pixels labelled as the target object to
be positive examples (and background negative), and the
hand segmentation to be the ground truth. The F-measure is
intended to give a sense of “overall” accuracy by taking into
account both precision and recall, since either one alone can
be trivially driven to1 by assigning everything to background
or to foreground respectively.

A. Retinal surgery

We first present results of the algorithm performing rigid
tool tracking on video from a retinal eye surgery test-
bed. In this case, stereo microscope images of a pair of
forceps against an eye phantom background are captured.
The phantom is the interior of a half-sphere, painted to
resemble the retinal surface.

The main challenge of this domain comes from the optics
of the microscope. Due to the extreme magnification, the
depth-of-field is very small, so it is impossible to keep the
entire scene in focus. As a result, most of the tool shaft
is blurred, making edge-based tracking challenging if not
impossible. Additionally, this effect makes it difficult toget
a good stereo calibration of the system. For this reason,
tracking in this domain was performed on monocular video.

We perform tracking in this sequence using a 2-D mask
taken from a hand-segmentation of a single frame of the
video. The pose space consists of 2-D rotation and translation
of this mask. Although the tool is not actually rigid, since the
fingers of the forceps are articulated, we model it as such, and
it remains mostly rigid within this video sequence. Sample
images are shown in Figure 3.



In this case, the probabilities in Equation 1 are obtained
from histogram matching. During training, a histogramhC is
built for each class,C, in the LDA space in the usual fashion,
and normalized to sum to 1. Then, during classification, the
class probability of a pixel is taken as

P (v | C) = hC (u(πv)) (11)

whereu(v) is the histogram binning function andπ is the
linear dimensional reduction given by LDA. The features
input to the LDA computation were RGB and HSV color
of the pixel, average intensity within a small window, and
5 Laplacian of Gaussian filters of different bandwidths to
add texture information. Finally, the minimum and maximum
values over the vector comprising these features were added
as two more features.

Given the simplicity of the problem, we were able to
implement the tracking algorithm in Matlab, using an op-
timization which iteratively searched sucessive 2D rotations
and translations of the mask. This allowed us to compare the
tracking results using a single model and with those obtained
when performing model updating on each frame. The result
were nearly identical, suggesting the algorithm is reasonably
robust to moderate changes in appearance.

B. Laparoscopic surgery

Here, we track two needle driver tools of Intuitive’s da
Vinci robotic system [16]. The tools consist of a long shaft,
followed by a wrist joint, which is connected to two grippers
that can move independently. We also allowed the base of
the shaft to rotate and translate freely giving a total of 9
degrees of freedom per tool. We simultaneously track two
of these tools to test performance on tracking articulated
objects. Thus, the final configuration space consists of 18
degrees of freedom.

Challenges of this domain include extensive specular
reflections, a cluttered and changing background, and tools
which change appearance as they rotate or become covered
with body fluids.

Here we chose to use Gaussin mixture models (GMMs)
to represent the appearance of the tool along the lines of
[19]. Both LDA and GMM computations are performed by
LNKnet [18]. Once trained, the class-conditional probabil-
ities needed for Equation 1 are evaluated as usual [36], as
a function of the means,µi, covariances,Σi, and weighting
coefficients,αi, of the Cn mixture components of classC,
with i ∈ {1, 2, ...Cn}, and with π once again representing
the LDA transformation:

P (v | C) =

Cn∑

i=1

αiP (πv | µi,Σi) (12)

where

P (πv | µi,Σi) =
1√

2π|Σi|
1

2

e−
1

2
(πv−µi)

T Σ−1

i
(πv−µi) (13)

The particular features used are the average color value
of a 3-by-3 block of pixels centered at the current location,
represented in both RGB and a modified version of HSV,

ConeHSV, which is defined with respect to the standard
components of HSV (H, S, andV ) as

ConeHSV1 = V (14)

ConeHSV2 = Scos(H) (15)

ConeHSV3 = Ssin(H) (16)

The effect is to reshape the standard HSV space to the conical
representation sometimes used for color pickers, in which
Euclidean distances are more valid. To these six features,
four Haralick texture features [14] are added (contrast, cor-
relation, energy, and homogeneity), which are based on gray-
level co-occurrence matrices built from a7-x-7 neighborhood
about the current location. The final feature vector is of total
length 10 with each entry ranged 0 to 1. One could choose to
use a set of features tailored to the specific domain in which
tracking is being performed. For simplicity and generality,
we use this same set of features in each tracking domain, as
it provides two complementary color descriptors as well as
a rich but compact set of texture features, although Gabor
filters would probably be a more suitable texture feature
choice for a GPU implementation.

1) Simulated Data:We first tested the algorithm on a
straightforward simulated problem. A simulated data set was
generated by rendering the da Vinci tool models undergoing
some translation and articulation against a black background.
This sequence effectively bypasses the class probability
estimation step, giving the case of an ideal segmentation
and perfect object model. The ground truth configuration
of the object is also available in each frame. Error was
evaluated by two metrics, average Euclidean distance in the
configuration space of joint angles and translations, and the
image overlap metric used for the real sequences. Sample
images are shown in Figure 4. As can be seen in Table III, the
final configuration error was0.01 which is at the convergence
resolution of the optimization.

2) Real Data: We conducted tracking trials on a stereo
video sequence of a suturing task in porcine surgery. We
tested two cases: 1) a single foreground class and 2) two
foreground classes. Sample images of both are shown in
Figure 5. In the latter case, the needle-driver was initially
modeled as 3 separate classes: shaft, wrist, and fingers, as
illustrated in Figure 2. Wrist and finger pixels were not
reliably distinguished though, so they were merged into a
single end-effector class used in the results shown.

One can see that the multi-class case displays more
reliable tracking of the end-effector. This is not surprising,
as the LDA reduction we currently use would have difficulty
finding a single projection that distinguishes both from the
background. The precision of the method was nearly as good
as the simulated sequence; however the recall is much lower,
mainly due to the tool being not completely detected in the
class probability estimation step.

C. Hand Tracking

We also demonstrate a hand-tracking task on a short mono
video of an arm moving against a static background, in



Fig. 3. Images from the retinal microsurgery domain, demonstrating rigid tool tracking: top left is the first input image of thevideo, then the tracking
results for frames 1 and 17. On the second row are tracking results from frames 33, 49, and 65. For the tracking result images, the blue channel displays
the input image intensity, the red channel shows the probability of tool output by the classifier, and the green channel shows the rendered tool model in
the current belief configuration.

Fig. 4. Images from the simulated da Vinci laparoscopic surgery sequence: Frames 1, 25, 50, 75, and 100 of the left channel of the tracked sequence are
shown. The color-scheme is the same as in Figure 3, though in this case the red and blue channels are identical.

order to show the versatility of the method across different
domains. Our model is quite rudimentary: each finger is
modeled as a rigid cylinder with rounded ends and two
degrees of rotational freedom. The wrist also has two degrees
of rotational freedom. With translation of the base of the
forearm, there are a total of fifteen degrees of freedom in our
model, much less than the estimated 27 of the real hand [7].
The same appearance model was used as in the laparoscopic
surgery application in Section IV-B.

Sample images are shown in Figure 6. In particular we can
see in frames 11 and 21 that the optimization appears to have
chosen a local minimum that could be easily improved by
slightly moving the thumb and forearm. Again, precision is
relatively high, while recall is somewhat lower. In this case,
this seems most likely due to inaccuracy in the 3D model at
the edges causing a more conservative fit to be more optimal.

V. D ISCUSSION

The work we have presented here is a promising first
step toward a general-purpose and efficient methodology
for tracking articulated objects. What is particularly com-
pelling is that, even without sophisticated search algorithms

and time-series filtering, the algorithms are able to track
highly articulated surgical tools in challenging real-world
situations, and operate with an image-domain accuracy that
is acceptable for many applications. Most importantly, the
algorithms were applied with minimal changes in three
different domains with very different articulated models.

There are several immediate extensions that are clearly
needed to improve the accuracy and overall performance of
the method. As noted in Section III-B, then entire evaluation
of the likelihood function can be implemented on the GPU,
providing several orders of magnitude reduction in execution
time. This in turn will make it possible to examine a large
family of sampling-based search algorithms, particularly
stochastic gradient methods and particle filters, with very
large numbers of samples.

The generation and use of the class conditional probability
maps also has many potential improvements. Making use of
boundary information on tools, and unique image features
(potentially registered to the underlying CAD model) are
likely to improve both accuracy and robustness.

Although an approach relying entirely on edge features
is not likely to fare well in the laparoscopic surgery do-



Fig. 5. Images from the da Vinci laparoscopic surgery domain, demonstrating articulated tool tracking: The top row shows input frames 25, 75, 125, and
175 from the left channel of video. The middle and bottom rows show the corresponding tracking output for a single foreground class and two foreground
classes respectively. The color-scheme for the middle row is the same as in previous figures: the blue channel displays the input image intensity, the red
channel shows the probability of tool, and the green channelshows the the tracked tool. In the bottom row, the red channeldoes not show foreground
probability, but instead a value corresponding to the most probable class: zero for background, half intensity for tool shaft, and full intensity for tool end
effector.

Fig. 6. Hand tracking results: top left is the first input imageof the video, then the tracking results for frames 1 and 11. On the second row are tracking
results from frames 21, 31, and 41. The color scheme is the same asabove.

main, our method would likely benefit from the addition of
contour information to the objective function. It would be

relatively simple to render a wireframe of the object and add
an additional conditional probability term to the objective



function, measuring distance between the projected model
contours and detected image contours, similar to that used
in [9]. A robust estimator of some sort would be necessary,
though, to avoid the function being dominated by spurious
edge detections when they can not be detected reliably, or to
de-emphasize the contribution of the edge term before gross
alignment has been achieved.

Finally, the need for a small number of hand-segmented
images is still a limitation of the current methods. However,
we have performed preliminary experiments, not described
here, using Expectation-Maximization methods to learn ap-
pearance models without hand training. The results are
quite positive, but are difficult to generalize in our current
implementation. Although our current model deals well with
many of the domain challenges, effects like extreme changes
in lighting or the covering of the target with blood or other
fluids would require a self-updating model for tracking over
long sequences in practical applications. More generally,
non-parametric foreground models and related methods for
model updating such as those described in [24] are clearly
needed in order to move to objects with changing appearance.
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