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The planar Near-field Acoustical Holography (NAH) is a non-contact technique that can be 

used to estimate the vibration pattern of a planar body from the sound pressure it produces on 

a planar microphone array. The conventional NAH relies on the spatial Discrete Fourier 

Transform (DFT), requiring the microphone array to be larger than the source to reduce the 

spatial windowing effects due to the finite measurement aperture. This constraint can be 

overcome by “patch” NAH procedures, such as the Statistically Optimal NAH (SONAH). 

However, the patch algorithms are less efficient and differ significantly from the convention-

al NAH algorithm. As an alternative, this work proposes an improved Fourier-based NAH 

technique, which replaces the DFT by the Regressive Discrete Fourier Series (RDFS). Unlike 

the former, the latter lets the period of the Fourier series be larger than the measurement aper-

ture, and the number of wavenumber components be smaller than the number of micro-

phones. Then, the Fourier coefficients are obtained in the least-squares sense. Thus, by set-

ting the period and the number of spectrum lines, a microphone array significantly smaller 

than the source can be used, which is shown in this paper through numerical simulations. Fi-

nally, the computation time and the algorithm structure of the DFT and RDFS-based NAH 

are similar; the only difference being the way the space-wavenumber transformation is done. 

1. Introduction 

Near-field Acoustical Holography (NAH) is a powerful technique to reconstruct 3-D sound 

fields from 2-D acoustical data, especially in inverse source reconstruction. Maynard et al
1
 intro-

duced the NAH in the 1980s, and the holographic procedure they proposed, based on the Discrete 

Fourier Transform (DFT), is still widely used and will be referred here as “conventional” NAH, or 

DFT-based NAH. Because an efficient algorithm is available to compute the DFT, the Fast Fourier 

Transform (FFT), the conventional NAH is a very fast procedure for sound field reconstruction. 

The conventional NAH can be used in planar, cylindrical and spherical coordinates.
2
 In planar 

NAH, a planar microphone array is used to sample the sound field, and the reconstruction procedure 

is based on the direct and inverse 2-D DFT, as well as on a wave propagation model. In order to 

provide accurate results, three issues must be considered: spatial aliasing, ill-posedness of the in-

verse reconstruction problem, and finite measurement aperture. The first issue can be overcome by 
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using a large enough number of microphones. For the second, a regularization technique must be 

used to prevent unstable solutions.
3
 The third issue can be dealt with by making the microphone 

array larger than the sound source extension, otherwise spatial windowing effects will degrade the 

holographic results.
2
 This work focuses on the finite measurement aperture issue. 

As far as large sources are concerned, a microphone array covering all the source area is not 

practical. If a smaller array is used in conventional NAH, the DFT will lead to wrap-around errors 

due to the spatial windowing that will degrade the holography results. The search for smaller arrays 

has led to the “patch” NAH procedures, such as the Statistically Optimal NAH (SONAH)
4
, which is 

not based on the Fourier transform. However, the patch NAH algorithms usually require more com-

putation time and differ significantly from the well established DFT-based NAH algorithm. 

As an alternative to SONAH, this work proposes an improved Fourier-based NAH technique 

to reduce the spatial windowing effects in planar NAH. In order to address this issue, the Regressive 

Discrete Fourier Series (RDFS) proposed by Arruda
5
 is used instead of the DFT. It is shown 

through numerical simulations of 1-D and 2-D extended sources that a microphone array signifi-

cantly smaller than the source size can be used with the improved method. Finally, the computation 

time and the algorithm structure of the DFT and RDFS-based NAH are similar; the only difference 

being the way the space-wavenumber transformation is done. 

2. The regressive discrete Fourier series 

Consider a continuous deterministic signal in the space and wavenumber domains. It is known 

that sampling in one domain leads to a periodized version of the signal in the other domain. Thus, 

for Fourier analysis purposes, finite length signals to be processed in a digital computer can be con-

sidered as periodic signals. Besides, most of the periodic signals can be satisfactorily represented by 

its Fourier series, with the corresponding coefficients being determined from integration over one 

full period of the signal. However, if this period is given, it is possible to estimate the Fourier coef-

ficients from data known in a portion of the signal period. In this case, a number of samples in the 

space domain larger than the number of wavenumber lines can be taken, so that a least-squares fit 

leads to an approximation of the desired coefficients. This is the basic idea of the RDFS. 

The RDFS differs from the DFT by the fact that the latter makes the period equal to the data 

block length, whereas the former allows these values to be different. In addition, unlike the RDFS, 

the DFT requires equally spaced data and uses the same number of samples in the space and wave-

number domains. In the following, an overview of the one- and two-dimensional RDFS for equally 

spaced data is presented. For non-equally spaced data, the reader is referred to Arruda
6
. 

2.1 One-dimensional RDFS 

The direct and inverse Fourier transforms of a continuous function f (x) are given by
2
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where 1j , x is the position, and kx is the wavenumber. Now, consider N and M equally spaced 

samples of f (x) and F(kx), respectively, so that fn  f (nx) and Fm  F(mkx), where 

N/2  n < N/2 and M/2  m < M/2 are integers. Then, these expressions can be approximated by 

 





12/

2/

/2
N

Nn

Lxmnj

nm efxF 
,             






12/

2/

/21 M

Mm

Lxmnj

mn eF
L

f 
, (2) 

where L is the period of the Fourier series (notice that kx = 2/L). 

Let f and F be column vectors containing the values fn and Fm. The approximation for the in-

verse Fourier transform can then be written in matrix notation as 
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 WFf  , (3) 

where W is an N x M matrix whose entries are 

 
Lxmnj

nm e
L

W /21  
. (4) 

If N > M, Eq. (3) becomes an overdetermined linear system, and thus the least-squares method 

leads to the following optimal approximation for the Fourier coefficients: 

 fWWWF HH 1opt )(  , (5) 

where the superscript H indicates the complex conjugate transpose. Finally, the corresponding ap-

proximation for the inverse Fourier transform is 

 optopt FWf  . (6) 

This least-squares solution is the RDFS, which can be used to reduce the spatial windowing 

effects by letting the period be larger than the data length, i.e., L > Nx. Usually, the choice of L 

and M is based on the prior knowledge about the signal, although an optimization procedure could 

be used to obtain L for a given M.
6
 These two values play a major role in the conditioning of the 

problem. As a general guideline, L must be made smaller as M increases in order to avoid ill-

conditioned matrices. In the limit, M = N and L = Nx; in addition, if a change of the indices m and 

n is done, inspection of Eq. (2) reveals that the RDFS becomes the DFT. 

2.2 Two-dimensional RDFS 

This section extends the developments of Section 2.1 to 2-D signals defined in the xy plane. 

Therefore, in the following, the same approach is adopted to derive the equations for the 2-D RDFS.  

The direct and inverse 2-D Fourier transforms of a continuous function f (x,y) are
2
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where kx and ky are the wavenumbers in the x and y directions. Now, let ),( ynxnff yxnn yx
  be 

samples of f (x, y) uniformly distributed over a rectangular grid, where Nx/2  nx < Nx/2 and 

Ny/2  ny < Ny/2 are integers. Similarly, ),( yyxxmm kmkmFF
yx

 are samples of F(kx, ky) with 

Mx/2  mx < Mx/2 and My/2  my < My/2. Then, the inverse transform can be approximated by 
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where Lx and Ly are the periods of the Fourier series in the x and y directions (notice that kx = 2/Lx 

and ky = 2/Ly). 

Let f and F be Nx x Ny and Mx x My matrices, containing the values 
yxnnf  and 

yxmmF , respec-

tively. Equation (8) can then be written in matrix notation as 

 (y)(x) WFWf  , (9) 

where W
(x)

 and W
(y) 

are Nx x Mx and My x Ny matrices. By letting  = x, y, these matrices are 
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If Nx > Mx and Ny > My, the least-squares method leads to the following optimal approxima-

tion for the Fourier coefficients: 

     11opt )()()()(


 H(y)(y)H(y)H(x)(x)H(x) WWWfWWWF . (11) 

Finally, the corresponding approximation for the inverse two-dimensional Fourier transform is 

 (y)(x)
WFWf

optopt  . (12) 

This least-squares solution is the two-dimensional version of the RDFS developed in Sec-

tion 2.1. Hence, the discussion presented at the end of that section remains valid. 

3. The RDFS-based NAH 

Planar NAH is a useful tool to investigate the sound radiation from planar sources (or nearly 

planar), such as vibrating plates. Figure 1 illustrates a typical geometric configuration for planar 

NAH. The sources are placed on an infinite plane called “source plane”, defined by z = zs. As a mat-

ter of fact, it is not required that the sources be located at this plane, but they must be confined to z 

 zs, as well as all the scattering objects. Therefore, the conditions for a half-space problem are ful-

filled. Then, by using a wave propagation model, the 3-D sound field in the half-space z  zs can be 

estimated from 2-D acoustic data (usually sound pressure), which are obtained on an infinite plane 

parallel to the source plane. This plane, defined by z = zh, is called “measurement plane”, and the 

resulting data are called “hologram”. In addition, the measurement plane must be very close to the 

source plane if we are interested in obtaining a detailed reconstruction of the acoustic field on z = zs. 

 

Figure 1. Measurement plane (z = zh) and source plane (z = zs) in planar NAH. 

Due to the great computational speed, Fourier analysis and synthesis has been applied in pla-

nar NAH since its beginnings. Basically, the steps involved in Fouried-based NAH are: 

1. Measurement of the sound pressure field on a given plane; 

2. Transformation of the measured field to the wavenumber domain; 

3. Computation of the acoustic field on the reconstruction plane in the wavenumber domain; 

4. Transformation of the computed acoustic field to the space domain. 

Step 1 is accomplished by using a planar microphone array placed on the measurement plane. 

Since it must be of finite length and only a finite number of transducers can be used, errors due to 

windowing effects and spatial aliasing may arise. Let p(x, y, z) be the pressure field, and 

),,()( zynxnpzp yxnn yx
  be samples uniformly distributed over a rectangular grid, where 

nx and ny are the same integers defined in Section 2.2. Thus, a planar array of NxNy equally spaced 

microphones leads to the values ),,()( hyxhnn zynxnpzp
yx

 , where x and y are the distances 

between them in the x and y directions. These values can be arranged in an Nx x Ny matrix, ph. 

In conventional NAH, the direct and inverse DFT are used in steps 2 and 4, respectively. In 

this work, we propose to use the RDFS described in Section 2 to undertake these tasks. Let 

Measurement plane 

Source plane 
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P(kx, ky, zh) be the 2-D Fourier transform of p(x, y, zh), so that the replacement of f by ph in Eq. (11) 

yields the optimal approximation for the Fourier coefficients of the measured field: 

     11opt )()()()(


 H(y)(y)H(y)

h

H(x)(x)H(x)

h WWWpWWWP . (13) 

In step 3, a propagation model in the wavenumber domain is applied. As far as linear sound 

wave propagation in a half-space is concerned, it can be shown that
2
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where P(kx, ky, zr) is the 2-D Fourier transform of p(x, y, zr), zr is the position of the reconstruction 

plane, 2222

yxz kkkk  , k = 2f/c is the acoustic wavenumber, f is the frequency, and c is the sound 

speed. In addition, the 2-D transform of the normal surface velocity on the reconstruction plane is
2
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where  is the medium density. Substitution of P(kx, ky, zh) by the entries of 
opt

hP  in Eqs. (14) and 

(15) leads to an estimation of the 2-D Fourier transform of the sound pressure, 
opt

rP , and the normal 

velocity, 
opt

rV , on the reconstruction plane. Finally, the reconstructed pressure and velocity fields 

are obtained by letting 
optopt FPr   and 

optopt
FVr   in Eq. (12), respectively.  For the latter, one has 

 
(y)

r

(x)

r WVWv optopt  . (16) 

Note that if the reconstruction plane is located at zr > zh, one has a forward propagation prob-

lem, which poses no difficulties because the sound field tends to smooth as z increases. On the other 

hand, if the reconstruction plane is somewhere between the measurement and source planes 

(zs  zr < zh), we must deal with an inverse propagation problem, which is usually ill-conditioned 

because the hologram is not sensitive to all the sound field details on the reconstruction plane. Thus, 

small measurement errors in the hologram might be greatly amplified by the inverse propagator due 

to the presence of strongly decaying waves, which correspond to high-wavenumber components (

zzyx kjkkkk  222 ). This issue can be addressed by a regularization method, e.g., a low-pass 

filter can be applied between steps 2 and 3 described above.
2
 In this work, the hologram is assumed 

error free, so that the ill-conditioning associated to the inverse propagation is of minor interest. 

4. Simulation results 

This section gives simulation results in order to show the advantages of the RDFS over the 

DFT in NAH. The normal velocity on the source plane is reconstructed from pressure data on the 

measurement plane. Here, the “measured” pressure is calculated by solving the forward propagation 

problem as follows: a simple velocity pattern on the source plane is chosen, so that a closed-form 

expression for V(kx, ky, zs) is obtained. Then, substitution of V(kx, ky, zs) in Eq. (15) leads to 

P(kx, ky, zh). Finally, by letting P(kx, ky, zh) = F(kx, ky) and (x, y) be the microphone positions on the 

right of Eq. (7), the “measured” pressure is obtained. In order to produce an accurate hologram for 

the simulations, Eq. (7) is approximated by a rectangular integration rule covering a large densely 

sampled area in the kxky plane. Besides, it is assumed that c = 343 m/s and  = 1.21 kg/m
3
.  

4.1 One-dimensional extended source 

This first example is an extended source whose vibration pattern is a function of x, but re-

mains constant in the y direction. Thus, it is an infinite radiator in y with ky = 0. The “exact” normal 

velocity on the source plane is chosen to be 
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  sxs Lxxkzxv /)cos(),( 0  , (17) 

where Ls is the source length and () is the rectangular function. In particular, we let kx0 = 7/Ls 

and Ls = 2 m. The “exact” curve in Fig. 2-c shows this signal. 

The 1-D Fourier transform of v(x, zs) is the convolution of the Fourier transforms of cos(kx0 x) 

and (x/Ls), which yields 
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where sinc(u)  sin(u)/u. Substitution of Eq. (18) into (15) with zr = zs leads to a closed-form ex-

pression for P(kx, zh). The “analytical” curves in Fig. 2-d and 2-b show V(kx, zs) and P(kx, zh), re-

spectively. The latter is evaluated for f = 1 kHz and zh  zs = 0.1 m. Then, the hologram is obtained 

as described above, which is shown in Fig. 2-a, where the circles indicate the microphone positions. 

An array of N = 64 microphones with x = 1/N is simulated, and thus the aperture is 

(N1)x = 0.98 m, i.e., nearly a half of the source length. 

Now, the DFT- and RDFS-based NAH procedures are used to estimate v(x, zs) from these 64 

samples of p(x, y, zh), which are arranged in a column vector ph. The DFT of ph leads to the blue 

discrete spectrum shown in Fig. 2-b. For the RDFS, a period equals to the source length is used 

(L = Ls = 2 m), and the number of samples in the wavenumber domain is chosen to be M = 32. 

Then, the vector containing the optimal Fourier coefficients, 
opt

hP , is obtained by letting f = ph in 

Eq. (5), which is the red discrete spectrum shown in Fig. 2-b. 

 

Figure 2. Simulation results for a 1-D extended source. 

The period chosen for the RDFS is nearly twice the measurement aperture. Therefore, the 

wavenumber resolution is also nearly twice the resolution obtained by the DFT method, as Fig. 2-b 

reveals. Besides, the DFT leads to an accurate approximation of the pressure spectrum in the low-

wavenumber range, but it overestimates the Fourier coefficients for high wavenumbers, which cor-

respond to evanescent waves that have a minor contribution to the measured sound field. The verti-

cal green lines in Figs. 2-b and 2-d indicate the acoustic wavenumber k (waves with |kx| > k present 

a strongly decaying rate along the z direction). The inverse propagator, Eq. (15), greatly amplifies 
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these errors, as can be noticed in Fig. 2-d. In order to provide a stable solution, the signal is low-

pass filtered (the vertical red lines indicate the cut-off of the chosen filter). Unlike the DFT, the er-

ror (in dB) in the pressure spectrum produced by the RDFS method tends to be more uniformly dis-

tributed over kx, so that the propagator does not lead to error amplification (see Fig. 2-d). Thus, as 

far as this example is concerned, there is no need for low-pass filtering the signal. 

Finally, Fig. 2-c shows that the RDFS method leads to an almost perfect source reconstruc-

tion, even for a small measurement aperture, whereas the DFT method does not provide good re-

sults and requires low-pass filtering to avoid unstable solutions. 

4.2 Two-dimensional extended source 

The next example is a 2-D planar source whose normal velocity is chosen to be 

 )/()/()cos()cos(),,( 00 sysxyxs LyLxykxkzyxv  , (19) 

where Lsx and Lsy are the source lengths in the x and y directions. In the simulations, we use 

kx0 = 5/Lsx, ky0 = 3/Lsy, Lsx = 4 m and Lsy = 2 m. Similarly to the previous example, the following 

closed-form expression for the 2-D Fourier transform of v(x, y, zs) can be obtained: 
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Figure 3 shows v(x, y, zs) on the left, and V(kx, ky, zs) on the right. 

Figure 3. Two-dimensional planar source in the space (on the left) and wavenumber (on the right) domains. 

Again, substitution of Eq. (20) into (15) leads to an expression for P(kx, ky, zh), which is 

evaluated for f = 1 kHz and zh  zs = 0.1 m. Then, the hologram is obtained in a similar fashion as 

for the 1-D example. This is shown in Fig. 4, where the black dots indicate the measurement points. 

A square grid made up of Nx = Ny = 32 points in the x and y directions is used, with x = 0.8/Nx and 

y = 0.8/Ny. Therefore, the measurement aperture is a square of side (Nx1)x = 0.775 m.  

Now, the DFT- and RDFS-based NAH procedures are used to estimate v(x, y, zs) from these 

3232 = 1024 samples of p(x, y, zh), which are arranged in a square matrix ph. The 2-D FFT of ph 

leads to the discrete spectrum for the DFT method. For the RDFS, periods that match the source 

size are used, i.e., Lx = Lsx = 4 m and Ly = Lsy = 2 m; and the numbers of samples in the kxky plane is 

chosen to be Mx = My = 8. Then, Eq. (13) gives the optimal Fourier coefficients, 
opt

hP . 

Next, in both methods, the inverse propagator is applied. As usual, the DFT-based NAH pro-

cedure requires low-pass filtering to provide a stable solution. Finally, application of the inverse 

two-dimensional DFT and Eq. (16) to the computed velocity spectrum leads to the reconstructed 

field by the DFT and RDFS methods, respectively. Figure 5 shows a comparison between the 

reconstruction results obtained by these methods with the exact velocity pattern. It can be noticed 

that the RDFS leads to a relevant improvement in source reconstruction by Fourier-based NAH. 
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Figure 4. Simulated hologram in a square measurement grid with 3232 points. 

Figure 5. “Exact” and reconstructed velocity fields by the DFT and RDFS methods. 

5. Conclusions 

This work dealt with inverse source reconstruction by planar NAH with small measurement 

apertures. In order to reduce the spatial windowing effects that degrade the holography results in the 

conventional (DFT-based) NAH, a procedure based on the RDFS was used. It was shown through 

numerical examples that, unlike the DFT method, the RDFS leads to an excellent reconstructed ve-

locity field, even for a measurement aperture significantly smaller than the source. 
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