
Aspectual Templates in UML

Gilles Vanwormhoudt1,2, Olivier Caron1, and Bernard Carré1

1LIFL, UMR CNRS 8022, University of Lille, France - 59655
Villeneuve d’Ascq cedex

2Institut TELECOM
{Gilles.Vanwormhoudt, Olivier.Caron, Bernard.Carre, }@lifl.fr

16 april 2013

Abstract

UML Templates allow to capture models whose some of their con-
stituents are parameters. This construct is general enough to be used in
many ways, such as generic class representation, Design Pattern modeling,
view or aspect-oriented modeling (AOM). In this paper, we concentrate on
this last usage and the specific characteristics of so called “Aspectual Tem-
plates”. Such templates can be applied to enrich existing models as far
as they conform to a required model. Template parameters are exploited
here to specify some required model, so that they must be constrained
to form a full model structure. After recall of UML templates and their
metamodel, we present the specificities of their aspectual interpretation,
existing works and identify the issues. Then we show how standard UML
templates can be enhanced to capture aspectual ones. For this, a special-
ization of the UML template metamodel is detailed and OCL constraints
are formulated due to this specific interpretation and its proper mecha-
nisms. As a result, this metamodel specialization is fully compatible with
the existing one so that aspectual templates are full UML standard ones.
Finally, we present an algorithm which constructs the result of the appli-
cation of an Aspectual Template to a model. This algorithm also works
for aspectual template to template application. Presented results were im-
plemented and made available in the EMF (Eclipse Modeling Framework)
technology.

1 Introduction

After being considered only as documentation for a long time, software mod-
els are nowadays used as full artifacts. The MDA methodology (Model Driven
Architecture [1]) identified the need to separate platform-independent modeling
choices from platform-dependent ones in order to facilitate subsequent software
generation, with respect to some “vertical” transformation chains. After this
proof of concept, the MDE (Model Driven Engineering [16]) generalized the ap-
proach. It upgraded the status of models, from ingredients dedicated to MDA
steps, to full first-class software objects, so reusable and composable. The chal-
lenge is to facilitate the capitalization of technology independent design efforts

1

and logic, then conversely, systematic “design by model reuse” methodology, in
a productive and safe manner.

Once it was clear that software models could be isolated and composed, pow-
erful technics arising from the programming world were considered to increase
their capitalization and composition capabilities. We concentrate here on two
main trends which contribute to this challenge. First, model parameterization
[12, 28, 2] where a model exposes some of its ingredients as parameters. Fixing
the parameters allow to obtain an instance model (component), which can then
be composed. Second, Aspect-Oriented Modeling (AOM) [9, 24, 15, 29, 30],
which issues from the application at the model level of the separation of con-
cerns approach and aspect-oriented concepts [17].

The UML standard [27] contributes a lot to these trends through the “tem-
plate” construct which allows to represent model schemes where some of their
ingredients are parameters. A “binding” relationship allows to specify how a
model is derived from a template through the substitution of these parameters.
This binding can be partial. In that case, not all parameters are valued and
remain parameters in the resulting model, so that it is itself a template. Indeed
it is possible to bind models to constitutive templates but also templates to
templates, in order to obtain richer ones. The power of the construct is general
enough to render many needs which range from the modeling of generic classes
(such as C++ templates) [10, 21], the capture of Design Patterns [25], View
[12, 4] or Aspect Oriented Modeling [6, 22, 8, 23, 14].

We concentrate here on this last usage. AOM makes possible to define aspect
models whose ingredients are intended to be injected into other models, as far
as they conform to a required model. Template parameters are exploited here
to specify this required model with the specific constraint that they must form
a full model structure. This leads to so-called “Aspectual Templates”, which
can be applied to enrich existing models.

After recall (Section 2) of UML templates and their metamodel, we present
their specific usage for aspect-oriented modeling (Section 3), existing works and
identify the issues. In Section 4 we show how UML templates can be enhanced
to represent aspectual ones. The obtained AOM engineering approach and its
advantages are sketched. After that (Section 5), the specialization of the UML
template metamodel dedicated to aspectual templates is detailed. The required
constraints, due to their specific structure and mechanisms are formulated in
OCL. In (Section 6) an algorithm is formulated for the construction of a consis-
tent model resulting from the application of an aspectual template to a model.
This algorithm also treats application of aspectual templates to (template) mod-
els. Finally, we present in Section 7 resulting technology that we offer in the
EMF (Eclipse Modeling Framework) environment, before concluding.

2 Background on UML Templates

2.1 The UML Template Construct

In the UML Standard, a template is a model element which is parameterized by
other model elements. Examples are classes or packages, so called respectively
class templates or package templates. To specify its parameters, a template
owns a signature. A template signature is a list of formal parameters where

2

each parameter refers to an element of the template model. Template elements
have also a specific graphical notation which consists in superimposing a small
dashed rectangle containing the signature on the top right-hand corner of the
corresponding symbol.

Templates allow to obtain other model elements thanks to parameter substi-
tution, declared in a dedicated “binding relationship”. A binding relationship
links a “bound model” to a template (from which it was obtained) through the
specification of a set of template parameter substitutions that associate actual
elements (of the bound model) to formal parameters (of the template). Con-
straints of the standard only impose that the type of each actual model element
must be a subtype of the corresponding formal parameter one.

The binding relationship allows to set the existing link between a model and
the template used for its construction. It is specified in UML as follows: “The
presence of a TemplateBinding relationship implies the same semantics as if the
contents of the template owning the target template signature were copied into
the bound element, substituting any elements exposed as formal template pa-
rameters by the corresponding elements specified as actual parameters in this
binding.”([27], page 626). This implies that the content of the bound model
is based upon the content of the template with any element exposed as a for-
mal parameter substituted by the actual element specified in the binding. The
correctness of this binding logic was formulated by OCL constraints in [3].

Figure 1 shows a class template on the left. This class, Stack, is graphically
represented as a standard UML class with a dashed rectangle containing its
signature. Here, the signature is composed of two formal parameters: Element
of type Class and Max of type int. The right side of this figure shows the class
PlatesStack which is bound to the Stack template through a “bind” relationship.
This class is the result of the substitution of the template formal parameters
Element and Max respectively to actual values Plate and 15.

put(e: Element)
get() : Element

capacity : int := Max
contents : Elements[*]

Stack

put(e: Plate)
get(): Plate

capacity : int : = 15
contents : Plate[*]

PlatesStack
Element : Class
Max : int

<<bind>>
<Element -> Plate,

Max -> 15>

Figure 1: Class Template

Figure 2 shows an example of a package template, used here to model the
well-known Observer Pattern (top of the figure). As indicated in the signature,
the model is paramerized by the Subject and Observer classes, the observed
value attribute (of Subject) and the T type.

The rest of the figure illustrates the use of this pattern for the design of a
Home Heating System, represented by the HomeHeatingSystem package. This
package has it own content which is composed of RoomSensor, HeatFlowRegu-
lator, Furnace classes and their relationships. The Observer Pattern Template
was used here to install the dependency between RoomSensor and HeatFlowReg-
ulator. This design choice is rendered by the binding relationship between
HomeHeatingSystem and the ObserverPattern template which depicts the re-
quired parameter substitutions: RoomSensor to Subject, HeatFlowRegulator to
Observer, the value value to currentTemperature and its type T to float. As

3

ObserverPattern

register(Observer o)
value: T

Subject

update(T newvalue)

Observer

0..*

observers

Subject, Observer : Class,
value : Property
T:Datatype

HomeHeatingSystem

register(HeatFlowRegulator o)
heat()

currentTemperature: float
RoomSensor

setTempature(float val)
update(float val)

measuredTemperature: float
desiredTemperature: float

HeatFlowRegulator

0..*

heatOn()
heatOff()

Furnace

<<bind>>
<Subject -> RoomSensor,
 Observer -> HeatFlowRegulator
 value -> currentTemperature,
T -> float>

0..*

observers

Figure 2: Package Template

a result of this binding, HomeHeatingSystem includes the model structure of
the Observer Pattern, after substitutions were made. New ingredients were in-
jected such as the observers association and the corresponding (correctly typed)
register/update protocol. Note that actual classes of the bound model (Home-
HeatingSystem) may have contents in addition to those specified by the formal
parameters, due to their proper modeling context.

Finally, a bound element may have multiple bindings, possibly to the same
template. In that case it is stipulated that the bound model gets the content of
each binding considered in isolation. UML also introduces the notion of partial
binding when not all formal template parameters are bound. In that case, the
UML specification only states that the unbound formal template parameters
are formal template parameters of the bound element ([27], page 634), which is
itself a template.

2.2 The UML Template Metamodel

The Templates package in the UML metamodel [28] introduces four main classes
for their structural representation: TemplateSignature, TemplateableElement,
TemplateParameter and ParameterableElement (see Figure 3). TemplateBind-
ing and TemplateParameterSubstitution metaclasses are both used to bind tem-
plates (see Figure 4).

4

Figure 3: Template Metamodel

UML 2 elements that are subclasses of the abstract class TemplateableEle-
ment can be parameterized. Classifiers, in particular classes and associations,
Packages and Operations are templateable elements.

The set of template parameters (TemplateParameter) of a template (Tem-
plateableElement) are included in a signature TemplateSignature. A TemplatePa-
rameter stands a formal template parameter and exposes an element owned by
the template thanks to the parameteredElement role.

Only parameterable elements (ParameterableElement) can be exposed as
formal template parameters of a template or specified as actual arguments in a
template binding. Such parameterable elements are: Classifier, PackageableEle-
ment, Operation or Property.

5

Figure 4: Template Binding Metamodel

The notion of template binding (TemplateBinding) describes the use of a
template for a given system (cf. Figure 4). A template binding is a directed
relationship labeled by the << bind >> stereotype from the bound element
(boundElement) to the template (signature). The template binding owns a set
of template parameter substitutions (TemplateParameterSubstitution). Substi-
tutions associate actual parameterable elements of the bound to formal param-
eters of the template signature.

Figure 5 shows an excerpt of the instantiation of this metamodel for the
example described in Figure 2. It depicts the substitution between the Subject
formal template parameter and the actual RoomSensor parameter of the bound
HomeHeatingSystem.

Finally, the UML specification also introduces basic constraints for checking
the correct definition of templates and their bindings. These constraints check
that :

• All parameters of a signature are elements of the template.

• Formal parameter and corresponding actual arguments of a substitution
have compatible metatypes.

• Each parameter substitution refers to a formal template parameter of the
target template signature.

• A binding contains at most one parameter substitution for each formal
template parameter of the target template signature.

As it will be explained later, these constraints or their intent which are
general will be also valid for aspectual templates.

6

: TemplateSignature ObserverPattern : TemplateableElement

Subject : ParameterableElement

: TemplateParameter

: TemplateParameterSubstitution

RoomSensor : ParameterableElement

: TemplateBinding

HomeHeatingSystem : TemplateableElement

signature

ownedTemplateSignature

template

ownedElement

actual

formal

templateParameter

parameteredElement

ownedElement

parameter

templateBinding

parameterSubtitution

Figure 5: Excerpt of the Object Diagram for the HomeHeatingSystem Package

3 Template-based Aspect-Oriented Modeling

3.1 Existing works

The template construct allows to capitalize models which capture recurrent
structures. Applications of this construct are numerous and range from the
modeling of generic classes to pattern formulation as exemplified previously but
also Aspect-Oriented Modeling (AOM). Basically, AOM raises the idea of sepa-
ration of concerns to the level of software models and applies aspect-orientation
concepts to compose “aspect models” into various base models. Over the last
years, many AOM technics have been proposed for both structural and behav-
ioral models [18, 20, 29, 30]. All these technics provide a notion of aspect model
and a process for weaving aspects with application models.

Few works have exploited the template construct for aspect-oriented model-
ing. In these works, so called “aspectual templates” aim to inject new function-
alities into various base models. The capacity of such templates to expose some
elements as parameters is exploited to specify the model structure required for
making the weaving possible.

The Theme approach [8] proposes means for aspect-orientation in the anal-
ysis phase with Theme/Doc and in the design phase with Theme/UML. In
Theme/UML, aspect models (called Themes) are specified using UML template
packages containing class and sequence diagrams. The template parameters can
be classes, operations or attributes. A relation (named “bind”) is used to ex-
press the composition of a Theme and a base model. This relation binds the
template parameters to concrete modeling elements of a base model, possibly
using wildcard and multiple times.

France et al. [23] describe an aspect-oriented modeling technic in which

7

aspect models are expressed using UML template packages containing class dia-
gram, communication diagram and sequence diagrams. The approach is similar
to Theme/UML but does not directly compose an aspect model (template) with
a base model (called here “primary model”). Instead, a context-specific aspect
model is first created by “binding” the parameters to application-specific val-
ues. It is this context-specific aspect model which is finally composed with the
base model. During the composition, elements of same type and same name
are merged to form a single one into the composed model. The approach also
proposes “composition directives” which are intended to refine the default com-
position rules. They can be used to solve conflicts across aspect and base models
and remove undesirable emergent properties during composition or during anal-
ysis of the composed model. This approach also provides directives to state the
order of composition between aspects and the primary model.

Similar to the Theme/UML approach or the composition technic proposed
by France et al., Klein et al. [14] use UML package templates to express reusable
aspect models using class and sequence diagrams. In this approach, composing
an aspect model with a base model involves binding the template parameters to
base model elements, possibly with the help of pattern-matching technics. The
resulting context-specific aspect model is then composed with the base model. In
this approach, some aspects may depend on the structure or behavior provided
by other aspects. Such a dependency is expressed at the model level by declaring
an instantiation directive with the required aspect within the dependent aspect.
This directive is exploited to correctly instantiate and compose the required
aspect before it can be successfully composed with a base model.

In our previous work, we also contributed to this research by studying the
construction of complex systems from aspectual templates. It appears that
the construction process requires managing complex assemblies of aspectual
templates with various forms of application. For instance, there are cases where
multiple aspectual templates must be applied to a same target model while other
cases require to apply an aspectual template to a model resulting from another
application. Even more, aspectual templates can be compose to each other in
order to produce richer ones. This raises issues about ordering properties of
applications, their independence or the equivalence of application chains. In
[22], we addressed these issues in a consistent and systematic manner. This
leads us to formalize properties which guarantee the correctness of composition
chains and their alternative ordering capacities.

4 Enhancing UML Templates for AOM

4.1 Parameter as a Model

Aspectual templates have parameters that capture required elements from can-
didate models. Considering these parameters in isolation is compatible with the
standard but is underspecified in order to capture the structure of the required
model.

Figure 6 illustrates the problem. This figure shows a package template con-
taining a set of elements for resource management functionalities related to a
stock, some of them being exposed as parameters. As expected, all the param-
eters are elements included in the template content but one can also observe

8

that they do not form a consistent model. Indeed, the ref property is exposed
without its owning class whereas the latter is required to enable its mapping
with a property contained in a base class. Similarly, the in association exposed
as parameter is underspecified because one of its ends (the Resource class) is
not declared as a parameter.

StockManagement

add(r:Resource)
delete(r:Resource)

identifier: String
capacity: int

Stock

transfer(s:Stock)
ref: String

Resourcein

0..*

Stock : Class,
identifier, ref : Property,
in : Association

Figure 6: Inconsistent Set of Parameters

Figure 7 shows the preceding template where parameters were completed
to form a full model required by the aspect. This required model specifies the
structure expected from candidate models (two connected classes with string-
based attributes in the example) to correctly inject the template functionality.
Graphically, this specificity is rendered by replacing the parameters list by the
corresponding (parameter) model1.

StockManagement

add(r:Resource)
delete(r:Resource)

identifier: String
capacity:int

Stock

transfer(s:Stock)
ref: String

Resourcein

0..*

identifier: String

Stock in
0..*

ref: String
Resource

Figure 7: Resource Management Template

Figures 8 and 9 respectively illustrate aspectual templates for the injection
of a functionality for searching resource in a stock and a counting one between
two connected classes, one having a valuation method. They show that elements
of the parameter model can be either properties, operations, associations and
classes. The “resource allocation” aspectual template in Figure 10 is partic-
ularly interesting. It gives an example where classes of the parameter model
are unconnected, the purpose being to install allocation management between
classes representing Client-Product problems.

1Parameter constituents are doted and bolded in the template core in order to highlight
them. Others constitutents correspond to injected elements.

9

Querying

findAll() : Resource[]
name: String

Location
location(): Location
findByKey(key: String): Resource

key: String
Resource

at

0..*

name: String

Location at

0..*
key: String

Resource

Figure 8: Querying Template

Counting

value() : float

Element

total(): float

Counterat

0..*

value() : float

Element at
0..*

Counter

Figure 9: Counting Template

Allocation

nbAssignment() : int
free(begin:Date, end: Date) : bool

code: String
Product

cost() : float

assignDate: Date
dueDate: Date
return : Date

Allocation

0..*

code: String

Product

id: String

Client

nbAssignment(): int
id: String

Clientto

0..*

assign

Figure 10: Resource Allocation Template

At this point, we get aspectual templates that are potentially reusable in
many contexts thanks to parameterization. The next step is the application of
such templates to extend a particular existing model. It is the goal of the next
section to fulfill this need.

4.2 Applying Aspectual Templates

The application of aspectual templates is supported by an operator apply. It is
based on the substitution of parameter model by conforming structure from the
base model.

Let us take the example of a car hiring system. Figure 11 shows the base
model of this system. This base describes the structure of the different domain
classes used by the system (here Car, Agency, and Client). The resulting system
must be able to search a specific car or a specific client and also to manage the

10

different car allocations. To achieve this, we will use the aspectual templates
presented before.

CarHiringSystem

name: String
address: String

Agency

name: String
birthDay: Date
phone: String
address : String

Client

client

0..*

number: String
date: Date
constructor: String
model: String

Car

ac

0..*

Figure 11: The Base System

Figure 12 shows how the StockManagement template is applied to the base
system. Graphically, the apply operator is specified via a UML stereotyped
dependency <<apply>> between the template and the target model. This de-
pendency includes the substitution of formal parameters by elements of target
model (actual arguments). To be valid, actual arguments of an “apply” relation-
ship must form a model that structurally matches the parameter model of the
aspectual template. This means the following: if a parameter of the template
depends on another e1 parameter (according to their modeling constraints), the
same applies to their corresponding bound elements; if two elements are con-
nected by a l1 link in the parameter model, their bound elements in the base
model must be connected by a link bound to l1. This requirement is ensured by
a set of constraints detailed in Section 5.2.2. In the example, parameters of the
aspectual template (resp. Stock, Resource, identifier, ref, in) are substituted by
concrete elements of the base model (resp. Agency, Car, name, number, ac). We
can verify that the structure formed by the parameter model is well-preserved
by these actual arguments (emphasized by italic in the target on the figure).

CarHiringSystem

name: String
address: String

Agency

name: String
birthDay: Date
phone: String
address : String

Client

client

0..*

number: String
date: Date
constructor: String
model: String

Car

ac

0..*

StockManagement

add(r:Resource)
delete(r:Resource)

identifier: String
capacity:int

Stock

transfer(s:Stock)
ref: String

Resource

in

0..*

identifier: String

Stock

in
0..*

ref: String

Resource

<<apply>>
< Stock -> Agency,
Resource -> Car,
identifier -> name,

ref -> number,
in -> ac >

Figure 12: Applying Stock Management to Car Hiring System

A formulation of the resulting system is shown in Figure 13. We can see

11

that aspectual template elements are injected into the base after substitutions
were made. For instance, add and delete operations added to Agency have the
type of their parameters changed from Resource to Car.

CarHiringSystem

add(r:Car)
delete(r:Car)

name: String
address: String
capacity: int

Agency

name: String
birthDay: Date
phone: String
address : String

Client
client

0..*

transfer(s:Agency)

number: int
date: Date
constructor: String
model: String

Car

ac
0..*

Figure 13: Base System with Car Management Functionality

These sketches show how to obtain an extended model from an existing
one by the application of some aspectual template. To design richer aspec-
tual templates from simpler ones and gain more reuse, composition of aspectual
templates should be supported too. This facility is illustrated in Figure 14(a)
where the Querying template applied to the StockManagement template allows
to build a new aspectual template (see Figure 14(b)) providing stock manage-
ment with a querying facility.

12

StockManagement

add(r:Resource)
delete(r:Resource)

identifier: String
capacity:int

Stock

transfer(s:Stock)
ref: String

Resource

in

0..*

identifier: String

Stock

in
0..*

ref: String

Resource

at
0..*

Querying

findAll(): Resource[]
name: String

Location

location(): Location
findByKey(key: String): Resource

key: String
Resource

at

0..*

name: String

Location

key: String

Resource

<<apply>>
< Location -> Stock,

Resource -> Resource,
name -> identifier,

key -> ref,
at -> in >

QueryableStockManagement

add(r:Resource)
delete(r:Resource)
findAll(): Resource[]

identifier: String
capacity:int

Stock

transfer(s:Stock)
location(): Stock
findByKey(key: String): Resource

ref: String
Resource

in

0..*

identifier: String

Stock

in
0..*

ref: String

Resource

at

0..*

(a)

(b)

Figure 14: Template to Template Application

In the context of template to template application, it is possible to bind
parameters of the source model to parameters of the target one. For example
(Figure 14), the parameter Location is substituted by the parameter Stock in the
resulting template. Note that, as a consequence, elements exposed as parameters
in the target can be enriched. In the example, the Stock class has been enriched
with the findAll() method.

The apply operator also supports different construction processes. As men-
tioned above, for the construction of complex systems from a set of aspectual
templates, it should be possible to elaborate alternative application sequences
and guaranty consistency properties of the resulting system. Related ordering
and consistency properties are detailed and formalized in [22]. For example,
Figure 15 shows the design of a possible template assembly for the design of the
car hiring system on top of the model shown in Figure 11. The resulting system
is presented in Figure 16. This example illustrates some needs. A first need
is the ability to apply multiple aspectual templates to the same base. When
such applications are independent, their evaluation order must not influence the
result. It is the case of Search and Allocation applied to the base.

Another requirement is to express application chains. Such chains can be
used to apply aspectual templates resulting from the composition of simpler
ones. This is illustrated by the application of the Querying template to the
StockManagement template, explained previously (Figure 14) which produces
the QueryableStockManagement template. This new model is then used to add

13

stock management and querying functionalities on cars to our system. Note
that an alternative construction chain would be to apply the StockManagement
template to the base first, and then the Querying template to the resulting
model. Both chains would produce the same result.

Another example is the application chain Counting to Allocation to Base.
Alternative evaluation ordering of this chain, first Counting to Allocation then
the resulting template to base or first Allocation to Base then Counting to the
enriched Base, produces exactly the same result.

QueryableStockManagement

StockManagement

add(r:Resource)
delete(r:Resource)

identifier: String
capacity:int

Stock

transfer(s:Stock)
ref: String

Resource

in

0..*

identifier: String

Stock

in
0..*

ref: String

Resource

at
0..*

Querying

findAll(): Resource[]
name: String

Location

location(): Location
findByKey(key: String): Resource

key: String
Resource

at

0..*

name: String

Location

key: String

Resource

<<apply>>
< Location -> Stock,

Resource -> Resource,
name -> identifier,

key -> ref,
at -> in >

at

0..*

identifier: String

Stock

in

0..*

ref: String

Resource

CarHiringSystem

name: String
address: String

Agency

name: String
birthday: Date
phone: String
address : String

Client

client

0..*

number: String
date: Date
constructor: String
model: String

Car

ac

0..*

at

Querying

findAll(): Resource[]
name: String

Location

location(): Location
findByKey(key: String): Resource

key: String
Resource

at

0..*

name: String

Location

key: String

Resource

at

Allocation

nbAssignment() : int
free(begin:Date, end: Date) : bool

code: String
Product

cost() : float

assignDate: Date
dueDate: Date
return : Date

Allocation

0..*

code: String

Product

id: String

Client

nbAssignment(): int
id: String

Client

to
0..*

assign

Counting

value() : float

Element

total(): float

Counter

at
0..*

value() : float

Element

at
0..*

Counter

<<apply>>
< Counter -> Client,

Element -> Allocation,
value -> cost,

at -> to >

<<apply>>
< Client -> Client,

Product -> Car,
code -> number,

id -> name >

<<apply>>
< Location -> Agency,

Resource -> Client,
name -> name,
key -> name,
at -> client>

0..*

<<apply>>
< Stock -> Agency, Resource -> Car

identifier -> name, ref -> number,
in -> ac>

Figure 15: Example of Model Assembly

14

All the practices and properties presented previously allow to build new
systems from prefabricated and validated aspectual templates with flexibility.
This constitutes a good background for the furniture of aspectual template in
UML. In the next section, we present how to obtain such templates in UML by
specializing its metamodel to guarantee the correctness of previous practices.

CarHiringSystem

add(r:Car)
delete(r:Car)
findAll():Client[]
findAll():Car[]

name: String
address: String
capacity: int

Agency

location():Agency
findByKey(key:String):Client
nbAssignment():int
total():float

name: String
birthDay: Date
phone: String
address : String

Client

client

0..*

transfer(s:Agency)
location():Agency
findByKey(key:String):Car
nbAssignment():int
free(begin:Date, end:Date): bool

number: int
date: Date
constructor: String
model: String

Car

ac
0..*

cost() : float

assignDate: Date
dueDate: Date
return : Date

Allocation

0..*

assign

to
0..*

Figure 16: Resulting System from Model Assembly of Figure 15

5 From UML Templates to Aspectual Templates

In the following, we first present a subset of UML suitable for structural mod-
eling (see Section 5.1). Then, we describe the extended metamodel with its
constraints which allows to specify aspectual templates and their application
(see Section 5.2).

5.1 Base Language Metamodel

For sake of simplicity, we will only consider the part of UML for structural
modeling. Figure 17 shows the corresponding simplified metamodel which only
includes classes, associations, properties and operations. A package contains
classes and associations. A class contains a set of features (either operations or
properties). An operation contains parameters and may return a value. The
result and parameters of operations as well as properties are typed. Associations
are restricted to binary ones. All these concepts exist in UML with their own
OCL constraints. For reasons of space, we omit to recall them in the paper.

15

Class

*ownedMember

owner

*

2..2

memberEnd Property

upper
lower

1..1

type

Parameter
1..1

type

*
ownedMember

{ordered}

Package

*ownedOperation
{subsets ownedMember}

*ownedAttribute

{subsets ownedMember}

Operation

Feature

*

*

Association

Figure 17: Base Language Metamodel for Structural Modeling

5.2 Metamodel Extension

Package
{from UML}

TemplateableElement
{from UML}

AspectualTemplate

{from AspectualTemplateMetaModel}

AspectualTemplateSignature

{from AspectualTemplateMetamodel}

TemplateSignature
{from UML}

0..1

template ownedTemplateSignature

{redefines ownedTemplateSignature}

ownedTemplateSignature

Figure 18: Aspectual Templates

Aspectual templates are defined by the subclass AspectualTemplate of Package
so that they are TemplateableElement. As any TemplateableElement it owns
a TemplateSignature more precisely typed by the AspectualTemplateSignature
subclass. This subclass allows to constraint the parameters to form a valid
model due to aspectual template specificities.

16

UML

AspectualTemplateMetaModel

TemplateApplyingParameterSubstitution

DirectedRelationship
Package

*

templateApplying

TemplateParameter ParameterableElement

1

target

TemplateSignature

TemplateApplying

template

1

signature

1 formal actual1

AspectualTemplate

ownedTemplateSignature

parameterSubstitution

AspectualTemplateSignature

ownedTemplateSignature

{redefines ownedTemplateSignature}

Figure 19: Aspectual Template Metamodel

Figure 19 shows the overall structure of the UML specialization. The apply
operator is specified by the TemplateApplying metaclass. A TemplateApplying is
a directed relationship between the signature of an aspectual template and some
target package (target role). Thanks to subtyping, this target package can be an
aspectual template, which enables application between aspectual templates. A
TemplateApplying owns a set of parameter substitutions (TemplateApplyingPa-
rameterSubstitution). A parameter substitution associates a formal parameter of
the template signature to an actual parameterable element of the target package.
Standard constraints existing in the metamodel for checking template signature
are also guaranteed for aspectual templates by inheritance. Concerning other
constraints related to parameter substitution and their conformance, we assume
that they also exist for TemplateAspectualSubstitution and TemplateApplying to
achieve similar standard checking.

Next, we state constraints which complete this structural metamodel. Sub-
section 5.2.1 presents constraints which check that template parameters of an
aspectual template form a valid model while Subsection 5.2.2 is dedicated to
the correctness of an aspectual template application. It focuses on the actual
parameters side and their conformance with the model specified by formal pa-
rameters.

5.2.1 Checking template parameters

The specificity of an aspectual template compared to a general one comes from
subtyping the TemplateSignature metaclass. The signature of an UML template
considers the set of parameters as individual parameters while the aspectual
template signature imposes that this set forms a full well-formed model.

That is the aim of the constraints formulated in this section. Figure 20

17

summarizes typical errors which will be explained along the presentation of the
constraints.

C1,a
<<aspectual template>>

(c) constraint 2 : false

C2
C1 a

C2,op
<<aspectual template>>

(a) constraint 1 : false
 constraint 4 : true

C1

op() : C2

C2

C1,x
<<aspectual template>>

(b) constraint 1 : true
 constraint 3 : false

C2
C1

x : C2

C1,op
<<aspectual template>>

(d) constraint 1 : true
 constraint 4 : false

C2

C1

op(a:C2):void

x,C2,
C3,op<<aspectual template>>

(e) constraint 1 : false
 constraint 3 : true
 constraint 4 : true

C2

C1

op(a:C2):C3

C3
x : C2

Figure 20: Examples of Invalid Aspectual Templates

Template parameters must respect the structure imposed by the base lan-
guage metamodel (see Figure 17). Let us start with the composite association
between Class and Feature. If a feature is exposed as a parameter, its class must
also be a parameter. So the following constraint (number 1) prevents errors such
as an operation without its owning class (Figures 20(a) and 20(e): op without
C1) or an attribute without its owning class (Figure 20(e): x without C1)2.

[1] Owning classes of parameter features must also be parameters

context AspectualTemplateSignature :

self.ownedParameter->forAll(

param : uml::TemplateParameter |

let pe : uml::ParameterableElement = param.parameteredElement in

pe.oclIsKindOf(uml::Feature) implies

let ownerClass : uml::Class

= pe.oclAsType(uml::Feature).owner.oclAsType(uml::Class) in

ownerClass.isTemplateParameter()

)

Constraint 2 deals with the consistency of associations. If an association
is exposed as a parameter, its ending classes must also be parameters. Figure
20(c) does not respect that constraint because C2 is not a parameter.

[2] Ending classes of a parameter association must also be parameters

context AspectualTemplateSignature :

self.ownedParameter->forAll

(param : uml::TemplateParameter |

param.parameteredElement.oclIsKindOf (uml::Association) implies

2We will use the standard UML query “isTemplateParameter” [27] (Templates Section):
"The query isTemplateParameter() determines if this parameterable element is

exposed as a formal template parameter.

ParameterableElement::isTemplateParameter() : Boolean;

isTemplateParameter = templateParameter->notEmpty()"

18

let asso : uml::Association =

param.parameteredElement.oclAsType(uml::Association) in

asso.memberEnd->forAll(member | member.type.isTemplateParameter())

)

The two following constraints (3-4) check the typing of features (properties
or operations) that are parameters. In case of a property, constraint 3 checks
that its type is also a parameter. Constraint 4 is similar in case of an operation
: it checks that arguments and return value types are also parameters. For
example (Figure 20):

• case (a): the type C2 of operation op is present in the signature, constraint
4 is respected.

• case (b): the type C2 of property x is not present in the template signature,
constraint 3 is not respected

• case (d): the argument type C2 of operation op is not present in the
signature, constraint 4 is not respected

• case (e): the types involved in the operation op are present in the template
signature. The type C2 of property x is present in the template signature.
Both constraints 3 and 4 are respected.

[3] The type of a parameter property must also be a parameter

context AspectualTemplateSignature :

self.ownedParameter->forAll(

param : uml::TemplateParameter |

let pe : uml::ParameterableElement = param.parameteredElement in

pe.oclIsKindOf (uml::Property) implies

pe.oclAsType(uml::Property).type.isTemplateParameter()

)

[4] Types involved in a parameter operation must also be parameters

context AspectualTemplateSignature :

self.ownedParameter->forAll(

param : uml::TemplateParameter |

let pe : uml::ParameterableElement = param.parameteredElement in

pe.oclIsKindOf (uml::Operation) implies

pe.oclAsType(uml::Operation).ownedParameter->forAll

(p : uml::Parameter | p.type.isTemplateParameter())

)

5.2.2 Checking Template Applying

This section presents the set of constraints related to template applying. These
constraints (5-8) check the conformance between the formal parameter model
and the actual one. Figure 21 illustrates error cases which will be explained
below.

19

C1,C2,a
<<aspectual template>>

(b) constraint 6 : false

C1->X1
C2->X2
a->x

<<apply>>

C1 C2a
X1 X3x

X2

C1,a
<<aspectual template>>

(a) constraint 5 : false

X1
C1->X1
a->x

<<apply>>
C1

a

X2

x

C1,C2,a,op
<<aspectual template>>

(c) constraint 7 : false, constraint 8 : false

C1->X1
C2->X2
a->x
op->m

<<apply>>

C2
C1

a:C2
op(v:C1)

X1

x:X3
m(i:X3)

X2

X3

Figure 21: Examples of Conformance Checking for Actual Parameters

The two following constraints allow the checking of model structure. Con-
straint 5 focuses on the preservation of owned/owner relationships (for Feature
parameters). Figure 21(a) illustrates that checking. The formal parameter a is
owned by the formal parameter C1. As a consequence, the actual parameter x
(associated to a) must be owned by the substituted class of C1: X1. As x is
owned by the X2 class, the constraint 5 is violated.

[5] Owning relationships between formal parameters must be preserved in their

corresponding actual values

context TemplateApplying inv :

self.parameterSubstitution->forAll (s1, s2 |

s1.formal.parameteredElement.owner = s2.formal.parameteredElement

implies s1.actual.owner = s2.actual

)

Constraint 6 relates to the preservation of association structure. In Figure
21(b), member ends of the association a are C1 and C2 classes. As a conse-
quence, the member ends of the substituted association of a, that is x, should
be the substituted classes of C1 and C2, that are X1 and X2. This preservation
of the association structure is not respected in this example, the constraint 6 is
violated.

[6] Member ends of a formal parameter association must be substituted by

member ends of its actual value

context TemplateApplying inv :

self.parameterSubstitution->forAll(s1, s2 |

let asso:uml::ParameterableElement = s1.formal.parameteredElement in

let cla:uml::ParameterableElement = s2.formal.parameteredElement in

(asso.oclIsKindOf (uml::Association) and cla.oclIsKindOf (uml::Class)

20

and asso.oclAsType(uml::Association).memberEnd->collect(type)

->includes(cla.oclAsType(uml::Class))

implies

s1.actual.oclAsType(uml::Association).memberEnd->collect(type)

->includes(s2.actual.oclAsType(uml::Class))

)

)

The two following constraints focus on property substitution (constraint 7)
and operation substitution (constraint 8). For a property parameter, its type
must be substituted by the type of the substituted property. Figure 21(c) depicts
an error. The type C2 of the property a is substituted by X2. Thus, the type
of property x which is substituted for a should be X2 and not X3.

[7] The substituted type of a formal parameter property must be

the type of its actual value

context TemplateApplying inv :

self.parameterSubstitution->

select(formal.parameteredElement.oclIsTypeOf(uml::Property))->forAll (tps |

let prop:uml::Property =

tps.formal.parameteredElement.oclAsType(uml::Property) in

let substitutedProp: uml::Property = tps.actual.oclAsType(uml::Property) in

if prop.type.isTemplateParameter() then

self.parameterSubstitution->exists(

formal.parameteredElement=prop.type and actual=substitutedProp.type)

else

prop.type=substitutedProp.type

endif

)

Constraint 8 deals with operations: for each substitution, it is necessary to
check if the signature of the formal parameter is compatible with the signature
of the related actual argument. Violation of this constraint is shown in Figure
21(c): the first argument type of op is C1; as C1 is substituted by X1, the first
argument type of m should be X1 and not X3.

[8] The substituted types of operation parameters must be

substituted by the corresponding types of the actual operation

context TemplateApplying inv :

self.parameterSubstitution->select(formal.parameteredElement.

oclIsTypeOf(uml::Operation))->forAll (tps |

let formalOp : uml::Operation =

tps.formal.parameteredElement.oclAsType(uml::Operation) in

let actualOp : uml::Operation =

tps.actual.oclAsType(uml::Operation) in

formalOp.ownedParameter->size()=actualOp.ownedParameter->size() and

Sequence{1..formalOp.ownedParameter->size()}->forAll (index |

let memberFormalOp : uml::Parameter =

formalOp.ownedParameter->asOrderedSet()

->at(index).oclAsType(uml::Parameter) in

let memberActualOp : uml::Parameter =

actualOp.ownedParameter->asOrderedSet()

21

->at(index).oclAsType(uml::Parameter) in

if memberFormalOp.type.isTemplateParameter() then

self.parameterSubstitution->exists(

formal.parameteredElement=memberFormalOp.type and

actual=memberActualOp.type)

else

memberFormalOp.type=memberActualOp.type

endif

)

)

6 Applying Algorithm

This section presents an algorithm that applies an aspectual template to a target
package or to another aspectual template.

The algorithm takes one input parameter which is a TemplateApplying spec-
ifying the source aspectual template, the target package and a set of substitu-
tions. The effect of the algorithm is to modify the target package with additional
elements of the aspectual template after parameter substitution.

We make the assumption that the TemplateApplying parameter is valid with
respect to the set of rules presented in the previous sections. So, the checking
of TemplateApplying is not included in the algorithm.

For describing the algorithm, we also assume the following:

• The ParameterableElement metaclass owns an isTemplateParameter():
boolean operation which returns true if the object is exposed as a tem-
plate parameter, false otherwise.

• The Package metaclass owns an addParameter(pe:ParameterableElement)
operation which adds pe contained in the package as template parameter.
This operation creates and attaches a new TemplateParameter referencing
the provided element to the TemplateSignature of the package.

• The TemplateApplying metaclass owns an isSubstituted(pe:ParameterableElement)
: boolean operation which returns true if pe is a formal template parameter
bound to an actual element in the target package, false otherwise.

• The TemplateApplying metaclass owns an getActual(pe:ParameterableElement)
: ParameterableElement operation which returns the actual argument cor-
responding to the pe formal parameter.

• Map is a conventional class for mapping keys to values.

• The clone() operation is available on all model elements of the base lan-
guage metamodel. It creates an element of the same metatype and copies
its meta-attributes.

The algorithm is based on three steps which are the following:

Insertion of unbound template classes into the target package: In this
step, iteration is made over the set of classes contained in the aspectual
template. If a class is not a parameter or is an unsubstituted parameter, a

22

clone without features is created and added to the target package. In case
of an unsubstituted template class, a corresponding parameter is added
to the target package signature. Finally, in preparation to the next step,
mapping is made between each template class and its corresponding target
class which is either one specified by the template applying or one created
previously.

Extension of target classes with features from corresponding template classes:
This step consists in extending all the target classes mapped to template
classes with clones of their properties and operations which are not pa-
rameters or are unsubstituted ones. Starting from the mapping set up
during the first step, the algorithm iterates over this mapping to deter-
mine each target class. For each added properties and operations, the
template class(es) referenced by their type(s) is replaced by the corre-
sponding target class.

Insertion of unbound template associations into the target package:
In this last step, the algorithm inserts aspectual template associations
which are not parameters or are unsubstituted parameters into the target
package. New associations have their owned ends adapted to take into
account substituted or cloned template classes.

The algorithm produces a resulting model which is consistent with the stan-
dard bind relationship. As explained in Section 2.1 the binding relationship
allows to set the existing link between a model and some templates used for
its construction. It implies that the contents of the bound model have all the
contents of the template with any element exposed as a formal parameter sub-
stituted by the actual element specified in the binding.

StockManagement CarHiring
<<apply>>
<PARAMS>

CarHiringAfterApply

<<merge>>

<<bind>>
<PARAMS>

Figure 22: Relationships of Resulting Model

Figure 22 illustrates this property for the StockManagement template appli-
cation considered previously. In this figure, CarHiringAfterApply is the model
resulting from this template application to the CarHiring model3. As a result
of the algorithm, the resulting model respects the constraints of a bind relation-
ship to the source template with the same set of substitutions than the apply

3Here, this resulting model is made distinct from the base model for clarity reasons.

23

Algorithm 1: execute(apply : TemplateApplying)

Data: template : AspectualTemplate, base : Package,map : Map
begin

map←− {};
template←− apply.signature.template;
base←− apply.target;
// Step 1: Insertion of unbound template classes

for tcl ∈ template.classes do
if ¬tcl.isTemplateParameter() then

bcl←− tcl.clone();
base.classes←− base.classes + bcl;

else
bcl←− apply.getActual(tcl);

map←− map+ < tcl, bcl >;

// Step 2: Extension of base classes from template classes

for tcl ∈ map.keys() do
bcl←− map.get(tcl);
// Properties

for tprop ∈ tcl.ownedAttribute do
if tprop.isTemplateParameter() then

bprop←− tprop.clone();
bprop.type←− map.get(tprop.type);
bcl.ownedAttribute←− bcl.ownedAttribute + bprop;

// Operations

for top ∈ tcl.ownedOperation do
if ¬top.isTemplateParameter() then

bop←− top.clone();
bop.type←− map.get(bop.type);
bcl.ownedOperation←− bcl.ownedOperation + bop;
for tparam ∈ top.ownedParameter do

bparam←− tparam.clone();
bparam.type←− map.get(tparam.type);
bop.ownedParameter ←− bop.ownedParameter + bparam;

// Step 3: Insertion of template associations

for tassoc ∈ tcl.associations do
if ¬tassoc.isTemplateParameter() then

bassoc←− tassoc.clone();
base.associations←− base.associations + bassoc;
for tend ∈ tassoc.memberdEnd do

bend←− tend.clone();
bend.type←− map.get(tend.type);
bassoc.memberEnd←− bassoc.memberEnd + bend;

24

relationship. It is therefore possible to capture this compliance by setting up
such a bind relationship between this (bound) resulting model and the initial
template. In addition to the bind relationship, the figure also shows the exis-
tence of a standard merge relationship between the resulting model and the base
model. This relationship figures that the apply operation preserves the content
of the base model in the resulting one.

Regarding the bind relationship from resulting model to source template, it
is possible to complete the previous algorithm so that this relationship is set
up automatically. This can be useful to keep trace of template applications
used to obtain intermediate and final models. Another interest of setting this
relationship is to enable automatic removal or replacement of added elements
using an “unweaving” process similar to [19].

7 Integration to Case Tools

Based on the present work, technologies have been implemented and made avail-
able in the Eclipse Modeling Framework environment. This implementation
relies on the following plugins:

EMF plugin: [13] (based on Essential MOF) is a Java modeling framework
that includes a metamodel for describing models. It provides tools and
runtime support to produce a set of Java classes for these models and a
basic editor.

UML plugin: EMF facilities have been used by its designers to represent the
UML metamodel and generate UML plugins4 that support representation
and editing of UML models.

OCL plugin: this is an implementation of the Object Constraint Language
(OCL) from OMG standard for EMF-based models. It provides Java
APIs for parsing and evaluating OCL constraints and queries on Ecore or
UML models.

On top of these plugins, new plugins dedicated to aspectual templates are of-
fered5:

• an extended UML plugin that supports representation of extended UML
models with the new concepts: aspectual template and template applying.

• an aspectual template engine that checks all OCL constraints specified in
this paper and implements the apply algorithm.

• an editor plugin generated by EMF facilities (see an example on the left
side of the capture screen in Figure 23). This editor allows to specify new
UML aspectual templates, import existing aspectual templates and base
models from a repository and specify applications. The edited models and
applications can be validated at any time using the editor.

• a basic UML grapher (see an example on the right side of the capture
screen in Figure 23) showing assembly of aspectual templates graphically.

4see UML project at http://www.eclipse.org
5Available at the URL: http://www.lifl.fr/GOAL/cocoa/pmwiki.php?n=Main.

CocoaModeler

25

http://www.lifl.fr/GOAL/cocoa/pmwiki.php?n=Main.CocoaModeler
http://www.lifl.fr/GOAL/cocoa/pmwiki.php?n=Main.CocoaModeler

Figure 23: Using Aspectual Templates in Eclipse

Thanks to plugin-based facilities promoted by Eclipse, these plugins can be
integrated into compliant case tools.

8 Conclusion

UML Templates allow to define models whose some of their constituents are
parameters. This construct is general and is used in many ways, such as generic
classes representation, Design Pattern modeling, View or Aspect Oriented Mod-
eling (AOM). In this paper, we concentrated on this last usage and the charac-
teristics of so called Aspectual Templates. Rationale of these templates is their
capacity to be applied to other models (being parameterized or not) in order to
enrich them, as far as they conform to some required parameter model.

As a consequence aspectual templates need to specialize the general template
notion in the following way:

• Parameters are used to specify a required model, so that their flat structure
(as a set of typed model elements) in the standard must be constrained
to conform to well-formedness rules.

• The process of their application to some model must deal with specific
constraints, compared to the general template binding mechanism.

• In particular, when template to template application, it is necessary to en-
sure that the resulting aspectual template parameters remain a consistent
model.

26

In order to capture these specificities, we specialized the UML Template
metamodel and state the needed OCL constraints relative to this specific inter-
pretation. As a major result, this specialization allows aspectual template com-
position in a homogeneous and consistent way: construction of richer aspectual
templates from the (recursive) composition of others ones, their capitalization,
and finally their usage within modeling assemblies in order to obtain a system.
Finally, at a much more operational level, we present an algorithm which shows
how to produce a model from the application of an aspectual template to a
target model. This algorithm also works for aspectual template to template
application. All these results were implemented and made available in the EMF
(Eclipse Modeling Framework) technology.

The paper concentrated on the core elements of the general template notion
specified in UML. However, the standard includes other ingredients for tem-
plate definition and their binding. We may cite the notion of default value for
unbound parameters or the capacity to define a new template by extending an
existing one thanks to the concept of RedefinableTemplateSignature. How these
additional ingredients relate with the aspectual interpretation of templates and
may complement this usage is a valuable issue.

For sake of simplicity, this paper only considers basic structural object mod-
els. Though, the presented guidelines may extend to other modeling constructs,
such as cardinalities of associations, meta-attributes of model elements or in-
heritance links. This will lead to investigate a richer conformance relationship
with specific substitution capabilities in templates application. In our previous
work on contextualization of object models [5], we already studied similar issues
and provided solutions specifically for cardinalities and inheritance links. Other
works on the merging of class diagrams like [7, 11] would also be a helpful basis
to study this issue. More generally, the presented guidelines may also extend
to other kind of diagrams. For example, the usage of Aspectual Templates to
sequence diagrams was studied in [14, 26]. In the future, work must be done to
systematize the approach to other UML templateable elements.

Finally, we showed how it is possible to construct systems as well as “off-
the-shelf” rich aspectual templates from the application of multiple ones. This
leads to the notion of “model assembly” whose attended properties have been
already stated in ([22]). Beside aspectual template application, such assem-
blies may also include other reusing relationships such as standard “merge” and
“extends”. Work still remains to be done in order to study how these relation-
ships systematically compose to the help of the consistent specification of model
assemblies.

References

[1] MDA. Home Page. http://www.omg.org/mda.

[2] J. Bigot and Ch. Pérez. Increasing Reuse in Component Models through
Genericity. In Proceedings of the 11th International Conference on Software
Reuse, ICSR ’09, volume 5791 of LNCS, pages 21–30. Springer, 2009.

[3] O. Caron, B. Carré, A. Muller, and G. Vanwormhoudt. An OCL Formu-
lation of UML 2 Template Binding. In Proceedings of 7th International

27

Conference on The Unified Modeling Language. Model Languages and Ap-
plications (UML 2004), volume 3273 of LNCS, pages 27–40. Springer, Oc-
tober 2004.

[4] O. Caron, B. Carré, A. Muller, and G. Vanwormhoudt. A Coding Frame-
work for Functional Adaptation of Coarse-Grained Components in Ex-
tensible EJB Servers. In 47th International Conference Objects, Models,
Components, Patterns (Tools’09), number 33 in LNBIP, pages 215–230.
Springer-Verlag, 2009.

[5] Olivier Caron, Bernard Carré, and Laurent Debrauwer. Contextualization
of OODB Schemas in CROME. In Proceeding of the 11th International
Conference on Database and Expert Systems Applications DEXA 2000,,
volume 1873 of LNCS, pages 135–149. Springer-V, 2000.

[6] T. Clark, A. Evans, and K. Stuart. Aspect-oriented Metamodelling. The
Computer Journal, 46(5):566–577, 2003.

[7] S. Clarke. Extending standard UML with Model Composition Semantics.
In Science of Computer Programming, volume 44, pages 71–100. Elsevier
Science, 2002.

[8] S. Clarke and R. J. Walker. Generic Aspect-Oriented Design with
Theme/UML. In Aspect-oriented software development, pages 425–458.
Addison-Wesley Professional, 2004.

[9] Siobhán Clarke and Robert J. Walker. Composition patterns: An approach
to designing reusable aspects. In Proceedings of the 23rd International Con-
ference on Software Engineering, ICSE 2001,, pages 5–14. IEEE Computer
Society, 2001.

[10] A. Cuccuru, A. Radermacher, S. Gérard, and F. Terrier. Constraining
Type Parameters of UML 2 Templates with Substitutable Classifiers. In
Proceedings of 13th International Conference on Model Driven Engineering
Languages and Systems (MoDELS’09), volume 5795 of LNCS. Springer,
2009.

[11] J. Dingel, Z. Diskin, and A. Zito. Understanding and improving UML
package merge. Software and System Modeling, 7(4):443–467, 2008.

[12] D. D’Souza and A. Wills. Objects, Components and Frameworks With
UML: The Catalysis Approach. Addison-Wesley, 1999.

[13] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose. Eclipse
Modeling Framework, 2nd Edition. Addison Wesley, 2009.

[14] Jorg J. Kienzle, W. Al Abed, F. Fleurey, J-M. Jézéquel, and J. Klein.
Aspect-Oriented Design with Reusable Aspect Models. In S. Katz,
M. Mezini, and J. Kienzle, editors, Transactions on Aspect-Oriented Soft-
ware Development VII - A Common Case Study for Aspect-Oriented Mod-
eling, volume 6210 of LNCS, pages 272–320. Springer, 2010.

[15] J.M. Jézéquel. Model driven design and aspect weaving. Software and
System Modeling, 7(2):209–218, 2008.

28

[16] S. Kent. Model Driven Engineering. In Proceedings of the 3rd International
Conference on Integrated Formal Methods, volume 2335 of LNCS, pages
286–298. Springer, May 2002.

[17] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J-M. Lo-
ingtier, and J. Irwin. Aspect-Oriented Programming. In ECOOP’97: Pro-
ceedings of the 11th European Conference on Object-Oriented Programming,
volume 1241, pages 220–242. Springer, 1997.

[18] J. Klein, L. Hélouët, and J. M. Jézéquel. Semantic-based Weaving of
Scenarios. In Proceedings of the 5th International Conference on Aspect-
Oriented Software Development (AOSD’06), pages 27–38. ACM Press New
York, NY, USA, 2006.

[19] J. Klein, J. Kienzle, B. Morin, and J.M. Jézéquel. Aspect Model Un-
weaving. In Proceedings of 12th International Conference on Model Driven
Engineering Languages and Systems, MODELS’09, volume 5795 of LNCS,
pages 514–530. Springer, 2009.

[20] Ph. Lahire, B. Morin, G. Vanwormhoudt, A. Gaignard, O. Barais, and
J. M. Jézéquel. Introducing Variability into Aspect-Oriented Modeling
Approaches. In Proceedings of 10th International Conference on Model
Driven Engineering Languages and Systems (MoDELS’07), LNCS, pages
498–513. Springer, October 2007.

[21] J. Lara and E. Guerra. From Types to Type Requirements: Genericity
for Model-driven Engineering. Software and System Modeling, pages 1–22,
2011.

[22] A. Muller, O. Caron, B. Carré, and G. Vanwormhoudt. On Some Proper-
ties of Parameterized Model Application. In Proceedings of 1st European
Conference on Model Driven Architecture - Foundations and Applications
(ECMDA-FA’05), volume 3748 of LNCS, pages 130–144. Springer, Novem-
ber 2005.

[23] Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J. M. Bieman,
N. McEachen, E. Song, and G. Georg. Directives for Composing Aspect-
Oriented Design Class Models. In Transaction on Aspect-Oriented Software
Development I, volume 3880, pages 75–105. Springer, 2006.

[24] Greg Straw, Geri Georg, Eunjee Song, Sudipto Ghosh, Robert France,
and JamesM. Bieman. Model composition directives. In UML 2004 - The
Unified Modeling Language. Modelling Languages and Applications, volume
3273 of LNCS, pages 84–97. Springer, 2004.

[25] G. Sunyé, A. Le Guennec, and J-M. Jézéquel. Design Patterns Application
in UML. In E. Bertino, editor, Proceedings of ECOOP 2000, volume 1850
of LNCS, pages 44–62. Springer, 2000.

[26] S. Thiello. Model Templates for Roles Interaction, Master thesis. Technical
report, University of Lille, 2010.

[27] UML 2.4.1 Superstructure Specification, 2011.
http://www.omg.org/spec/UML/2.4.1/.

29

[28] Auxiliary Constructs Templates, chapter 17. UML 2.4.1 Superstructure
Specification, 2011.

[29] J. Whittle, K. Praveen, A. Jayaraman, M. Elkhodary, A. Moreira, and
J. Araújo. MATA: A Unified Approach for Composing UML Aspect Mod-
els Based on Graph Transformation. In Transactions on Aspect-Oriented
Software Development VI, Special Issue on Aspects and Model-Driven En-
gineering, volume 5560 of LNCS, pages 191–237. Springer, 2009.

[30] M. Wimmer, A. Schauerhuber, G. Kappel, W. Retschitzegger,
W. Schwinger, and E. Kapsammer. A Survey on UML-based Aspect-
oriented Design Modeling. In ACM Computing Surveys, volume 43, pages
28:1–28:33. ACM, October 2011.

30

	Introduction
	Background on UML Templates
	The UML Template Construct
	The UML Template Metamodel

	Template-based Aspect-Oriented Modeling
	Existing works

	Enhancing UML Templates for AOM
	Parameter as a Model
	Applying Aspectual Templates

	From UML Templates to Aspectual Templates
	Base Language Metamodel
	Metamodel Extension
	Checking template parameters
	Checking Template Applying

	Applying Algorithm
	Integration to Case Tools
	Conclusion

