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Abstract—Cloud computing promises to provide computing informed decisions for traffic engineering given VDC-sfieci
resources to a large number of service applications in an on- traffic requirements, which eases the burden of InP for netwo
demand manner. Traditionally, cloud providers such as Amazon management

only provide guaranteed allocation for compute and storage H d ite its b fits. desiani flicient ras
resources, and fails to support the bandwidth requirements and owever, despite Its benelits, designing an efiicient resour

performance isolation among these applications. To address this Management scheme for VDCs is a challenging problem. One
limitation, recently a number of proposals advocate providing of the key challenges is théDC embedding problem, which
both guaranteed server and network resources in the form asks to map VDC components (e.g., virtual machines, virtual
of Virtual Data Centers (VDCs). This raises the problem of qitches and links) onto physical nodes and links. From an
optimally allocating both servers resources and data center Inp’ fi th is t doot efficient all i
networks to multiple VDCs in order to optimize total revenue, nkE's perspec |ve_, ) € 906_1 IS 9 adop ‘_3 icien a_oca ion
while minimizing the total energy consumption in the data center. Schemes to maximize their net income (i.e., the difference
However, despite recent studies on this problem, none of the between revenue and operational costs) while satisfyieg th
existing solutions have considered the possibility of using VM resource requirements (CPU, memory, disk and bandwidth) of
migration to dynamically adjust the resource allocation, in order every VDC. This can be divided into several inter-dependent

to meet the fluctuating resource demand of VDCs. ST S .
In this paper, we propose VDC Planner, a migration-aware objectives: (1) maximizing the total revenue obtained fitbim

dynamic virtual data center embedding framework that aims €mbedded VDC requests, (2) minimizing request scheduling
at achieving high revenue while minimizing the total energy (i. e., queueing) delay, which refers to the time a requestisp
cost over-time. Our framework supports various usage scenar® in the waiting queue before it is scheduled, and (3) miningzi
including VDC embedding, VDC scaling as well as dynamic VDC  hq tota] energy consumed by the data center. The scheduling
consolidation. Through experiments using realistic workload delay is an important performance metric not only because it
traces, we show our proposed approach achieves both higher .
revenue and lower average scheduling delay compared to existing concerns the responsiveness of the cloud data center tondema
solutions in the literature. fluctuations, but also because it affects the performance of
cloud applications (e. g., running time of MapReduce jobs)
. INTRODUCTION [16]. It is noteworthy that VDC embedding is akP-hard
Cloud computing is a model that promises to allocateroblem as it generalizes the bin-packing problem.
resources to large-scale service applications in an oraddm To make the matter worse, InPs can offer more flexibility
fashion. In a cloud computing environment, the traditiciwé to SPs by allowing them to scale up and down their VDCs
of service providers is divided into two: Thefrastructure according to their needs. For instance, an SP can ask for an
Providers (InPs) own the physical resources in data centeiiacrease of the VDC capacity in terms of VMs and virtual
and lease them using a pay-as-you-go pricing model, while tinks to accommodate rapid increase in service demand. An
Service Providers (SP) rent the resources offered by InPs aniP can also reduce the size of its VDC during idle periods
provide services t@nd users over the Internet. Traditionally, to save resource rental cost. Although flexibility is a key
InPs offer resources in terms of virtual machines (VMs), aratlvantage of cloud computing, previous works related to VDC
ignore network requirement imposed by the services runniegnbedding do not focus on the management of such re-
in these VMs. This has led to a number of issues regardisgaling operations. Yet, scaling up embedded VDCs is not
network performance, security and manageability [2]. trivial. For example, a SP may wish to increase the bandwidth
To address these limitations, a large number of researmfocation for a given embedded VM but the physical machine
proposals have recently advocated to offetual Data Center that hosts this VM may not have sufficient free bandwidth
(VDCs) instead of VMs. A VDC consists of virtual machinedo support this operation. On the other hand, scaling down
(VMs) connected through virtual switches, routers anddinkembedded VDCs is an opportunity to reduce operational costs
with guaranteed bandwidth. Compared to traditional VMn particular, scaling down VDCs reinforces interest of VM
based offerings, selling resources in terms of VDCs allowe®nsolidation algorithms [11], [10], [17], [14], [15], wth
SPs to to achieve better performance isolation and Qudlity@m at maximizing the utilization of active machines while
Service (QoS) for their applications. Moreover, InP can enakallowing idle machines to be turned off.



To accommodate flexibility in VDC embedding, a simplé@ktopus do not consider the cost of VM migration in their re-
yet common solution is to re-embed the VDC from scratcsource allocation algorithms. Furthermore, none of thexe ha
(e.g., [3]). This solution can however result in disruptingonsidered energy consumption in their embedding dedsion
services offered by the VMs. A more promising solution is The VDC embedding problem also shares many similarities
to migrate some embedded VMs from a physical machingth traditional virtual network (VN) embedding problem.
to another. However, migrating a VM has associated costskor instance, Chowdhury et. al. proposed algorithms that
terms of service disruption and bandwidth usage. In pdaticu provide coordinated embedding of both virtual nodes arkslin
migrating a VM can cause the VM run at reduced speefh]. Butt et. al. [6] studied the problem of topology-aware
thereby violating the Service Level Agreement (SLA). SucN embedding and re-optimization that leverages migration
a violation is translated into a penalty that the InP ha techniques. However, VN embedding models differs from
pay. Hence, the InP must weigh the benefit and the co8DC embedding in that they only consider CPU and network
of a migration and make the right decision that minimize®sources, whereas in VDC embedding other resources such
his overall costs. To the best of our knowledge, previows memory and disk also need to be considered. Finally,
works related to VM migration do neither address VD@ninimizing energy consumption has not been addressed in
embedding, nor take into account all the parameters in tererdsting VN embedding models.
of management, migration and impact on performance. There is also a large body of work on migration-aware

To address the aforementioned challenges, we introdussver consolidation in data centers in the past decade. For
VDC Planner, a framework that supportsigration-aware vir-  instance, Entropy [10] is a resource management framework
tual data center embedding. Migration is a key feature in VDC that relies on VM migration to achieve dynamically servem-co
Planner: it is used to both improve VDC embedding capabiligolidation while meeting requirements of all VMs in terms of
and process scaling up and down requests. VDC Planmeocessing and memory. It models the optimal VM placement
differs from previous work on VDC embedding mainly in theas a variant of the vector bin-packing problem, and solves
fact that it is migration-aware, and attempts to use migratiit by means of Constraint Satisfaction Programming (CSP).
to improve solution quality while minimizing total migrathn pMapper [12] is a dynamic server consolidation framework
costs. In our work, we provide a general formulation, whicthat takes into account VM migration cost. It relies on gseed
rigorously defines the problem of embedding, scaling up aheuristics to solve the optimal VM placement problem. How-
down VDC requests while considering the migration cosgver, both Entropy and pMapper have not considered network
To the best of our knowledge, our formulation is the firstequirement and locality when making consolidation decisi
one to consider migration cost and the existence of multipMore recently, Shrivastava et. al. proposed AppAware [&1],
resources. network-aware VM migration scheme that minimizes the net-

The rest of this paper is organized as follows. In Segvork distance between communication-dependent VMs while
tion 2 we survey recent research effort related to migratiominimizing total migration cost. However, energy consuiampt
aware VDC embedding. We provide a formal formulation df not considered in their framework. Wang et. al. [13] stadi
the migration-aware VDC problem in Section 3. Section the problem of VM consolidation with stochastic bandwidth
provides an overview of VDC Planner and describes variodemands and proposed an online approximation algorithm for
usage scenarios and our proposed algorithm for each seenttre problem. However, VM migration cost is not considered
in details. Lastly, we demonstrate the effectiveness of VD@ their model.

Planner in Section 5, and conclude the paper in Section 6. I, M ODELS FORMIGRATION-AWARE VDC EMBEDDING

Il. RELATED WORK In this section, we present a mathematical formulation of

Realizing that data center networks today do not providee embedding problem that considers migration. We first
performance isolation between collocated service apjics, ntroduce the general long-term model from the perspective
there is an emerging trend towards virtualizing data cent@f InP. Then, we present the model for the one-shot migration
networks to provide guaranteed network bandwidth to eagare VDC embedding, which is applied upon the receival
service application. In this context, a key research chgle Of any VDC request (either initial embedding or a scale-up
is to find scalable yet efficient resource allocation schemggguest).
that simultaneously allocate both VMs and network res®iIrcey  ceneral Long-term Embedding Formulation

Recently a number of proposals have been put forth to addresF tshell. miarati VDC embedding |
this challenge. In particular, SecondNet [8] is a data gente N a nutshetl, migration-aware emuedding ‘everages

network virtualization architecture that defines virtuadtal migration techniques tp achieve _effectlv_e and efﬂment@la
center (VDC) as an abstraction for resource allocation a d ent of VDCs over t'”‘_e- In this section, we |_ntroduce a
center environments. It further provides a greedy heuorfsti ormal m.odellfor m_lgratu.)n—aware VDC Embedding. In our
VDC embedding problem. Similarly, Oktopus [1] proposegOdel’ time is divided into slots of equal durat’rori_gt
two abstractions (virtual cluster and virtual oversubisedi = (N, L) represents the data center network, whére
cluster) that can be allocated efficiently in the tree-likdad 1y can adjust the length of time slots to simulate VDC embedding i
center network topologies. However, both SecondNet anehtinuous time.



consists of physical nodes and switches ahdepresents B. One-shot Migration-aware Embedding Formulation

physically links. Defineys(t) € {0,1} as a variable tf:at Since the optimal dynamic VDC embedding problem is
indicates whether. physma} nodec ]\CIS active, an‘lbv‘} €R™ " difficult to solve, it is necessary to break down the problem
as the cost for using physical machineluring each time slot. pased on usage scenarios. In this section, we present alforma
For instancepr can be the energy cost. Thus, the total cOghodel for one-shot migration-aware VDC embedding, whose

during time slot: can be computed as objective is to deal with either an initial embedding redues
a scaling up request. Since we focus on one-shot embedding,
c(t) = Z ya(t)pn (1) we can omit the notion of time in this model.
neN Specifically, given a data center netwatk= (N, L), let R

denote the different types of resources offered by each node
(e.g. memory and CPU for servers). Assume each modeV

has a capacity), for each resource typec R, and each link

| € L has a bandwidth capacity. Furthermore, every physical

nk [ has a source node and a destination node. We define

Let G* = (N%, L") represent the VDC requestwhere Nt is
set of virtual nodes and’ represents the set of virtual links.
Let I; denote the set of VDC requests available at titmdore
specifically, defineD, as the set of VDC requests arrived a&
time ¢, and L, as the set of VDC request that have left th

system at time (e. g. due to request completion or withdrawal) _ )1 if nis the source of 6

respectively. We can compufg using the following equation: "0 otherwise ©®)
Iiy1 = L UDN\L (2 and

Define A; C I, as the set of running VDCs. Leh,(t) € 1.7 = {1 it nis Fhe destination of @)

{0,1} be an integer variable that denotes whether migration 0 otherwise

occurs at the end of periot and g,,(t) denote the cost for a5 poolean variables that indicate whethes the source and
migratingn € N* at timet, the total migration cost at time  gestination node of € L, respectively. Similarly, we assume

can be computed as there is a set of VDC requesfs each request € I asks for
embedding a virtual network’® = (N¢, L?). We also assume
M) = Y D ma(t)galt) (3)  each node: € N has a capacity!” for resource type € R,
€A nEN? and each link € L? has a bandwidth capacify.

Let zi. € {0,1} be a boolean variable that indicates
whether virtual node: of VDC i is embedded in substrate
node n, and fli[ € R* be a variable that measures the
bandwidth of edge allocated for virtual link! € L*. To
Pt) = Z 40) (4) ensure no violation of the capacities of physical resoyrces

the following constraints must be satisfied:

On the other hand, for each VDCe I\ A, that is waiting to
be scheduled, we assume there a pengity) as function of
the duration of time interval.

i€l \ A,
We also assume for each VDCthere is a revenud;(t) > Z_%ﬁcg <S¢  VRENTER (®)
earned by the InP at time According to the current practice, i€l neN: . o
R;(t) is computed as a weighted sum of the total resources Z Z <ty VieL 9)
(CPU, memory, disk, bandwidth) used by VDCat time i€l leLi

t. Therefore, the objective of the InP is to maximize thgve also require link embedding to satisfy the flow constraint

difference between the revenue and the costs, which inslugtween every source and destination node pairs in each VDC
migrations and energy cost, as well well as penalties duetihology, formally:

scheduling delays. o ) S o
- Z dtfi; + Z Saifyp = Z TrpSpuibl — Z Tr bl
T p— — . .
. 1 leL leL neN? neN?
max (%EEOT; <§ R”(t)_c(t)_M(t)_P(t)» VielLlelineN  (10)
_ o ®)  Here > neni Thash, is equal tol if n is the source of the
However, this problem is intractable to solve because ik ; of VDC i andn is embedded in the physical node
requires solving a multi-dimensional bin-packing problergqyation 10 essentially states that the total outgoing fibar o
dynamically over time. Even the static version of the proble physical noden for a virtual link ¢ should be zero unless

generalizes th&/P-hard multi-dimensional bin-packing prob-nqsts either source or destination node of virtual inklext,

lem. Due to its high complexity, it is not possible to solve thye need to consider node placement constraints. We define
problem directly in a timely manner given the large number

of physical machines and VDCs in typical production data ) )
{1 if node n of VDC ican be embedded in

0 otherwise

centers. Therefore, a more scalable yet cost-effectivtionl i _

11
is needed. o (1)



that indicates whether virtual node can be embedded in
physical noden. For example, VMs can only be embeddes

Service Providers

in physical machines rather than switches. Thus, if a irtu

node n from VDC : is a virtual server, we have!
0Vn € Ny, and z? 1Vn € N,, where N, and N,,, are the

nn

sets of physical switches and physical machines respéctiv

(i,e., N = N, U N,,). Note that the placement constraint cai
also describe whether a switch can be embedded exclusiv

in physical switches or in physical servers or in both types
equipments. The following equation captures the placeme
constraint:

) ~1
Tnn < Tnn

Viel,nenneN (12)

To ensure embedding of every virtual nodewe must have:

VO Embedding / Scaling Request
¥
Vo ;
5 ,( ] Migration-Aware Resource
Consalidation 4 o f
VDC Scheduler Monitor
Module
Migration scheduling / 4+ Resource
v Decision Migration Decision Information
Vol viC2

vDC2

VieI,ne N (13)

> @ =1
neEN
In our model, we also defing; as a boolean variable that
indicates whether physical nodeis active. A node is active
if a virtual node of the a VDC runs on the physical node. Thi

implies the following constraints must hold:

Physical Data Center

yn >t VielneN ,neN (14)
1 . _ o
yﬁzb—fﬁgﬂ- Viel,ne N,le L'l e L (15)
1
1 . _ .
yﬁ_b—fl’l—dnl— Viel,ne N,leL (16)
)

Finally, we also to consider the migration cost. In our formu
lation, we treat migration cost asame-time embedding cost.
The one-time embedding cogt,, of a virtual noden of VDC

i, which is currently embedded in node € N in substrate

— ——— Mapping of a virtual components to physical components

Figure 1: VDC Planner Architecture

IV. VDC PLANNER
In order to reduce the complexity of the online VDC embed-

noden € N is given by:

mig(n,m,n) If n#m
g = R0 if o =m
0 if n is currently not embedded

ding problem, we have designed VDC Planner, a framework
that provides cost-effective VDC embedding in production
data centers. Instead of solving the online problem diyectl
VDC Planner divides the overall problem into several usage
scenarios, such that each scenario can be solved effgctivel
and efficiently. We describe hereafter the overall architec

wheremig(n,m,n) denotes the cost of migrating virtual nodeas well as our heuristic algorithms for each scenario.

n from substrate node: to substrate node. Thus, when a
virtual noden is already embedded but needs to be migrat

&j Architecture

from m to 7 , the one-time embedding cost is equal to the The architecture of VDC Planner is shown in Figure 1. It

migration cost. This cost is equal to zero whens already
embedded in the physical node(i.e., m = n). Its value is
also zero when the node is embedded for the first time.

Let p; denote the cost in dollars of leaving the node
active, the goal of the migration-aware embedding can
stated by finding an embedding that achieves

min Z ( Z YaPn + Z Z Z 'Ynx;ﬁ,gim,)v

keK neN i€l neEN* peN

17)

subject to equations (7) - (15). Here, is a weight factor

that captures the tradeoff between the migration cost and
operational cost. Even though the migration-aware emipgddi

problem is easier than the original online embedding prable
it is still difficult to solve as it still generalize a multi-
dimensional bin packing problem.

consists of the following components:

o VDC Scheduler: Upon receiving a VDC request from
a SP, the VDC Scheduler is responsible for scheduling
the VDC on the available physical machines. If there is
no feasible embedding in data center, the request is kept
in a scheduling queue until the SP decides to withdraw
it. Different from existing VDC embedding algorithms,
our VDC scheduler leverages migration to improve the
revenue gain from embedding VDC requests.

Resource Monitor: The Resource Monitor is in charge of
monitoring the physical and virtual data centers. It also
notifies the VDC scheduler if a failure of any physical or
virtual node occurs in the physical data center.

VDC Consolidation Module: The VDC Consolidation
Module consolidates the VDCs over time in order to

be



reduce resource fragmentation (i.e., residual capaciti Time
in physical machines and network components that &

not capable of scheduling any VDC components). VD }
consolidation improves the overall resource utilizatién ¢ vpc 1 H
data center and maximizes the number of machines ti
can be turned off.

A 4

Initial
Embedding

Our strategy for reducing the complexity of migration-agvar vpez

VDC embedding is to divide the overall problem into sever:
“scenarios”, such that each scenario can be easily addres:
Figure 2 illustrates the scenarios we consider for VDC Réann
They can be described as follows: | \

« Initial VDC Embedding: A tenant submits a new VDC | 2mmie e e i v
request and the scheduler has to map it onto the physiceu
data center. When the data center is heavily loaded, it may ~Figure 2: Scenarios for dynamic VDC embedding
be impossible to directly embed the VDC due to lack of
space. In this case, VM migration can adjust previous
resource allocations in order to accommodate the néverew” is a weight factor for resource type The intuition
request. is that size!, measures the difficulty of embedding node
. VDC Scaling: A tenant requests the topology of VDCAccordingly, w” is selected based on the scarcity of resource
to be dynamically scaled up and down. For example, ifper € R.

the tenant runs a web application in the data center andAfter sorting all virtual nodes ifV* according tosize;,, our
it experiences a demand spike, the tenant can submi@lgorithm then tries to embed each node in the sorted order,

request to increase the resource allocation of his VD@ased on whether it is connected to any embedded nodes. For
Migration can also be used to increase the chance @Ach selected node € N* and each physical node € N,
satisfying the embedding request, while minimizing théhe algorithm computes the embedding castt’(n,7) as:

total bandwidth usage for satisfying the requests.

I
|
Scaling up | Scaling down
VDC 3 ‘ ' ‘{ {
I
I

t'(n,n) = vn(mig(n,m,n)+ MigOther(n,n
o Dynamic VDC Consolidation: As VDCs continuously cost'(n, 7) Yn(mig(n, m,n) + - z_g er(n, 1))
enter and leave the system, the VDC embedding can be- + Z d(n',7) - by (19)
come obsolete and suboptimal. We believe it is beneficial n’€N*:(n/,n)eL?

to re-optimize the embedding of VDCs at run-time ifwhere the last term represents the communication distance
order to achieve better server and network consolidatiaf{n’, ) weighted by the bandwidth requiremelyt, ,,) be-
Overtime, this allows more physical servers and netwotyeen n and the other node)’ € N* that is embedded
components (e.g., switches and ports) to be turned off 4@ physical noden’. If a particular »’ is not embedded,
save energy cost [9]. d(n’,n) is set to zero. The intuition here is to minimize the
We have developed two heuristic algorithms to support tg@mmunication distance between virtual nodes in order to
above scenarios. The first heuristic is designed for mignati reduce bandwidth consumption. In the long run, it also alow
aware VDC embedding. It leverages migration to handle VD@ore physical network devices to be turned off.
embedding as well as scaling up requests. The second heuristFinally, MigOther(n,n) is the cost of migrating away the
is designed for dynamic VDC consolidation. It also utilize¥Ms not belonging toG* on n in order to accommodate
migration to improve utilization and save energy. We déserin On 7. This is similar to the migration plans defined in

each heuristic separately in the following subsections. Entropy. Formally, we denote byoc(n) the set of virtual
nodes hosted on physical node Let mig(n,n) denote the
B. Migration-Awaref VDC Embedding Heuristic minimum cost for migrating away € loc(n) to another node

. - . that has capacity to hostwith minimum distance. Computing
We dgscrlbg now our heuristic .for m|grat|on-_aware \,/D_,QV[z'gOther(n,ﬁ,) becomes a problem of migrating away a set
embedding. Given a VDC embedding request (either an initigyd 1o4e N located onii such that there is enough capacity to
embedding or scaling up request), the goal is to find a feasibl..ommodate, on 7, while minimizing the total migration
embedding of the request that incurs minimal migration .cogt,;-

Our heuristic is depicted by Algorithm 1. Intuitively, upon

receiving a VDC request the algorithm first sorts the physical ~mi(l;l1 Z zrmig(n,n)
machines based on whether they are active or inactive. It @ €{0, }ﬁEZOC(ﬁ)
then .s_ort virtual nodes in. the req_ues_t ba§ed on their size. s t. Z z;,,cﬁif > ¢ VreR
Specifically, for eachn € N*, we define its sizesize!, as _ _
n€loc(n)
sizel = Zwrc:f’ (18) This problem generalizes a minimum knapsack problem [4],

reR which is AP-hard. We adopt a simple greedy algorithm to



Algorithm 1 Algorithm for embedding VDC request Algorithm 2 Dynamic VDC Consolidation Algorithm

1: Sort N based on their states (active or inactive) 1: Let S represent the set of active machines
2. S« N? 2: repeat
3: repeat 3:  SortS in increasing order o/, according to equation
4. Let C C S be the nodes that are connected to already  (21).
embedded nodes 4: @ < next node inS

5. if C'==0then 5 S« loc(n)
6: Sort S accordingsize!, defined by equation (18). 6. SortS according tosize!, defined in equation (18).
7 n* « first node inS 7. for ne S do
8 else 8: n < next node inS. Let i denote the VDC to which
9: Sort C' accordingsize!, defined by equation (18). n belongs
10: n* « first node inC 9 Run Algorithm 1 on VDCi over S\ {n}.
11:  end if 10. end for
12: for » € N in sorted ordedo 11:  cost(n) < the total cost according to equation (17)
13: Compute embedding cosbst(n*,n) according to 12: if cost(n) < ps then

equation (19). If not feasible, sebst’(n*,n) = co.  13: Migrate all virtual nodes according to Algorithm 1
14:  end for 14: Setn to inactive
15:  if cost’(n*,n) = coVn € N then 15 end if
16: return VDC i is not embeddable 16: S+ S\{n}
17:  else 17: until Uy > Cy,
18: Embed n* on the noden € N with the lowest

cost(n,n).
1o S < S\n* requests can scale down and leave the system over time, a
20 end if large number of physical nodes may become under-utilized.
21: until S == {0} In production data centers, this typically happens at night

time, where the number of VDC requests becomes low. In
this case, we would like to dynamically consolidate VDCs
solve the problem. In particular, for a virtual nodles loc(7)  such that a large number of physical machines can be turned

that belongs to VDCj, we compute a cost-to-size ratiq: off. We point out that VDC Planner merely tries to minimize
mig(fi, n) the number of aqtive machines used by VDC_s. Deci_ding_the
Ta = W (20)  number of machines to be turned on a particular time is a
reR T TR different problem that has been studied extensively (EL§]).

Then, we sortoc(n) based on the values of;, and greedily Thus existing techniques can be readily applied to control
migrate awayr; in the sorted order until there is sufficienthe number of active machines. Our migration-aware dynamic
capacity to accommodate on 7. The total migration cost of VDC consolidation algorithm is represented by Algorithm 2.
this solution produces/igOther(n,n). If there is no feasible Specifically, the algorithm first sort the physical nodes in
solution, we setMigOther(n,n) = oco. Lastly, for a selected increasing order of their utilizations. For eaghe N, we
noden*, once the embedding casist’(n,n) is computed for define the utilizatiorU;, as the weighted sum of the utilization
everyn € N, we embedn* on the node with the minimum of each type of resources:
value cost’(*,n). The algorithm repeats until all nodes M’ i
are embedded, afost!(n*,n) = oo, which indicates VDGCi U, = Z Z Z w fn : 1)
is not embeddable. r€R i€l neNimeloc(n) ™

As for the running time of the algorithm, line 4 takes _ ) )
O(n) time to complete as it essentially partitions the physicéﬁhe intuition here is to select the nodes with lowest utilaa
machines into active and inactive machines. Line 6 and 9 taf& candidate for consolidation. Once physical nodes atedsor
O(|N|) time to execute assuming the number of resouré@’ each physical node we sort virtual nodese loc(n)
types is constant. Line 13 requires running the greedy alg@=cording their sizesize,,. Let i denote the VDCn belongs
rithm for the minimum knapsack problem. Assume each physf- We then run Algorithm 1 on VDG with physical nodes
cal node can host at most,. virtual nodes, the running time excludingn. This will find an embedding where is not used,

of the greedy minimum knapsack problem G¥|N|nmqz)- (i.e., n has been migrated to different physical node). Once
The remaining lines each takeé3(1) time to run. Thus the all the virtual node has been migrated, we compute the cost

total running time of the algorithm i©(|N?||N |1t )- of the solution according to equation (17) and compare it to
) o ) the energy saving, which is represented jgy If the total
C. Dynamic VDC Consolidation Algorithm saving is greater than the total cost of the solution, mignat

The previous heuristic leverages migration to maximize performed and becomes inactive. Otherwise, the algorithm
the number of number of VDC requests. However, as VD@oceeds to the next physical nodein the list until the
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Figure 3: Migration-aware embedding vs. baseline algorith

cluster is sufficiently consolidated (i.e., all the mackiria second during night time an@.020 requests per second
the cluster have reached a thresh6lg. Using the algorithm, during day time. This reflects the time-of-the-day effeceveh
the VDC consolidation component is able to make dynamiesource demand is higher during day time. For convenience,
consolidation decisions that considers migration cost. we sety, = 1, and )y, = 0.015. In practice, the value
Finally we analyze the running time of the algorithm. Linef );, can be obtained through experience. The number of
3 takesO(|N|) time to complete assuming the number o¥Ms per VDC is generated randomly betweénand 20.
resource types is constant. Line 6 tak®&1,,q. log(nmaz)) 1IN our simulations, each physical machine Ha€PU cores,
time to complete. Line 9 runs algorithm 1, which take8GB of memory,100GB of disk space, and containsl&bps
O(IN¥||N|nmaz) time to complete. Line 13 take®(n,,..) hetwork adapter. The size of each VM for CPU, memory and
time to finish. The remaining lines each tak@$1) time to disk are generated randomly betweenr- 4 cores,0 — 2GB
complete. Thus the total running time of the algorithm isf RAM and 0 — 10GB of disk space, respectively. The
O(|N|?log [N| + |N|n2,,, Nmaz) assuming the maximum of bandwidth requirement between any two VMs that belong to
virtual nodes per VDC SV, 4+ the same VDC is generated randomly betweemd 10Mbps.
Lastly, we need to answer the question that when shouftirthermore, the lifetime of VDCs follows an exponential
VDC consolidation be performed at run time. A naive solutiodistribution with an average @& hours. In our implementation,
is to perform VDC consolidation periodically. However, wea VDC can wait in the queue for a maximum durationlof
have found that periodic consolidation may not be beneficilabur after which it is automatically withdrawn.
when request arrival rate is high. In this case, even if weln our first experiment, we evaluated the revenue gain
can reduce the number of active machines for a particu@ghieved when using the migration-aware embedding algo-
time instance, the high arrival rate of new VDC requests wilithm compared to a baseline algorithm similar to Second-
force more machines to be active, rendering the consatiagiti Net that does not consider VM migration and energy-aware
effort ineffective. Motivated by this observation, we merh VDC consolidation. Let,, and R,, denote the infrastructure
VDC consolidation only when arrival rate is low over a perioghrovider's income over a period of time using the migration-
of time (i.e., below a threshold,;, requests per second overaware algorithm and the baseline algorithm, respectivitig
T minutes). Even though more sophisticated techniques suelenue gain is defined as
as predicting the future arrival rate allows for more actara R,
consolidation decisions, we have found this simple policy G /n =100 X R 100. (22)

n

achieves a good' balance bgtween migration cost and enefgh same formula is used to compute the gain in terms
cost at run time in our experiments. of requestacceptance ratio (i. e. successfully embedded
VDC requests divided by the total number of received VDC
requests), and the number of inactive machines. Figure 3a

We have implemented VDC Planner and evaluated isd Figure 3b show the instantaneous revenue gain and the
performance through simulation studies. Specifically, &eeh increase in acceptance ratio, respectively. Every poimaich
simulated a data center with 400 physical machines orgdniZggure represents the gain overlaminute interval. It can
in 4 racks. The topology used in our experiment is the cld®e seen that from midnight till the morning, the migration-
topology described in VL2 [7], which provides full biseatio aware algorithm is providing the same revenue as the base-
bandwidth in the data center network. To implement this kopdine approach. However, during the day time when resource
ogy, we have also addefitop-of-rack switches} aggregation demand is high, the migration-aware embedding algorithm
switches as well ag core switches in our topology. can achieve an increase up 1% in revenue gain over the

In our experiments, VDC requests arrive following a Poidaseline approach. This is expected since during idle gerio
son distribution with an average rate 0f010 requests per (e. g., night time), it is easy to embed VDC requests given the

V. EXPERIMENTS



energy consumption in the data center. However, despigntec
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S S Ll T T studies on this problem, none of the existing solutions have
% °l U 2 ] considered the problem in a dynamic and online setting, &her
8 ol g 8r ] migrations can be utilized to flexibly and dynamically adjus
) g ol ] the allocation of physical resources.
5 ) s 20 In this paper, we have described VDC Planner, a migration-
el £ 2] aware dynamic virtual data center embedding framework that
Y I R S I aims at achieving high revenue while minimizing the total
0 20 40 60 80 100120140160 180 0 20 40 60 80 100120140160 180 . .
Time (hour) Time (hour) energy cost over-time. Our framework supports various sce-
(a) Migration-aware algorithm  (b) Migration-aware embedding + con0@rios, including VDC embedding, VDC scaling as well as
solidation dynamic VDC consolidation. Through simulation experinsent
Figure 4: Change in number of machines we show our proposed approach is able to achieve high'er.net
income as well as lower scheduling delay compared to egistin
solutions in the literature.
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