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Abstract—Cloud computing promises to provide computing
resources to a large number of service applications in an on-
demand manner. Traditionally, cloud providers such as Amazon
only provide guaranteed allocation for compute and storage
resources, and fails to support the bandwidth requirements and
performance isolation among these applications. To address this
limitation, recently a number of proposals advocate providing
both guaranteed server and network resources in the form
of Virtual Data Centers (VDCs). This raises the problem of
optimally allocating both servers resources and data center
networks to multiple VDCs in order to optimize total revenue,
while minimizing the total energy consumption in the data center.
However, despite recent studies on this problem, none of the
existing solutions have considered the possibility of using VM
migration to dynamically adjust the resource allocation, in order
to meet the fluctuating resource demand of VDCs.

In this paper, we propose VDC Planner, a migration-aware
dynamic virtual data center embedding framework that aims
at achieving high revenue while minimizing the total energy
cost over-time. Our framework supports various usage scenarios,
including VDC embedding, VDC scaling as well as dynamic VDC
consolidation. Through experiments using realistic workload
traces, we show our proposed approach achieves both higher
revenue and lower average scheduling delay compared to existing
solutions in the literature.

I. I NTRODUCTION

Cloud computing is a model that promises to allocate
resources to large-scale service applications in an on-demand
fashion. In a cloud computing environment, the traditionalrole
of service providers is divided into two: TheInfrastructure
Providers (InPs) own the physical resources in data centers,
and lease them using a pay-as-you-go pricing model, while the
Service Providers (SP) rent the resources offered by InPs and
provide services toend users over the Internet. Traditionally,
InPs offer resources in terms of virtual machines (VMs), and
ignore network requirement imposed by the services running
in these VMs. This has led to a number of issues regarding
network performance, security and manageability [2].

To address these limitations, a large number of research
proposals have recently advocated to offerVirtual Data Center
(VDCs) instead of VMs. A VDC consists of virtual machines
(VMs) connected through virtual switches, routers and links
with guaranteed bandwidth. Compared to traditional VM-
based offerings, selling resources in terms of VDCs allows
SPs to to achieve better performance isolation and Quality of
Service (QoS) for their applications. Moreover, InP can make

informed decisions for traffic engineering given VDC-specific
traffic requirements, which eases the burden of InP for network
management.

However, despite its benefits, designing an efficient resource
management scheme for VDCs is a challenging problem. One
of the key challenges is theVDC embedding problem, which
asks to map VDC components (e.g., virtual machines, virtual
switches and links) onto physical nodes and links. From an
InP’s perspective, the goal is to adopt efficient allocation
schemes to maximize their net income (i.e., the difference
between revenue and operational costs) while satisfying the
resource requirements (CPU, memory, disk and bandwidth) of
every VDC. This can be divided into several inter-dependent
objectives: (1) maximizing the total revenue obtained fromthe
embedded VDC requests, (2) minimizing request scheduling
(i. e., queueing) delay, which refers to the time a request spent
in the waiting queue before it is scheduled, and (3) minimizing
the total energy consumed by the data center. The scheduling
delay is an important performance metric not only because it
concerns the responsiveness of the cloud data center to demand
fluctuations, but also because it affects the performance of
cloud applications (e. g., running time of MapReduce jobs)
[16]. It is noteworthy that VDC embedding is anNP-hard
problem as it generalizes the bin-packing problem.

To make the matter worse, InPs can offer more flexibility
to SPs by allowing them to scale up and down their VDCs
according to their needs. For instance, an SP can ask for an
increase of the VDC capacity in terms of VMs and virtual
links to accommodate rapid increase in service demand. An
SP can also reduce the size of its VDC during idle periods
to save resource rental cost. Although flexibility is a key
advantage of cloud computing, previous works related to VDC
embedding do not focus on the management of such re-
scaling operations. Yet, scaling up embedded VDCs is not
trivial. For example, a SP may wish to increase the bandwidth
allocation for a given embedded VM but the physical machine
that hosts this VM may not have sufficient free bandwidth
to support this operation. On the other hand, scaling down
embedded VDCs is an opportunity to reduce operational costs.
In particular, scaling down VDCs reinforces interest of VM
consolidation algorithms [11], [10], [17], [14], [15], which
aim at maximizing the utilization of active machines while
allowing idle machines to be turned off.



To accommodate flexibility in VDC embedding, a simple
yet common solution is to re-embed the VDC from scratch
(e.g., [3]). This solution can however result in disrupting
services offered by the VMs. A more promising solution is
to migrate some embedded VMs from a physical machine
to another. However, migrating a VM has associated costs in
terms of service disruption and bandwidth usage. In particular,
migrating a VM can cause the VM run at reduced speed,
thereby violating the Service Level Agreement (SLA). Such
a violation is translated into a penalty that the InP ha to
pay. Hence, the InP must weigh the benefit and the cost
of a migration and make the right decision that minimizes
his overall costs. To the best of our knowledge, previous
works related to VM migration do neither address VDC
embedding, nor take into account all the parameters in terms
of management, migration and impact on performance.

To address the aforementioned challenges, we introduce
VDC Planner, a framework that supportsmigration-aware vir-
tual data center embedding. Migration is a key feature in VDC
Planner: it is used to both improve VDC embedding capability
and process scaling up and down requests. VDC Planner
differs from previous work on VDC embedding mainly in the
fact that it is migration-aware, and attempts to use migration
to improve solution quality while minimizing total migration
costs. In our work, we provide a general formulation, which
rigorously defines the problem of embedding, scaling up and
down VDC requests while considering the migration cost.
To the best of our knowledge, our formulation is the first
one to consider migration cost and the existence of multiple
resources.

The rest of this paper is organized as follows. In Sec-
tion 2 we survey recent research effort related to migration-
aware VDC embedding. We provide a formal formulation of
the migration-aware VDC problem in Section 3. Section 4
provides an overview of VDC Planner and describes various
usage scenarios and our proposed algorithm for each scenario
in details. Lastly, we demonstrate the effectiveness of VDC
Planner in Section 5, and conclude the paper in Section 6.

II. RELATED WORK

Realizing that data center networks today do not provide
performance isolation between collocated service applications,
there is an emerging trend towards virtualizing data center
networks to provide guaranteed network bandwidth to each
service application. In this context, a key research challenge
is to find scalable yet efficient resource allocation schemes
that simultaneously allocate both VMs and network resources.
Recently a number of proposals have been put forth to address
this challenge. In particular, SecondNet [8] is a data center
network virtualization architecture that defines virtual data
center (VDC) as an abstraction for resource allocation in data
center environments. It further provides a greedy heuristic for
VDC embedding problem. Similarly, Oktopus [1] proposed
two abstractions (virtual cluster and virtual oversubscribed
cluster) that can be allocated efficiently in the tree-like data
center network topologies. However, both SecondNet and

Oktopus do not consider the cost of VM migration in their re-
source allocation algorithms. Furthermore, none of them have
considered energy consumption in their embedding decisions.

The VDC embedding problem also shares many similarities
with traditional virtual network (VN) embedding problem.
For instance, Chowdhury et. al. proposed algorithms that
provide coordinated embedding of both virtual nodes and links
[5]. Butt et. al. [6] studied the problem of topology-aware
VN embedding and re-optimization that leverages migration
techniques. However, VN embedding models differs from
VDC embedding in that they only consider CPU and network
resources, whereas in VDC embedding other resources such
as memory and disk also need to be considered. Finally,
minimizing energy consumption has not been addressed in
existing VN embedding models.

There is also a large body of work on migration-aware
server consolidation in data centers in the past decade. For
instance, Entropy [10] is a resource management framework
that relies on VM migration to achieve dynamically server con-
solidation while meeting requirements of all VMs in terms of
processing and memory. It models the optimal VM placement
as a variant of the vector bin-packing problem, and solves
it by means of Constraint Satisfaction Programming (CSP).
pMapper [12] is a dynamic server consolidation framework
that takes into account VM migration cost. It relies on greedy
heuristics to solve the optimal VM placement problem. How-
ever, both Entropy and pMapper have not considered network
requirement and locality when making consolidation decisions.
More recently, Shrivastava et. al. proposed AppAware [11],a
network-aware VM migration scheme that minimizes the net-
work distance between communication-dependent VMs while
minimizing total migration cost. However, energy consumption
is not considered in their framework. Wang et. al. [13] studied
the problem of VM consolidation with stochastic bandwidth
demands and proposed an online approximation algorithm for
the problem. However, VM migration cost is not considered
in their model.

III. M ODELS FORM IGRATION-AWARE VDC EMBEDDING

In this section, we present a mathematical formulation of
the embedding problem that considers migration. We first
introduce the general long-term model from the perspectiveof
an InP. Then, we present the model for the one-shot migration-
aware VDC embedding, which is applied upon the receival
of any VDC request (either initial embedding or a scale-up
request).

A. General Long-term Embedding Formulation

In a nutshell, migration-aware VDC embedding leverages
migration techniques to achieve effective and efficient place-
ment of VDCs over time. In this section, we introduce a
formal model for migration-aware VDC Embedding. In our
model, time is divided into slots of equal duration1. Let
Ḡ = (N̄ , L̄) represents the data center network, whereN̄

1We can adjust the length of time slots to simulate VDC embedding in
continuous time.



consists of physical nodes and switches andL̄ represents
physically links. Defineyn̄(t) ∈ {0, 1} as a variable that
indicates whether physical noden̄ ∈ N̄ is active, andpn̄ ∈ R

+

as the cost for using physical machinen̄ during each time slot.
For instance,pn̄ can be the energy cost. Thus, the total cost
during time slott can be computed as

C(t) =
∑

n̄∈N̄

yn̄(t)pn̄ (1)

Let Gi = (N i, Li) represent the VDC requesti, whereN i is
set of virtual nodes andLi represents the set of virtual links.
Let It denote the set of VDC requests available at timet. More
specifically, defineDt as the set of VDC requests arrived at
time t, andLt as the set of VDC request that have left the
system at timet (e. g. due to request completion or withdrawal)
respectively. We can computeIt using the following equation:

It+1 = It ∪Dt\Lt (2)

Define At ⊆ It as the set of running VDCs. Letmn(t) ∈
{0, 1} be an integer variable that denotes whether migration
occurs at the end of periodt, and gn(t) denote the cost for
migratingn ∈ N i at time t, the total migration cost at timet
can be computed as

M(t) =
∑

i∈At

∑

n∈Ni

mn(t)gn(t) (3)

On the other hand, for each VDCi ∈ It\At that is waiting to
be scheduled, we assume there a penaltypi(t) as function of
the duration of time intervalt.

P(t) =
∑

i∈It\At

pi(t) (4)

We also assume for each VDCi there is a revenueRi(t)
earned by the InP at timet. According to the current practice,
Ri(t) is computed as a weighted sum of the total resources
(CPU, memory, disk, bandwidth) used by VDCi at time
t. Therefore, the objective of the InP is to maximize the
difference between the revenue and the costs, which includes
migrations and energy cost, as well well as penalties due to
scheduling delays.

max

(

lim
T→∞

1

T

T
∑

t=0

(

∑

i∈At

Ri(t)− C(t)−M(t)− P(t)

))

(5)
However, this problem is intractable to solve because it
requires solving a multi-dimensional bin-packing problem
dynamically over time. Even the static version of the problem
generalizes theNP-hard multi-dimensional bin-packing prob-
lem. Due to its high complexity, it is not possible to solve the
problem directly in a timely manner given the large number
of physical machines and VDCs in typical production data
centers. Therefore, a more scalable yet cost-effective solution
is needed.

B. One-shot Migration-aware Embedding Formulation

Since the optimal dynamic VDC embedding problem is
difficult to solve, it is necessary to break down the problem
based on usage scenarios. In this section, we present a formal
model for one-shot migration-aware VDC embedding, whose
objective is to deal with either an initial embedding request or
a scaling up request. Since we focus on one-shot embedding,
we can omit the notion of time in this model.

Specifically, given a data center network̄G = (N̄ , L̄), let R
denote the different types of resources offered by each node
(e.g. memory and CPU for servers). Assume each noden̄ ∈ N̄

has a capacitycrn̄ for each resource typer ∈ R, and each link
l̄ ∈ L̄ has a bandwidth capacitybl̄. Furthermore, every physical
link l̄ has a source node and a destination node. We define

s̄n̄l̄ =

{

1 if n̄ is the source of̄l

0 otherwise
(6)

and

d̄n̄l̄ =

{

1 if n̄ is the destination of̄l

0 otherwise
(7)

as boolean variables that indicate whethern̄ is the source and
destination node of̄l ∈ L̄, respectively. Similarly, we assume
there is a set of VDC requestsI, each requesti ∈ I asks for
embedding a virtual networkGi = (N i, Li). We also assume
each noden ∈ N i has a capacitycirn for resource typer ∈ R,
and each linkl ∈ Li has a bandwidth capacitybl.

Let xi
nn̄ ∈ {0, 1} be a boolean variable that indicates

whether virtual noden of VDC i is embedded in substrate
node n̄, and f i

ll̄
∈ R

+ be a variable that measures the
bandwidth of edgēl allocated for virtual link l ∈ Li. To
ensure no violation of the capacities of physical resources,
the following constraints must be satisfied:

∑

i∈I

∑

n∈Ni

xi
nn̄c

ir
n ≤ crn̄ ∀n̄ ∈ N̄ , r ∈ R (8)

∑

i∈I

∑

l∈Li

f i
ll̄ ≤ bl̄ ∀l̄ ∈ L̄ (9)

We also require link embedding to satisfy the flow constraint
between every source and destination node pairs in each VDC
topology, formally:

−
∑

l̄∈L̄

d̄n̄l̄f
i
ll̄ +

∑

l̄∈L̄

s̄n̄l̄f
i
ll̄ =

∑

n∈Ni

xi
nn̄s

i
nlbl −

∑

n∈Ni

xi
nn̄d

i
nlbl

∀i ∈ I, l ∈ Li, n̄ ∈ N̄ (10)

Here
∑

n∈Ni xi
nn̄s

i
nl is equal to1 if n is the source of the

link l of VDC i andn is embedded in the physical nodēn.
Equation 10 essentially states that the total outgoing flow of a
physical nodēn for a virtual link Li should be zero unless̄n
hosts either source or destination node of virtual linki. Next,
we need to consider node placement constraints. We define

x̃i
nn̄ =

{

1 if node n of VDC ican be embedded in̄n

0 otherwise
(11)



that indicates whether virtual noden can be embedded in
physical noden̄. For example, VMs can only be embedded
in physical machines rather than switches. Thus, if a virtual
node n from VDC i is a virtual server, we havẽxi

nn̄ =
0∀n̄ ∈ N̄s and x̃i

nn̄ = 1∀n̄ ∈ N̄m whereN̄s and N̄m are the
sets of physical switches and physical machines respectively
(i.e., N̄ = N̄s ∪ N̄m). Note that the placement constraint can
also describe whether a switch can be embedded exclusively
in physical switches or in physical servers or in both types of
equipments. The following equation captures the placement
constraint:

xi
nn̄ ≤ x̃i

nn̄ ∀i ∈ I, n ∈ n, n̄ ∈ N̄ (12)

To ensure embedding of every virtual noden, we must have:
∑

n̄∈N̄

xi
nn̄ = 1 ∀i ∈ I, n ∈ N i (13)

In our model, we also defineyn̄ as a boolean variable that
indicates whether physical nodēn is active. A node is active
if a virtual node of the a VDC runs on the physical node. This
implies the following constraints must hold:

yn̄ ≥ xi
nn̄ ∀i ∈ I, n ∈ N i, n̄ ∈ N̄ (14)

yn̄ ≥
1

bl
f i
ll̄s̄n̄l̄ ∀i ∈ I, n̄ ∈ N̄ , l ∈ Li, l̄ ∈ L̄ (15)

yn̄ ≥
1

bl
f i
ll̄d̄n̄l̄ ∀i ∈ I, n̄ ∈ N̄ , l ∈ Li (16)

Finally, we also to consider the migration cost. In our formu-
lation, we treat migration cost as aone-time embedding cost.
The one-time embedding costginn̄ of a virtual noden of VDC
i, which is currently embedded in nodēm ∈ N̄ in substrate
noden̄ ∈ N is given by:

ginn̄ =











mig(n, m̄, n̄) if n̄ 6= m̄

0 if n̄ = m̄

0 if n is currently not embedded

wheremig(n, m̄, n̄) denotes the cost of migrating virtual node
n from substrate nodēm to substrate nodēn. Thus, when a
virtual noden is already embedded but needs to be migrated
from m̄ to n̄ , the one-time embedding cost is equal to the
migration cost. This cost is equal to zero whenn is already
embedded in the physical nodēn (i.e., m̄ = n̄). Its value is
also zero when the noden is embedded for the first time.

Let pn̄ denote the cost in dollars of leaving the noden̄
active, the goal of the migration-aware embedding can be
stated by finding an embedding that achieves

min
∑

k∈K

(
∑

n̄∈N̄

yn̄pn̄ +
∑

i∈I

∑

n∈Ni

∑

n̄∈N̄

γnx
i
nn̄g

i
nn̄), (17)

subject to equations (7) - (15). Here,γn is a weight factor
that captures the tradeoff between the migration cost and
operational cost. Even though the migration-aware embedding
problem is easier than the original online embedding problem,
it is still difficult to solve as it still generalize a multi-
dimensional bin packing problem.

Figure 1: VDC Planner Architecture

IV. VDC PLANNER

In order to reduce the complexity of the online VDC embed-
ding problem, we have designed VDC Planner, a framework
that provides cost-effective VDC embedding in production
data centers. Instead of solving the online problem directly,
VDC Planner divides the overall problem into several usage
scenarios, such that each scenario can be solved effectively
and efficiently. We describe hereafter the overall architecture
as well as our heuristic algorithms for each scenario.

A. Architecture

The architecture of VDC Planner is shown in Figure 1. It
consists of the following components:

• VDC Scheduler: Upon receiving a VDC request from
a SP, the VDC Scheduler is responsible for scheduling
the VDC on the available physical machines. If there is
no feasible embedding in data center, the request is kept
in a scheduling queue until the SP decides to withdraw
it. Different from existing VDC embedding algorithms,
our VDC scheduler leverages migration to improve the
revenue gain from embedding VDC requests.

• Resource Monitor: The Resource Monitor is in charge of
monitoring the physical and virtual data centers. It also
notifies the VDC scheduler if a failure of any physical or
virtual node occurs in the physical data center.

• VDC Consolidation Module: The VDC Consolidation
Module consolidates the VDCs over time in order to



reduce resource fragmentation (i.e., residual capacities
in physical machines and network components that are
not capable of scheduling any VDC components). VDC
consolidation improves the overall resource utilization of
data center and maximizes the number of machines that
can be turned off.

Our strategy for reducing the complexity of migration-aware
VDC embedding is to divide the overall problem into several
“scenarios”, such that each scenario can be easily addressed.
Figure 2 illustrates the scenarios we consider for VDC Planner.
They can be described as follows:

• Initial VDC Embedding: A tenant submits a new VDC
request and the scheduler has to map it onto the physical
data center. When the data center is heavily loaded, it may
be impossible to directly embed the VDC due to lack of
space. In this case, VM migration can adjust previous
resource allocations in order to accommodate the new
request.

• VDC Scaling: A tenant requests the topology of VDC
to be dynamically scaled up and down. For example, if
the tenant runs a web application in the data center and
it experiences a demand spike, the tenant can submit a
request to increase the resource allocation of his VDC.
Migration can also be used to increase the chance of
satisfying the embedding request, while minimizing the
total bandwidth usage for satisfying the requests.

• Dynamic VDC Consolidation: As VDCs continuously
enter and leave the system, the VDC embedding can be-
come obsolete and suboptimal. We believe it is beneficial
to re-optimize the embedding of VDCs at run-time in
order to achieve better server and network consolidation.
Overtime, this allows more physical servers and network
components (e.g., switches and ports) to be turned off to
save energy cost [9].

We have developed two heuristic algorithms to support the
above scenarios. The first heuristic is designed for migration-
aware VDC embedding. It leverages migration to handle VDC
embedding as well as scaling up requests. The second heuristic
is designed for dynamic VDC consolidation. It also utilizes
migration to improve utilization and save energy. We describe
each heuristic separately in the following subsections.

B. Migration-Awaref VDC Embedding Heuristic

We describe now our heuristic for migration-aware VDC
embedding. Given a VDC embedding request (either an initial
embedding or scaling up request), the goal is to find a feasible
embedding of the request that incurs minimal migration cost.
Our heuristic is depicted by Algorithm 1. Intuitively, upon
receiving a VDC requesti, the algorithm first sorts the physical
machines based on whether they are active or inactive. It
then sort virtual nodes in the request based on their size.
Specifically, for eachn ∈ N i, we define its sizesizein as

sizein =
∑

r∈R

wrcirn , (18)

Figure 2: Scenarios for dynamic VDC embedding

wherewr is a weight factor for resource typer. The intuition
is that sizein measures the difficulty of embedding noden.
Accordingly,wr is selected based on the scarcity of resource
type r ∈ R.

After sorting all virtual nodes inN i according tosizein, our
algorithm then tries to embed each node in the sorted order,
based on whether it is connected to any embedded nodes. For
each selected noden ∈ N i and each physical nodēn ∈ N̄ ,
the algorithm computes the embedding costcosti(n, n̄) as:

costi(n, n̄) = γn(mig(n, m̄, n̄) +MigOther(n, n̄))

+
∑

n′∈Ni:(n′,n)∈Li

d(n̄′, n̄) · b(n′,n) (19)

where the last term represents the communication distance
d(n̄′, n̄) weighted by the bandwidth requirementb(n′,n) be-
tween n̄ and the other noden′ ∈ N i that is embedded
on physical noden̄′. If a particular n′ is not embedded,
d(n̄′, n̄) is set to zero. The intuition here is to minimize the
communication distance between virtual nodes in order to
reduce bandwidth consumption. In the long run, it also allows
more physical network devices to be turned off.

Finally, MigOther(n, n̄) is the cost of migrating away the
VMs not belonging toGi on n̄ in order to accommodate
n on n̄. This is similar to the migration plans defined in
Entropy. Formally, we denote byloc(n̄) the set of virtual
nodes hosted on physical noden̄. Let mig(ñ, n̄) denote the
minimum cost for migrating awaỹn ∈ loc(n̄) to another node
that has capacity to hostñ with minimum distance. Computing
MigOther(n, n̄) becomes a problem of migrating away a set
of nodeÑ located onn̄ such that there is enough capacity to
accommodaten on n̄, while minimizing the total migration
cost:

min
xñ∈{0,1}

∑

ñ∈loc(n̄)

xñmig(ñ, n̄)

s. t.
∑

ñ∈loc(n̄)

xñc
jr
ñ ≥ cirn ∀r ∈ R

This problem generalizes a minimum knapsack problem [4],
which is NP-hard. We adopt a simple greedy algorithm to



Algorithm 1 Algorithm for embedding VDC requesti

1: Sort N̄ based on their states (active or inactive)
2: S ← N i

3: repeat
4: Let C ⊆ S be the nodes that are connected to already

embedded nodes
5: if C == ∅ then
6: SortS accordingsizein defined by equation (18).
7: n∗ ← first node inS
8: else
9: SortC accordingsizein defined by equation (18).

10: n∗ ← first node inC
11: end if
12: for n̄ ∈ N̄ in sorted orderdo
13: Compute embedding costcosti(n∗, n̄) according to

equation (19). If not feasible, setcosti(n∗, n̄) =∞.
14: end for
15: if costi(n∗, n̄) =∞∀n̄ ∈ N̄ then
16: return VDC i is not embeddable
17: else
18: Embed n∗ on the noden̄ ∈ N̄ with the lowest

costi(n, n̄).
19: S ← S\n∗

20: end if
21: until S == {∅}

solve the problem. In particular, for a virtual nodeñ ∈ loc(n̄)
that belongs to VDCj, we compute a cost-to-size ratiorñ:

rñ =
mig(ñ, n̄)
∑

r∈R wrc
jr
ñ

(20)

Then, we sortloc(n̄) based on the values ofrñ, and greedily
migrate awayrñ in the sorted order until there is sufficient
capacity to accommodaten on n̄. The total migration cost of
this solution producesMigOther(n, n̄). If there is no feasible
solution, we setMigOther(n, n̄) =∞. Lastly, for a selected
noden∗, once the embedding costcosti(n, n̄) is computed for
every n̄ ∈ N̄ , we embedn∗ on the node with the minimum
valuecosti(∗, n̄). The algorithm repeats until all nodes inN i

are embedded, orcosti(n∗, n̄) = ∞, which indicates VDCi
is not embeddable.

As for the running time of the algorithm, line 4 takes
O(n) time to complete as it essentially partitions the physical
machines into active and inactive machines. Line 6 and 9 take
O(|N i|) time to execute assuming the number of resource
types is constant. Line 13 requires running the greedy algo-
rithm for the minimum knapsack problem. Assume each physi-
cal node can host at mostnmax virtual nodes, the running time
of the greedy minimum knapsack problem isO(|N̄ |nmax).
The remaining lines each takesO(1) time to run. Thus the
total running time of the algorithm isO(|N i||N̄ |nmax).

C. Dynamic VDC Consolidation Algorithm

The previous heuristic leverages migration to maximize
the number of number of VDC requests. However, as VDC

Algorithm 2 Dynamic VDC Consolidation Algorithm

1: Let S̄ represent the set of active machines
2: repeat
3: Sort S̄ in increasing order ofUn̄ according to equation

(21).
4: n̄← next node inS̄
5: S ← loc(n̄)
6: SortS according tosizein defined in equation (18).
7: for n ∈ S do
8: n← next node inS. Let i denote the VDC to which

n belongs
9: Run Algorithm 1 on VDCi over S̄\{n̄}.

10: end for
11: cost(n̄)← the total cost according to equation (17)
12: if cost(n̄) ≤ pn̄ then
13: Migrate all virtual nodes according to Algorithm 1
14: Set n̄ to inactive
15: end if
16: S̄ ← S̄\{n̄}
17: until Un̄ ≥ Cth

requests can scale down and leave the system over time, a
large number of physical nodes may become under-utilized.
In production data centers, this typically happens at night
time, where the number of VDC requests becomes low. In
this case, we would like to dynamically consolidate VDCs
such that a large number of physical machines can be turned
off. We point out that VDC Planner merely tries to minimize
the number of active machines used by VDCs. Deciding the
number of machines to be turned on a particular time is a
different problem that has been studied extensively (e.g.,[16]).
Thus existing techniques can be readily applied to control
the number of active machines. Our migration-aware dynamic
VDC consolidation algorithm is represented by Algorithm 2.
Specifically, the algorithm first sort the physical nodes in
increasing order of their utilizations. For each̄n ∈ N̄ , we
define the utilizationUn̄ as the weighted sum of the utilization
of each type of resources:

Un̄ =
∑

r∈R

∑

i∈I

∑

n∈Ni:n∈loc(n̄)

wrcirn
crn̄

, (21)

The intuition here is to select the nodes with lowest utilization
as candidate for consolidation. Once physical nodes are sorted,
for each physical node we sort virtual nodesn ∈ loc(n)
according their sizesizein. Let i denote the VDCn belongs
to. We then run Algorithm 1 on VDCi with physical nodes
excludingn̄. This will find an embedding wherēn is not used,
(i.e., n has been migrated to different physical node). Once
all the virtual node has been migrated, we compute the cost
of the solution according to equation (17) and compare it to
the energy saving, which is represented bypn̄. If the total
saving is greater than the total cost of the solution, migration
is performed and̄n becomes inactive. Otherwise, the algorithm
proceeds to the next physical nodēn in the list until the
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Figure 3: Migration-aware embedding vs. baseline algorithm

cluster is sufficiently consolidated (i.e., all the machines in
the cluster have reached a thresholdCth. Using the algorithm,
the VDC consolidation component is able to make dynamic
consolidation decisions that considers migration cost.

Finally we analyze the running time of the algorithm. Line
3 takesO(|N̄ |) time to complete assuming the number of
resource types is constant. Line 6 takesO(nmax log(nmax))
time to complete. Line 9 runs algorithm 1, which takes
O(|N i||N̄ |nmax) time to complete. Line 13 takesO(nmax)
time to finish. The remaining lines each takesO(1) time to
complete. Thus the total running time of the algorithm is
O(|N̄ |2 log |N̄ |+ |N̄ |n2

maxNmax) assuming the maximum of
virtual nodes per VDC isNmax.

Lastly, we need to answer the question that when should
VDC consolidation be performed at run time. A naïve solution
is to perform VDC consolidation periodically. However, we
have found that periodic consolidation may not be beneficial
when request arrival rate is high. In this case, even if we
can reduce the number of active machines for a particular
time instance, the high arrival rate of new VDC requests will
force more machines to be active, rendering the consolidations
effort ineffective. Motivated by this observation, we perform
VDC consolidation only when arrival rate is low over a period
of time (i.e., below a thresholdλth requests per second over
T minutes). Even though more sophisticated techniques such
as predicting the future arrival rate allows for more accurate
consolidation decisions, we have found this simple policy
achieves a good balance between migration cost and energy
cost at run time in our experiments.

V. EXPERIMENTS

We have implemented VDC Planner and evaluated its
performance through simulation studies. Specifically, we have
simulated a data center with 400 physical machines organized
in 4 racks. The topology used in our experiment is the clos
topology described in VL2 [7], which provides full bisection
bandwidth in the data center network. To implement this topol-
ogy, we have also added4 top-of-rack switches,4 aggregation
switches as well as4 core switches in our topology.

In our experiments, VDC requests arrive following a Pois-
son distribution with an average rate of0.010 requests per

second during night time and0.020 requests per second
during day time. This reflects the time-of-the-day effect where
resource demand is higher during day time. For convenience,
we set γn = 1, and λth = 0.015. In practice, the value
of λth can be obtained through experience. The number of
VMs per VDC is generated randomly between1 and 20.
In our simulations, each physical machine has4 CPU cores,
8GB of memory,100GB of disk space, and contains a1Gbps
network adapter. The size of each VM for CPU, memory and
disk are generated randomly between0 − 4 cores,0 − 2GB
of RAM and 0 − 10GB of disk space, respectively. The
bandwidth requirement between any two VMs that belong to
the same VDC is generated randomly between0 and10Mbps.
Furthermore, the lifetime of VDCs follows an exponential
distribution with an average of3 hours. In our implementation,
a VDC can wait in the queue for a maximum duration of1
hour after which it is automatically withdrawn.

In our first experiment, we evaluated the revenue gain
achieved when using the migration-aware embedding algo-
rithm compared to a baseline algorithm similar to Second-
Net that does not consider VM migration and energy-aware
VDC consolidation. LetRm andRn denote the infrastructure
provider’s income over a period of time using the migration-
aware algorithm and the baseline algorithm, respectively.The
revenue gain is defined as

Gm/n = 100×
Rm

Rn
− 100. (22)

The same formula is used to compute the gain in terms
of request acceptance ratio (i. e. successfully embedded
VDC requests divided by the total number of received VDC
requests), and the number of inactive machines. Figure 3a
and Figure 3b show the instantaneous revenue gain and the
increase in acceptance ratio, respectively. Every point ineach
figure represents the gain over a1 minute interval. It can
be seen that from midnight till the morning, the migration-
aware algorithm is providing the same revenue as the base-
line approach. However, during the day time when resource
demand is high, the migration-aware embedding algorithm
can achieve an increase up to17% in revenue gain over the
baseline approach. This is expected since during idle periods
(e. g., night time), it is easy to embed VDC requests given the
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(b) Migration-aware embedding + con-
solidation

Figure 4: Change in number of machines

ample free capacities in the data center. However, when the
cluster is busy, it becomes difficult to embed VDC requests
directly. In this case, migration-aware approach is able to
leverage migration to find more embeddable VDCs. This result
is also confirmed by Figure 3b which shows an improvement
of 10% in terms of VDC requests acceptance ratio during
busy periods. We also compare the queuing delay experienced
by the VDC requests. Figure 3c compares the cumulative
distribution function (CDF) of scheduling delays achievedby
each of the studied algorithms. It is clear that the migration
aware approach significantly reduces the average scheduling
delay. In particular, our algorithm can reduce the scheduling
delay by up to25%.

On the other hand, even though the migration-aware em-
bedding algorithm is able to improve InP’s revenue, at the
same time it also uses more physical machines to host
embedded VDCs than the baseline algorithm, as shown in
Figure 4a. Therefore, we also implemented the dynamic VDC
consolidation algorithm as described in Section IV-C to reduce
the number of physical machines used. Compared to Figure
4a, Figure 4a shows that percentage reduction in number of
machines can reach14% when the consolidation algorithm
is applied along with the migration-aware embedding. The
benefit is apparent especially at night (8pm to midnight) when
VDCs are leaving the system. We also notice that, by reducing
the number of active machines, consolidation also improves
the income as defined in Eq. 5. Combining consolidation
with the migration-aware embedding technique, we found on
average VDC Planner achieves a15% increase in net income
compared to baseline algorithms that resembles the existing
algorithms proposed in the literature (e.g., SecondNet).

VI. CONCLUSIONS

Driven by the need to support network performance isola-
tion and QoS guarantee in public clouds, recently a number
of research proposals have proposed to allocate resources to
SPs in the form of virtual data centers that include both
guaranteed server resources and network resources. A key
challenge that needs to be addressed in the context is dynamic
VDC embedding problem, which aims at optimally allocating
both servers resources and data center networks to multiple
VDCs to optimize total revenue, while minimizing the total

energy consumption in the data center. However, despite recent
studies on this problem, none of the existing solutions have
considered the problem in a dynamic and online setting, where
migrations can be utilized to flexibly and dynamically adjust
the allocation of physical resources.

In this paper, we have described VDC Planner, a migration-
aware dynamic virtual data center embedding framework that
aims at achieving high revenue while minimizing the total
energy cost over-time. Our framework supports various sce-
narios, including VDC embedding, VDC scaling as well as
dynamic VDC consolidation. Through simulation experiments,
we show our proposed approach is able to achieve higher net
income as well as lower scheduling delay compared to existing
solutions in the literature.
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