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Synopsys 

This work is devoted to the stick-slip instabilities that appear in the shear flow of highly 

concentrated suspensions of magnetic microparticles. The effect of the applied magnetic field 

strength was analyzed in details. With this aim, homogeneous suspensions of iron 

microparticles with concentration near the limit of maximum-packing fraction were prepared, 

and shear-flow measurements were performed in a controlled-rate mode using a rheometer 

provided with a rough parallel-plate geometry. For each given value of the shear rate, the time 

evolution of the shear stress was monitored for at least 20 min. Saw-tooth-like stress 

oscillations, typical of stick-slip instabilities, were obtained at low enough shear rate values. 

The measurements were restricted to small enough oscillations, at which the rheometer was 

still able to maintain the shear rate constant. From the microscopic viewpoint, these stick-slip 

instabilities principally appear due to the periodic failure and healing of the field-induced 

particle structures, as inferred from experimental observations. This hypothesis is 

corroborated by a theoretical model developed on the basis of the balance of the magnetic and 

hydrodynamic torques over the particle structures, allows us to predict the correct order of 

magnitude of the main parameters of the stick-slip instabilities, including the amplitude and 

period of the stress oscillations.  
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I. INTRODUCTION 

The behavior of yield stress fluids in the vicinity of the yield point has recently 

attracted much attention in literature. Most of the macroscopic measurements performed on 

various complex fluids exhibiting a yield stress (concentrated colloidal and granular 

suspensions, emulsions and micelle solutions, polymer liquids and polymer blends) have 

shown that a stable steady-state flow is impossible for these fluids at small enough shear rates 

[Bécu et al. (2006); Bonn et al. (2002); Coussot et al. (2002); Da Cruz et al. (2002); Huang et 

al. (2005); Jarny et al. (2005); Ovarlez et al. (2006); Ragouilliaux et al. (2007); Rodts et al. 

(2005); Varadan and Solomon (2003)]. In most cases, the flow curves of these fluids possess 

an initial section where the stress either decreases or remains quasi-constant with the shear 

rate – the section where flow instabilities occur. These instabilities are manifested through a 

loss in the homogeneity of the flow and the deformation fields, which, in many cases, is 

accompanied by oscillations of the shear stress or shear rate.  

From the microscopic point of view, slow shear flows are often accompanied with 

shear banding and/or phase separation phenomena, as revealed by dynamic light scattering 

and magnetic resonance imaging for many types of complex fluids [Coussot et al. (2002); 

Coussot et al. (2005); Fall et al. (2009); Huang et al. (2005); Ianni et al. (2008); Ovarlez et al. 

(2009)]. According to these works, in the vicinity of the yield point two distinct flow regions 

coexist: a non-sheared band, containing a high concentration of solid phase, and a highly 

sheared band, containing predominantly liquid phase. In addition to shear banding, periodic 

oscillations in the flow behavior at subcritical shear rates have also been reported [Ianni et al. 

(2008)]. In the phenomenological model of [Picard et al. (2002)], these oscillations were 

attributed to periodic changes in the suspension fluidity (local relaxation of the stress) within 
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the unstable flow region at the decreasing branch of the flow curve. The authors used the term 

“stick-slip” for these oscillations even though solid friction does not appear explicitly in their 

theory. From all these previous works, it is clear that the microscopic and macroscopic 

behaviors of yield stress fluids must strongly depend on the types of interactions in the fluids, 

and investigations in this field are intensively continued. 

Some well-known yield stress fluids for which the flow instabilities have been 

scarcely investigated are electrorheological (ER) and magnetorheological (MR) suspensions. 

In these fluids, interparticle interactions can be tuned over several decades by external electric 

and magnetic fields, respectively. One of the pioneer studies concerning flow irregularities in 

these fluids was carried out by Klingenberg and Zukosky (1990), who visualized the shear 

flow of ER suspensions under electric fields applied perpendicular to the rheometer plates. 

These authors reported the existence of gap-spanning particle aggregates that were 

continuously ruptured by the shear forces and subsequently reformed by association with the 

broken parts of the neighboring aggregates. This process is schematized in Fig. 1a. Such 

periodic failure and reformation of the structures was later reproduced by particle level 

simulations [Klingenberg et al. (1991)]. Bonnecaze and Brady (1992) also performed 

simulations of the structure and the stress level in sheared ER fluids and found some 

dynamics reminiscent of the stick-slip motion at small shear rates (or rather small Mason 

numbers): a slow deformation regime, characterized by the storage of the electrostatic energy, 

followed by a rapid release of the energy through viscous dissipation once the aggregates are 

ruptured, followed by reformation of the aggregates through associations among broken parts, 

as illustrated in Fig. 1b. Both works by Klingenberg et al. (1991) and by Bonnecaze and 

Brady (1992) predicted rather irregular stress vs. time responses, with multiple events in 

different time scales.  
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The only work reporting explicit experimental stick-slip phenomena in ER 

suspensions is, to our knowledge, a short communication by Woestman (1993). This author 

measured the strain response of ER fluids to applied stresses using a concentric cylinder cell. 

He found that the inner cylinder turned by short jumps (slip) followed by long periods without 

distinguishable motion (stick). The resulting stress vs. strain curves showed quite regular 

oscillations with a sharp increase of the stress followed by a smooth decrease. Apparently, the 

imposed stress was not kept constant but depended on the inertia and stiffness of the 

measuring system. Therefore, the quantitative analysis of the observed phenomenon should be 

taken with care, while the qualitative interpretation in terms of rupture/reformation remains 

reasonable. 

 

FIG. 1. Periodic rupture/reformation processes that may explain the stick-slip phenomenon, for different types of 

MR structures: (a) single chains of Klingenberg and Zukosky (1990); (b) thick aggregates used in the particle 

level simulations of Bonnecaze and Brady (1992); (c) triple-chain aggregates used in the present work. Dashed 

curves in (b) denote rupture locations. 
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In what concerns MR suspensions, the stick-slip instability has been recently reported 

for concentrated MR fluids exhibiting a shear thickening behavior [Jiang et al. (2012)]. As 

inferred from this short communication, the authors insist on a frictional scenario to explain 

the appearance of the stick-slip. They state that the structure evolution of the MR fluid under 

low shearing should alter micro-gaps between MR particles, and the lubrication performance 

of the suspending liquid is controlled by the external magnetic field, resulting in periodic 

transitions between boundary lubrication and hydrodynamic lubrication regimes. Such an 

interpretation is somewhat different from the above considered scenario of periodically 

breaking and reforming structures. More information about the role of friction forces on the 

rheology of ER and MR fluids can be found in [de Vicente and Ramírez (2007), Kuzhir et al. 

(2009), Tian et al. (2010-a, 2010-b, 2011), Jiang et al. (2011)]. 

In view of the lack of experimental studies and of the absence of a common 

interpretation of the stick-slip phenomenon in MR suspensions, we have aimed to conduct a 

detailed study on stick-slip instabilities. In this manuscript, we focus on the stress response of 

highly concentrated MR suspensions subjected to imposed shear rates. Our measurements are 

restricted to relatively small oscillations, at which the rheometer is still able to maintain the 

imposed shear rate. The experimental oscillating stress signal will be qualitatively compared 

with the predictions of the simulations of Klingenberg et al. (1991) and Bonnecaze and Brady 

(1992). In addition, we will present our own theoretical model that, as will be shown, predicts 

the main features of the stick-slip instabilities observed in our experiments. Finally, we shall 

try to estimate whether the flow of our suspension corresponds to lubricated contacts between 

particles (lubricated regime) or to direct contacts with solid friction (frictional regime). 
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II. MATERIALS AND METHODS 

Carbonyl iron powder (Fe-CC, BASF, Germany), was used as solid phase for the 

preparation of the MR suspensions. According to the manufacturer, these particles have 

median diameter of 5µm. Mineral oil (density and viscosity at 25 ºC: 0.85 g·cm
-3

 and 39.58  

0.16 mPa·s, respectively) purchased from Sigma Aldrich (Germany) was used as carrier 

liquid. MR suspensions with 50 vol.% approximate concentration were prepared following the 

protocol described by López-López et al. (2012). The suspension magnetization was 

measured using a hysteresimeter (S2IS, France), and the magnetization curve is plotted in 

Fig.2. As is seen in this figure, the suspension remnant magnetization is low as compared to 

the saturation magnetization (Mr=6±4 kA/m against MS=760±10 kA/m), and the 

magnetization curve appears to be quasi-linear at magnetic fields, H<25 kA/m, with the initial 

magnetic susceptibility being equal to i=7.2±0.3. The whole magnetization curve is 

satisfactory fitted by a Fröhlich-Kennelly law [Jiles (1991)]: /( )i S i SM M H H M   . 

 

FIG. 2. Magnetization curve of the MR suspension of volume fraction of 50%. The inset shows the same curve 

at lower values of the magnetic field.   

Rheological measurements were performed at 25 ºC using a rheometer MCR 300 

(Physica-Anton Paar). The measuring geometry consisted of a homemade set of non-magnetic 
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parallel plates of 20 mm in diameter, with rough surfaces in order to avoid wall slip. The gap 

thickness between the lower (stationary) plate and the upper (rotating) plate was 0.35 mm. 

The applied magnetic field was generated with the help of a solenoid, placed co-axially with 

the measuring geometry, the technical details being described in Kuzhir et al. (2008). 

The experimental protocol used for the rheological measurements was as follows. 

Prior to the measurements, the MR sample was intensively stirred by using a mechanical 

vortex mixer. Immediately afterwards, the sample was placed in the measuring system of the 

rheometer and subjected to a linear shear rate ramp of 1 min of duration in the range 0.1–100 

s
-1

. Then, a magnetic field of a given intensity was applied and the suspension was left at rest 

for 30 s. Finally, a constant shear rate (within the range 0.01–200 s
-1

) was applied during the 

time required to achieve shear strains, 1 , and the stress response was measured during 

this time. Once the measurement at a given shear rate was accomplished, the whole process 

(starting at the pre-shear stage at zero magnetic field) was repeated at another shear rate. In 

this way, each point of the shear stress-vs.-shear rate curve was obtained through a long time 

measurement independent on the suspension history at previous shear rates. Presumably, 

isotropic structures should constitute the MR suspension before the application of the 

magnetic field at each step. As will be shown and discussed below, at low enough shear rates 

the shear stress did not reach a steady state value even after 20 min of shearing at constant 

shear rate, but instead experienced some regular oscillations with shape very similar to that of 

the stick-slip motion of a solid body on a solid substrate. If this was the case, we took the 

mean value of the stress (within its oscillations) as the representative stress for the 

corresponding shear rate. At this point, it is important to note that the electronic commutation 

motor of the rheometer Physica MCR 300 does not allow a perfect control of the strain (or 

shear rate) for the large and rapid variations of the stress signal exhibited by some materials. 
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We checked that, at small stress oscillations, the strain signal was almost linear with time. 

Consequently, we restricted our measurements to relatively weak stress oscillations.  

III. EXPERIMENTAL OBSERVATIONS 

The rheograms of the MR suspensions obtained for four different magnetic fields, 

using the protocol described in Sec. II, are plotted in Fig. 3. For all the magnetic fields, except 

zero field, the rheograms show a minimum at some non-zero shear rate. A very similar non-

monotonic stress-shear rate behavior was observed by Pignon et al. (1996) for Brownian 

suspensions of laponite particles. This shape of the rheogram suggests unstable flows of the 

suspension, since it is well known that a steady state homogeneous flow with a linear velocity 

profile is absolutely unstable within the range of shear rates corresponding to the decreasing 

branch of the rheogram –see for instance Quemada (1982). Within this domain of negative 

differential viscosity, the shear rate may vary from point to point in the suspension, and, 

strictly speaking, we are not allowed to define the shear rate in the common way as the ratio 

of the upper plate speed v to the gap thickness h. Therefore, from now in this work the 

quantity v/h is referred to as the apparent or global shear rate. Note that in the absence of 

field, we do not observe a clear minimum but the flow curve shows a flat trend at low shear 

rates, followed by an increase at higher shear rates. As is seen from Fig.3, the flow curves are 

shifted upwards to higher values of the shear stress when the magnetic field is increased. This 

is the signature of the classical magnetorheological effect – field induced enhancement of the 

viscoelastic properties of MR suspensions. What is more important for the present study is 

that the flow curve minimum becomes much deeper with an increasing magnetic field. This 

suggests that eventual flow instabilities in MR suspensions are governed principally by 

magnetic interactions. 



9 

 

 

FIG. 3. Experimental flow curves of highly concentrated MR suspension in a semi-log scale for four different 

applied magnetic fields. 

In order to inspect the stability of the MR fluid shear flow at the decreasing branch of 

the flow curves, we measured the temporal evolution of the stress signal in response to the 

applied constant shear rate. Typical stress versus time dependences are shown in Fig. 4 for 

four different values of the applied field, H0, and three different values of the applied shear 

rate,  . As observed in this figure, at low enough values of  , the shear stress first increases 

slowly with time and then, after 200-400 s, a regime characterized by regular stress 

oscillations with a constant amplitude is reached. These stress oscillations present a saw-

tooth-like shape with well-defined period and amplitude for shear rates lower than some 

critical value depending on the applied magnetic field, as illustrated in Fig. 4b for  =0.01 s
-1

. 

This stress signal is very similar to that inherent of the dry stick-slip motion and has been 

previously found for concentrated colloidal laponite gels [Pignon et al. (1996)]. The stick 

process is associated to the increase of the shear stress, while the slip one is characterized by 

the decrease of this magnitude. 
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FIG.4. Examples of the time dependence of the shear stress at a constant shear rate,  , developed by highly 

concentrated MR suspensions upon application of a magnetic field, H0. (a)  =0.01 s
-1

; (b) the same as (a) but 

with an enlarged time scale; (c)  =0.015 s
-1

; (d)  =1 s
-1

. The four curves in each graph correspond to the 

applied magnetic fields increasing progressively from the lower to the upper curve and taking the following 

values: 0; 9; 18 and 26.5kA/m.  

Qualitatively, the period of oscillations increases when the magnetic field is increased 

and decreases with an increasing shear rate. At high fields and low shear rates, the slip time, 

tslip, is an order of magnitude smaller than the stick time, tstick (for instance, tslip=0.10±0.05 s 

and tstick=6.6±0.1 s at  =0.01 s
-1

 and H0=26.5 kA/m, cf. Fig. 4b). On other hand, with 

decreasing magnetic fields or increasing shear rates, the amplitude of the stress oscillations 
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decreases in value and the slip time turns out to be comparable to the stick time (as in the case 

of  =0.01 s
-1

 and H0=9 kA/m, see Fig. 4b). Finally, for shear rates higher than some critical 

value (for instance, 0.025 s
-1

 at H0=26.5 kA/m) the regular stick-slip motion disappears and 

only small stress oscillations (with amplitude smaller than 2 % of the mean stress value) are 

observed, as illustrated in Fig. 4d for  =1 s
-1

. These small oscillations are attributed to the 

instrumental error, of the order of 5%, caused by a non-perfectly symmetric filling of the 

rheometer gap and eventual misalignment of the measuring geometry. The absence of regular 

oscillations, along with the absence of a clear minimum of the flow curve at zero field, allows 

us to conclude that the stick slip phenomenon may only appear in the presence of the applied 

magnetic field. 

The effect of the applied magnetic field on the stick-slip behavior of the MR 

suspension is better illustrated in Fig. 5, where the period and amplitude (peak-to-peak) for a 

shear rate  =0.01 s
-1

 (Fig. 5a), as well as the critical shear rate at which the oscillations 

disappear (Fig. 5b), are plotted as a function of the applied field strength. All these quantities 

increase progressively with the magnetic field. The increasing trend of the amplitude of 

oscillations and of the critical shear rate is an expected behavior, explained by the 

strengthened magnetic interactions between the particles, leading to more robust structures, 

which better withstand the applied shearing forces. The increasing tendency of the period of 

oscillation will be discussed at the end of the present section along with the microscopic 

interpretation of the stick-slip. Note also that the critical shear rates at which the stick-slip 

oscillations disappear are lower than the shear rate values corresponding to the minima of the 

flow curves presented in Fig. 3. This is probably because the flow curves have deep but rather 

flat minimum, around which the shear stress varies only slightly, such that pronounced 

instabilities do not occur in the vicinity of the minimum. 
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FIG. 5. (a) Period and amplitude of oscillations plotted as a function of the applied field strength for a shear rate 

of 0.01 s
-1

. (b) Field dependency of the critical shear rate, at which stick-slip disappears. 

If we want to have a clear idea about what happens to the particle structures and/or to 

the shear field during stress oscillations, some visualization experiments coupled with 

macroscopic measurements should be performed. Most of the methods successfully used in 

conventional suspensions (dynamic light scattering, particle image velocimetry, magnetic 

resonance imaging, neutron or X-ray scattering) are not at all suitable for MR suspensions, 

due to their opacity, large particle size and the use of external magnetic fields. Therefore, we 

were forced to use the simplest method, namely, the direct visualization of the shear field of 

the MR sample by looking at the deformation of a pigmented column introduced into the 

meniscus of the MR suspension, as shown in Fig. 6. In more details, the pigmented column 
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was a concentrated suspension of titanium dioxide nanoparticles in glycerol, and we 

proceeded as follows. After having placed the MR sample in the measuring geometry of the 

rheometer and pre-sheared it, we scratched a small canal on the meniscus surface of the MR 

sample in the direction perpendicular to the rheometer plates – this scratch was done in the 

presence of the magnetic field. Then, by using a micro-needle we filled the canal with the 

pigmented suspension, taking care for full filling of the canal. Finally, the sample was sheared 

at constant rate. A similar procedure was used by Persello et al. (1994) and Pignon et al. 

(1996) in their studies on the rheology of silica gels and laponite clays. Of course, this method 

does not allow inspection of the internal structure of the MR suspension and gives only a 

qualitative picture of the local shear profiles. 

 

FIG. 6. Direct visualization of shear localization in highly concentrated MR suspensions upon application of a 

magnetic field strength, H0=18.5 kA/m. At subcritical shear rate,  =0.01 s
-1

, the initially straight pigmented 

column (a) breaks into two parts in the middle plane, the lower part being adhered to the lower plate and the 

upper part moving as a whole with the upper plate (b). This behavior could be interpreted in terms of shear 

localization at the middle plane. At supercritical shear rate,  =0.5 s
-1

, the column is strained in an affine way 

(c), manifesting a homogeneous deformation of the suspension. The red circles in (b) surround the two parts of 

the broken pigmented column. The black curves in (c) are guidelines indicating the position of the upper and 

lower rheometer plates. 

As observed in Figs. 6a and 6b, at low shear rate,  =0.01 s
-1

, for which regular stick-

slip oscillations were detected, the pigmented column was ruptured approximately at its 
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middle height, the lower half remaining attached to the immobile lower plate, while the upper 

half moving jointly with the upper plate. Apparently, during the motion of the upper plate, 

both parts of the column seemed to be always perpendicular to the rheometer plates. At higher 

shear rate,  =0.5 s
-1

, for which the stick-slip instability did not occur, the pigmented column 

experienced a uniform deformation, spanning the gap between both plates and elongating as it 

was tilted by the shear (see Fig. 6c). This could be taken as a proof of the existence of a 

homogeneous deformation profile, corresponding to a stable steady-state flow, at supercritical 

shear rates. On the other hand, the rupture of the pigmented column at subcritical shear rates 

could be interpreted in terms of suspension fracture in the middle plane, with shear 

localization occurring within a narrow lubrication layer.  

In order to explain the stress oscillations on the basis of the existence of a narrow 

lubrication layer, we must assume that this layer periodically appeared and disappeared, the 

following being a likely scenario. The slow stress growth during the stick process could be 

attributed to a homogeneous elastic deformation of the suspension as a whole. At some 

critical strain, the suspension structure broke in the middle plane and the resulting blocks 

(each of the two halves of the suspension) turned back, sliding over each other, which 

provoked a rapid stress release. A scheme of such behavior is shown in Fig. 7. 
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FIG. 7. Macroscopic description of the different stages of the stick-slip phenomenon. From top to bottom: 

homogeneous deformation of the suspension as a whole; fracture of the suspension structure in the middle plane 

at a critical strain, crit (onset of the slip with formation of a lubrication layer); backward rotation of the two 

suspension blocks with a sliding friction between them; stick of two blocks at some minimum strain, min. In the 

bottom sketch it is indicated that during the block rotation (slip process) the local strain decreases by . 

Since we found experimentally that the stress did not release to zero but was lowered 

by a maximum of thirty percent (see Fig. 4), it was likely that the two suspension blocks did 

not recover initial zero strain but turned back to some small angle at which they stuck to each 

other once again. Thus, the local strain of both suspension blocks oscillated between some 

maximum value corresponding to the onset of the slip and some minimum value 

corresponding to the onset of the stick. The spatial period,  of these oscillations can be 

expressed in terms of the local strain of the suspension blocks;  is related to the time period, 

, by the formula Tglob    , where glob  is the global shear rate. Following this 
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reasoning, we estimate the spatial period,  to be of the order of 0.035 at H0=18.5 kA/m and 

0.06 at H0=26.5 kA/m. These values correspond to the displacements of the upper rheometer 

plate by a distance of a few particle diameters, 2a. So,  is of the order of the ratio, 2a/h, of 

the particle diameter to the gap thickness, h; namely, 2.5 (2 ) /a h    at H0=18.5 kA/m and 

4(2 ) /a h   at H0=26.5 kA/m. The smallness of the strain   suggests that the stick-slip 

phenomenon occurs at the particle scale, i.e. when the two suspension blocks slide over each 

other a distance of the order of magnitude of the particle diameter (cf. Fig.7). The field effect 

on the spatial period and the time period of oscillations [Fig. 5a] could be explained by the 

formation of thicker particle structures with a larger spatial period when the magnetic field is 

increased. Such a behavior (the formation of thicker particle structures as the applied field is 

increased) has recently been revealed by X-ray microtomography [Borbáth et al. (2012)]. 

 

In next section, we present a theoretical model based on the considered microscopic 

mechanism of the stick-slip phenomenon, and we estimate the period and amplitude of the 

stress oscillations. 

IV. THEORY AND DISCUSSION 

As already stated, the most likely mechanism that may cause the stick-slip 

phenomenon in MR suspensions is the periodic rupture and reformation of the particle 

aggregates. In a first approximation, the field-induced structure of a concentrated MR 

suspension can be presented as a periodic array of column-like aggregates that are often 

reported in literature [see, for instance, Borbáth et al. (2012)]. In more details, we may 

consider a hexagonal array of multi-chain aggregates whose thickness (or, equivalently, the 

number of single chains per one multi-chain) increases with the magnetic field. At this stage, 
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we do not attempt to predict the aggregate thickness as function of the applied field. Instead, 

we restrict our theoretical analysis to the case of an applied magnetic field, H0=18.5 kA/m, 

keeping in mind that our model could be applied to any value of the applied field just by using 

the correct spatial period. At a chosen magnetic field, H0=18.5 kA/m, the spatial period found 

from the temporal period of stress oscillations is equal to 2.5(2 ) /a h   and appears to be 

close to the period, 1.9(2 ) /a h   of the hexagonal array of three-chain aggregates shown 

in Fig.1c. In what follows, we will estimate the principal parameters of the stick-slip motion 

for this particular structure. 

During the stick process, the multi-chains are supposed to be strained in an affine way 

with the whole suspension, and the strain is supposed to grow linearly with time. The multi-

chains are tilted by the applied strain and the suspension stress rises monotonically with the 

strain and, consequently, with the time. However, at some critical strain, the stress achieves its 

maximum value and then decreases with the strain. As discussed in one of our previous work 

[López-López et al. (2012)], at strains higher than the critical one the MR structure becomes 

mechanically unstable and, thus, it is supposed to be ruptured at the maximum point of the 

stress-strain relation. The critical strain was estimated to be 0.115crit  , and the failure of 

the MR structure at 0.115crit   likely corresponds to the onset of the slip. According to our 

visualization experiments (see Fig. 6), the multi-chain aggregates are expected to be ruptured 

in their middle point. Afterwards, during the slip process, the upper and lower halves of the 

ruptured aggregates are supposed to turn back until they reach the opposite halves of the 

neighboring aggregates, as schematically depicted in Fig. 1c. Once in front of each other, due 

to the attractive magnetic forces, the aggregate halves are supposed to stick immediately to 

each other; this gives rise to the onset of the stick process. Thus, during the stick-slip process, 

the aggregates are supposed to perform angular oscillations with amplitude 
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1.9 (2 ) /a h      , such that the local strain (associated to the angle  between the 

aggregates and the magnetic field) fluctuates between the maximum value 0.115crit   and 

the minimum value 
min crit     (see Fig. 7). 

The temporal variation of the local strain during the slip can be estimated by equating 

the magnetic and hydrodynamic torques acting on the network of half-chains. Because of the 

symmetry of the problem with respect to the middle plane, the motion of both the lower and 

the upper networks is completely equivalent, so that we may consider only one of the 

networks. We assume that the aggregates move only in the shear plane and, consequently, 

their rotation axis is parallel to the direction of the vorticity. The magnetic torque per unit 

volume of the network can be found, in the general case, as the derivative of the network free 

energy (or, equivalently, of the thermodynamic function F ) with respect to the strain angle : 

   

,

m

T

F
T



 
  

  H

 .     (1) 

The thermodynamic function F  is defined through the free energy of the suspension per unit 

volume, F0, and can be written in terms of the local strain angle  as follows López-López et 

al. (2012): 

2 2 2 2

0 0 0

1 1
cos sin

2 2
F F H H        .   (2) 

where µ0=4∙10
-7

 H/m is the magnetic permeability of vacuum,   and 
 are the 

components of the magnetic permeability tensor of the suspension in the reference frame of 

the aggregates and along their major and minor axes, respectively, H is the magnetic field 

intensity inside the MR fluid. Writing down the last equation, we have supposed that the 
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suspension magnetic permeability is field-independent; this assumption is verified by the 

magnetization measurements [cf. Fig.2] for the experimental range of the magnetic fields (0-

26.5 kA/m). By substitution of Eq. (2) into Eq. (1), the following expression is obtained for 

the magnetic torque: 

 2 2 2 2

0 0

1
sin cos cos sin

2
mT H H

 
       

 




 
    

  
.  (3) 

The components,   and 
 of the magnetic permeability tensor, were calculated elsewhere 

[López-López et al. (2012)] for a multi-chain structure. This structure was designed in such a 

way that it could expand without losing the mechanical equilibrium until a critical strain at 

which it broke. In Eq. (3) the derivatives of the longitudinal and transverse magnetic 

permeabilities of the suspension are calculated as 

2/ ( / ) /( / ) ( / ) (1 ), ,k k k k                      , where the magnitudes /    

and /    are given in our previous work [López-López et al. (2012)]. Note that the 

transverse permeability appears to be almost constant, such that / 0    . Taking into 

account the relation between the strain and the strain angle, tan  , the magnetic torque 

can be expressed in terms of the local strain: 

 2 2 2

0 02

1

1 2
mT H H

 
    

  




 
     

   
.  (4) 

According to [López-López et al. (2012)], /      , therefore, the first term of 

Eq.(4) appears to be negligible with respect to the second one and can be omitted. Note that, 

because of the demagnetizing field of the MR sample, the magnetic field intensity H inside 

the suspension is lower than the intensity H0 of the external field by a factor equal to the 
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component, zz, of the magnetic permeability tensor of the suspension [López-López et al. 

(2012: 

2

0
02

1

zz

H
H H



   


 


.     (5) 

The hydrodynamic torque acting on the network of half-chains can be estimated 

assuming that the network rotates in the quiescent ambient liquid, in such a way that in the 

reference frame of the aggregates the liquid filtrates through the interstices between them. It is 

clear that in its rotation the network will partially drag the suspending liquid. Therefore, since 

the hydrodynamic torque depends on the relative velocity of the network with respect to the 

liquid, the assumption of the quiescent liquid is a rough approximation to the problem, which 

will, nevertheless, allow us to estimate the order of magnitude of the slip time. The torque will 

be calculated using some kind of slender body theory adapted to an array of parallel slender 

aggregates. The normal component of the hydrodynamic force, f , acting per unit height of 

the network can be related to the hydraulic permeability of the network via the Darcy 

filtration law. In the Appendix, we demonstrate that f  is expressed through the velocity, 

v z  , of the multi-chain at its longitudinal position z by the following formula: 

   0 0

2 2

, 2a h

v S S
f z

r K a K

 


   ,    (6) 

where 0 is the viscosity of the suspending liquid of the MR suspension, S is the surface of the 

rheometer plates, , 2a hr a  is the hydraulic radius of the three-chain aggregates, K is the 

dimensionless hydraulic permeability of the hexagonal array of cylindrical aggregates (given 

in Appendix), and   is the angular velocity of the half-chains. Now, the hydrodynamic torque 

per unit volume of network is calculated as the integral of the product ( )f z
 along the height 
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of the network, / 2h , in a similar way as in the classical slender body theory [Batchelor 

(1970, 1971)]: 

   

/ 2

0

1
h

hT f zdz
V

  .     (7) 

Replacing the force density f  by Eq. (6), taking into account that    at small 

angles  and noting that the ratio of the surface to the volume, S/V, is equal to the inverse of 

the height of the network, 2/h, Eq. (7) takes the following form: 

   
2

0 ( / )

24
h

h a
T

K


 ,     (8) 

where glob   is the local shear rate associated to the structure rotation. Note that the 

eventual compression of the aggregates during their rotation, something which decreases their 

height, h/2, is an effect of second order of smallness on  and, therefore, is not taken into 

account in our work. In the inertialess limit, the sum of both the magnetic and the 

hydrodynamic torques, Eqs. (4) and (8), must be equal to zero, which gives a first-order 

differential equation with respect to the local strain . This equation admits an approximate 

solution if the magnetic torque is interpolated by the following linear function of the strain: 

    2

0(1/ 2)mT c H    ,    (9) 

with c360 being a numerical constant. At small variations of the strain, 
crit  , the strain 

is found to decrease quasi-linearly with the time according to the equation: 

   exp 1crit crit

t t
  

 

   
      

   
,   (10) 



22 

 

where 0.115crit   is the strain at the onset of the slip, and  is the relaxation time given by: 

   
2

0

2

0

( / )

12

h a

c K H








,     (11) 

with the internal magnetic field intensity H() corresponding to the critical strain, crit. This 

time is the characteristic time of the structure rotation under the action of the magnetic torque. 

As observed in Eq. (11), the relaxation time is proportional to the viscosity of the suspending 

liquid and inversely proportional to the square of the magnetic field intensity H and to the 

hydraulic permeability of the network. The slip time is simply calculated from Eq. (10) as the 

time required to decrease the strain by the value 1.9 (2 ) /a h   : 

    
slip

crit

t






 .     (12) 

For the magnetic field, H0=18.5 kA/m, Eqs. (11) and (12) give, respectively, a 

relaxation time 1.21s and a slip time tslip0.29s. The latter is of the same order of 

magnitude than the experimental value (0.20±0.05 s, cf. Fig. 4b). The discrepancy is likely 

related to the assumption of quiescent suspending liquid, an assumption that overestimates the 

hydrodynamic dissipation and leads to a higher slip time than the one observed in the 

experiments. The complete stick-slip cycle is constituted by a linear growth of the local strain 

during the stick time and a quasi-linear decrease of the local strain during the slip time, 

according to the following equation: 

 
 

min , 0

1 ( ) / ,

glob stick

crit stick stick

t t t

t t t t T

 


 

  
 

    

,    (13) 

where T=tstick+tslip is the total period of the stick-slip cycle. The time response of the 

suspension shear stress during the stick-slip cycle is simply calculated by substituting Eq. (13) 
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in the expression for the magnetostatic stress. This expression was obtained in our previous 

work for highly concentrated MR suspensions [López-López et al. (2012)]: 

   
2

2 2 2

0 0 02 2 2 2 2

1 1 1

(1 ) 2 1 1 2 1
H H H

   
       

     


 

 
        

      
. 

          (14) 

The theoretical time-dependencies of the local strain and the stress are plotted in Fig.8. 

The linear growth/decrease of the local strain is well illustrated in this figure, in accordance 

with Eq. (13), while the stress signal has a smoother shape. The latter is connected to the 

rounded shape of the stress-vs.-strain curve near its summit, where the structure breaks –see 

López-López et al. (2012). Because of this, when the critical strain is approached, the stress 

increases with the strain slower than linearly and, since the strain increases linearly with time 

during stick, the theoretical stress presents a less rapid increase. In fact, from the theoretical 

point of view / 0     when 
crit  . The theoretical stress signal (Fig. 8) qualitatively 

predicts the features of the experimental one (Fig. 4b). Both in theory and in experiments, we 

observe a monotonic stress growth during stick and a monotonic decrease during slip; the 

stress amplitude is an order of magnitude lower than the stress maximum; and the stick time is 

an order of magnitude higher than the slip one. However, the stress growth section is quasi-

linear in the experimental case, whereas it presents a rounded-shape curvature in the 

theoretical one. This discrepancy could be explained by the fact that the real stress versus 

strain curve has probably a sharper pick at the critical strain.
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FIG. 8. Theoretical time dependencies of the local strain and of the suspension shear stress for a highly 

concentrated MR suspension upon application of a magnetic field of strength H0=18.5 kA/m, and at the global 

shear rate glob =0.01 s
-1

. 

In what concerns the field dependency of the amplitude of stress oscillations, our 

model predicts an increasing trend in qualitative agreement with experiments (cf. Fig. 5a). In 

more details, the stress amplitude is given by the difference between the maximum stress, 

max ( )crit   , and the stress corresponding to the minimum strain 
min crit    . In the 

limit 0.3 crit   , the stress amplitude can be expanded into power series on , as follows: 

2 2 2( ) ( ) (1/ 2)( / ) ( )
critcrit crit                  , taking into account that 

( / ) 0
crit    . Thus, deriving two times the shear stress [Eq. (14)] with respect to the strain, 

it becomes clear that the stress amplitude, , scales as 2 2

0 ( )H  , and therefore increases 

progressively with the magnetic field, taking into account that   is an increasing function of 

the field.  

At this point is worth mentioning some related results of numerical simulations 

performed by other authors. Klingenberg et al. (1991) reported quite irregular oscillations of 

the stress in very dilute ER suspensions, for which collisions between broken chains are rather 
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seldom and random events. Bonnecaze and Brady (1992) found quite irregular fluctuations of 

the electrostatic stress of electrorheological fluids at very low shear rates (Mason number 

Ma=10
-4

), which became more regular at higher shear rates (Ma=10
-2

). Nevertheless, in the 

latter case, microscopic rearrangements of the particles inside the aggregates and between 

them seem to play an important role and provoke a non-negligible noise in the stress signal. 

Furthermore, the shape of the stress signal appears to be rather different from that observed in 

our experiments, with the slip time being approximately equal to the stick time and the 

amplitude of the stress oscillations comparable to the pick value of the stress. Such 

discrepancy with experiments could come from the fact that only a small number of particles 

was used in the simulations and, consequently, the influence of local stochastic events did not 

vanish. 

Another important feature observed in our experiments is the disappearance of the 

stick-slip phenomenon at some critical shear rate – see Fig. 5b. At this moment, we do not 

have a clear explanation for the absence of the stick-slip at higher shear rates. We suppose 

that this could be connected to the kinetics of reformation of structures after their rupture at a 

critical (yield) stress. 

A further analysis of the suspension microstructure inherent to the stick-slip instability 

requires knowledge of the interparticle gaps. Using our model of homogeneous elongation of 

the aggregates upon shearing, we estimate that, at the maximum extension, the interparticle 

gap is about 0.7% of the particle diameter, i.e. 33nm for the particles with 5µm of diameter. 

Such a small gap is, at the most, of the same order of magnitude as the particle roughness. 

Therefore, we expect that solid friction between particles plays an important role in the 

reformation of aggregates during their backward motion. Once in contact, boundary 

lubrication between particle surfaces likely occurs, something which would induce high 
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friction forces with features similar to those of solid friction [Persson (2000)]. In order to 

check if the contacts between particles are governed by hydrodynamic lubrication (squeeze 

repulsive forces) or boundary lubrication (friction forces), we calculated the ratio of squeeze 

forces to normal interparticle forces: 

2

0 0

2

3 /(2 )s

n m m

F a v v

F a f f

  

 
 ,     (15) 

where / slipv h t  is the characteristic velocity of approach of particles belonging to 

opposite aggregates, 50 nm is the particle roughness and fm is the characteristic magnetic 

force (per unit particle cross-section, a
2
) between two particles separated by a distance . We 

calculated the force fm by integration of the Maxwell stress tensor over the outer face of the 

surface of one of the particles using finite element method simulations [software FEMM, 

Meeker (2009)]. We obtained that 2

0360mf H  , with H being the magnetic field inside the 

MR fluid [cf. Eq. (5)] at the critical strain, 0.115crit  . For the experimental parameters 

corresponding to the stick-slip phenomenon shown in Fig. 4b, Eq. (15) gives 2/ 10S nF F  , 

which confirms the importance of friction forces for particles in contact. Thus, when two 

halves of the broken aggregates come into contact, a tangential friction force likely appears in 

the contact area, oriented in the direction of the applied shear. Estimations show that this force 

is relatively strong and creates a supplementary torque, which very likely balances the 

restoring magnetic torque and stops the backward rotation of the broken aggregates at the first 

encounter with the neighboring ones. Of course, friction should also affect the conditions of 

the structure failure [as pointed out by Tian et al (2010)] and could thus enhance the stress 

level in the suspension. However, this matter is out of scope of the present paper and will be 

considered in a future work. 
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V. CONCLUSIONS 

We have shown that the rheograms (shear stress-vs.-shear rate curves) of concentrated 

MR suspensions present a decreasing branch at low values of the shear rate. In this region of 

negative differential viscosity the stable flow of the suspension is impossible, as proved by the 

stress oscillations obtained for each imposed shear rate within this decreasing branch. The 

obtained stress oscillations present well-defined amplitude and period, which appear to 

increase with the applied field strength. These stress oscillations are reminiscent of the stick-

slip instabilities reported by other authors for different colloidal suspensions and, in fact, our 

macroscopic visualizations have shown that the observed oscillations are correlated with the 

appearance of a fracture layer at middle height of the sheared suspension. Consequently, we 

have explained these oscillations by a mechanism of elongation of the field-induced particle 

aggregates until their failure at a critical strain, followed by recombination among broken 

parts of neighboring aggregates. Taking this as the starting point, we have developed a model 

based on the balance of the torques acting on the field-induced particle structures. Our model 

predicts a magnetic field dependence characterized by an increase of the amplitude of the 

stress oscillations, explaining it in terms of enhanced magnetic interactions. Finally, we have 

tried to estimate whether the flow of our suspension corresponds to lubricated contacts 

between particles (squeeze repulsive regime) or to direct contacts with solid friction 

(frictional regime). Calculations have shown that friction forces dominate over squeeze forces 

for the characteristic parameters of our experiments. Nevertheless, the solid friction between 

particles is expected to be a supplementary but not decisive mechanism of the stick-slip 

phenomenon. We should maintain the rupture/reformation mechanism as the principle reason 

for the stick-slip instabilities observed in concentrated MR suspensions. 
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APPENDIX: HYDRAULIC RESISTANCE OF THE NETWORK OF MULTI-CHAIN 

AGGREGATES 

Let us consider a laminar filtration flow of an interstitial liquid through a periodic 

hexagonal array of triple-chain aggregates, as shown in Fig. A1. The flow is perpendicular to 

the aggregates and the superficial velocity is equal to v . Our aim is to calculate the 

hydrodynamic force, f , acting per unit height, dh, of this network. 

 

FIG. A1. Schematic representation of a hexagonal array of chain-like aggregates. 
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The distance between chain the axes, given in Table II, is 

2 /( 3 ) 1.9 (2 )d a a     . It is reasonable to approximate the elongated shape of the 

chains by a straight cylinder with equivalent (or hydraulic) radius corresponding to the radius 

of a cylindrical column having equal volume to that of the solid phase of the chain: 

, 2a hr a . The unit hydrodynamic force, f , can be expressed through the pressure 

difference, P, of the liquid across the network:  

f P b    ,      (A.1) 

where b is the network dimension perpendicular to the flow (network width). The pressure 

difference is found from the Darcy filtration law with an appropriate hydraulic permeability, 

K, of the network: 

   0

2

,a h

L
P v

r K


  ,     (A.2) 

where L is the network dimension along the flow (network length) and the permeability K is 

normalized by the square of the column radius, 
2

,a hr , and given by the expression derived by 

Bruschke and Advani (1993) using the lubrication approximation: 
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,   (A.3) 

with ,2 / 2 3 / 0.742a hl r d      being the ratio of the hydraulic diameter of the 

aggregates to the distance between them. By substitution of Eq. (A.2) into Eq. (A.1), and 

taking into account that the product Lb is the network surface perpendicular to the aggregates, 

S, we arrive to the final expression for the hydrodynamic force, f , which is given above by 
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Eq. (6). Of course, in our experiments with shear flow in plate-plate geometry, we do not 

expect any pressure gradient along the circumferential direction of the flow. Filtration at 

homogeneous superficial velocity is considered here only for the purpose of the estimation of 

the network resistance coefficient. This coefficient (prefactor at 
0v 

 in the expression for 

f ) is then used for the calculation of the hydrodynamic torque of the rotating network, Eqs. 

(7) and (8). The same artifice was used in the classical slender body theory for the calculation 

of the resistance coefficients for the Stokes flow around a cylinder, which were subsequently 

used for the calculation of the torque and the stresslet in shear flows [Batchelor (1970)].  
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