
HAL Id: hal-00846051
https://hal.science/hal-00846051

Submitted on 18 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Tackling Virtual Data Center Embedding Problem
Md Golam Rabbani, Rafael Esteves, Maxim Podlesny, Gwendal Simon,

Lisandro Zambenedetti Granville, Raouf Boutaba

To cite this version:
Md Golam Rabbani, Rafael Esteves, Maxim Podlesny, Gwendal Simon, Lisandro Zambenedetti
Granville, et al.. On Tackling Virtual Data Center Embedding Problem. IM 2013 : IFIP/IEEE Inter-
national Symposium on Integrated Network Management, May 2013, Ghent, Belgium. �hal-00846051�

https://hal.science/hal-00846051
https://hal.archives-ouvertes.fr

On Tackling Virtual Data Center Embedding
Problem

Md Golam Rabbani∗, Rafael Esteves∗†, Maxim Podlesny∗, Gwendal Simon‡

Lisandro Zambenedetti Granville†, Raouf Boutaba∗
∗ D.R. Cheriton School of Computer Science, University of Waterloo, Canada
† Institute of Informatics, Federal University of Rio Grande do Sul, Brazil

‡ Telecom Bretagne, Institut Mines Telecom, France

Abstract—Virtualizing data center networks has been con-
sidered a feasible alternative to satisfy the requirements of
advanced cloud services. Proper mapping of virtual data center
(VDC) resources to their physical counterparts, also known as
virtual data center embedding, can impact the revenue of cloud
providers. Similar to virtual networks, the problem of mapping
virtual requests to physical infrastructures is known to be NP-
hard. Although some proposals have come up with heuristics to
cope with the complexity of the embedding process focusing on
virtual machine placement, these solutions ignore the correlation
among other data resources, such as switches and storage. In this
paper, we propose a new embedding solution for data centers that,
in addition to virtual machine placement, explicitly considers the
relation between switches and links, allows multiple resources of
the same request to be mapped to a single physical resource, and
reduces resource fragmentation in terms of CPU. Simulations
show that our solution results in high acceptance ratio of VDC
requests, improves utilization of the physical substrate, and
generates increased revenue for infrastructure providers.

I. INTRODUCTION

With the increasing popularity of cloud computing, data
centers have been widely deployed by companies such as
Amazon, Google, Facebook, and Yahoo! to support large-scale
applications and to store large volumes of data. However, the
deployment of large-scale data centers usually comes with
high provisioning and maintenance costs, making data centers
prohibitive for smaller enterprises and research labs. To allow
multiple users to share data centers and, consequently, reduce
the operational costs of such infrastructures, data center archi-
tectures proposed over the recent years [1]–[3] rely on server
virtualization technologies (e.g., Xen and VMWare). Server
virtualization partitions a physical server into multiple isolated
slices called virtual machines (VMs) and makes them work
independently from each other. A data center relying on server
virtualization allows multiple service providers to coexist.
However, limitations of current data center architectures hinder
a deployment of specific classes of applications that depend
on network constraints other than computing and storage. For
example, MapReduce applications have strict constraints in
terms of latency and throughput, which server virtualization
cannot guarantee [4].

Extending the benefits of virtualization to network in-
frastructures is an emerging trend toward fully virtualized
data center architectures [5]. Similarly to virtualization of
wide area networks [6], two main entities cooperate with

each other in virtualized data center networks : infrastructure
providers (InPs), which owns the physical data center, and
service providers (SPs), which in turn run applications on
virtual data centers (VDC) built on the top of the physical
substrate. An VDC consists not only of VMs but also on
multiple resources related to the inter-connection of the VMs
(especially switches and links) One of the main objectives of
InPs is to accommodate as many VDC requests as possible.

Defining the mapping of virtual resources to physical ones
is commonly known as embedding, and has been the subject of
extensive research in the context of network virtualization [7]–
[10]. An efficient VDC embedding is crucial to support a
high number of tenants, which in turn impacts the revenue
of an InP. Data center architectures such as SecondNet [11]
and Oktopus [12] have proposed heuristics to cope with
the NP-hardness of the embedding problem. However, these
approaches are heavily topology dependent and cannot be
generally applied to arbitrary data center topologies. For
example, Oktopus uses a greedy algorithm for the resource
allocation to a VDC; however, it supports only two types of
VDC requests, and is applicable only for tree-like physical
topologies. In addition, and more importantly, data center
embedding solutions usually focus on VM placement [11]
and do not explicitly consider other types of resources (e.g.,
storage servers, switches, routers, links) and their associated
constraints, which can limit the applicability of current data
center embedding solutions in realistic scenarios.

We revisit the problem of VDC embedding in this paper.
We define a VDC in a generic way, where we distinguish
multiple resource types on multiple equipments. We typi-
cally observe that the providers of interactive multimedia
applications require GPU in their VMs while other SPs are
interested in very fast memory hardware (SRAM). An InP
should now be able to differentiate these different hardware in
order to serve a vast range of SPs. We also go further for the
definition of virtual switches and virtual links. We believe that
a SP running applications with strong network requirements is
interested in renting a very precise network infrastructure for
the connection between its VMs. Protocols related to Software-
Defined Networks (SDN) can provide some guarantees but
a full isolation of applications can only be offered by the
virtualization of switches.

Our formulation of the VDC embedding problem reveals

that the problem is intractable, thus we present a high-level
approach for tackling the problem. We design a heuristic,
which is based on three embedding phases: VM mapping,
link mapping, and switch mapping. We explicitly include in
the core of our heuristic the different data center resources
such as switches and storage. Moreover, we clearly distinguish
physical servers and network nodes (switches). To increase
the chances of successful VDC embedding, our solution
includes two features. First, it allows multiple resources of
a single VDC request to be embedded in the same physical
resource, which is not considered in other proposals. Second,
we leverage the coordination between switch mapping and link
mapping phases.

The rest of this paper is organized as follows. In Section II,
we formalize the data center network model and the VDC
embedding problem itself. In Section III, we present a gen-
eral approach for tackling the VDC embedding problem. In
Section IV, we propose the particular algorithm for VDC
embedding based on coordinated switch and link mapping.
In Section V, we present the performance evaluation of
the proposed algorithm. Finally, we conclude the paper in
Section VI.

II. PROBLEM DESCRIPTION

We provide now our network model and problem descrip-
tion of the VDC embedding problem. All the notations are
shown in Table I and Table II for physical network infrastruc-
ture and VDC request respectively.

A. Physical Data Center

The InP owns a physical data center network, which is
modelled as a weighted undirected graph, Gp(Sp, Xp, Ep),
where Sp is the set of physical servers, Xp is the set of
physical switches and Ep is the set of physical links.

We associated with each physical server in Sp a set of
featured hardware, which typically includes CPU, data storage
memory, Graphical Processing Unit (GPU), and fast SRAM
memory. A part of each of these hardware can be reserved
by a tenant. To preserve the generality of our model, we
associate with each physical server sp ∈ Sp a set of featured
capacities ci(s

p), i ∈ {1, . . . , k} where k is the number of
different reservable specific hardware capacities. For example,
c1(s

p) and c2(s
p) can refer to CPU and memory capacities

respectively. We also keep track of the residual capacity for
each hardware after some parts of these hardware have been
rented by a tenant. We note c̄i(s

p) the residual capacity for
hardware i ∈ {1, . . . , k}.

We also associate with each physical link ep in Ep a
bandwidth capacity, noted b(ep), and the residual bandwidth
capacity, noted b̄(ep). Please note that this capacity can be
extended with a subscript in the same manner as for the
capacity of physical servers.

One of the novelties of our model is that we introduce also
resources for switches. We consider each buffer of each switch
port and we allows a SP to partially rent each of these buffers.
Thus, a SP is able to very precisely adjust packet losses

TABLE I
NOTATIONS FOR PHYSICAL NETWORK INFRASTRUCTURE.

Gp(Sp, Xp, Ep) The physical network infrastructure
Sp set of physical servers
Xp set of physical switches
Ep set of physical links
ci(s

p) capacity of hardware i of server sp ∈ Sp

c̄i(s
p) residual capacity of hardware i of server sp ∈ Sp

b(ep) bandwidth capacity of link ep ∈ Ep

b̄(ep) residual bandwidth capacity of link ep ∈ Ep

ci(x
p), c̄i(x

p) capacity hardware i (and residual capacity) of switch xp

and processing in every port. To simplify, we use the same
notations as for the virtual servers, so ci(x

p) is the capacity
of the hardware i in the virtual switch xp.

B. VDC Request

The clients of the InP are entities that would like to reserve
a subset of InP’s physical infrastructure. We call a VDC
request what a tenant wants to reserve. The VDC request is
also modelled as a weighted undirected graph, which we note
Gv(Sv, Xv, Ev), where Sv is the set of VMs, Xv is the set
of virtual switches and Ev is the set of virtual links.

TABLE II
NOTATIONS FOR VDC REQUEST.

Gv(Sv , Xv , Ev) VDC request
Sv set of virtual machines
Xv set of virtual switches
Ev set of virtual links
ci(s

v) capacity of hardware i in VM sv ∈ Sv

b(ev) bandwidth of virtual link ev(i, j) ∈ Ev

ci(x
v) capacity of hardware i in virtual switch xv ∈ Xv

We keep the same notations as for the physical infrastructure
for the specific required capacities of VMs and virtual links.

C. Objective and Problem Formulation

The goal of an InP is basically to maximize its profits
through an optimal exploitation of its infrastructure. This
objective is related to maximizing the number of VDC requests
that are successfully embedded in the physical infrastructure
subject to embedding constraints.

Another challenge for InP is that tenants do not coordinate
to request VDC. Thus, VDC requests do not arrive at the
same time. Hence the problem faced by InPs is an online
problem where the inputs (here the VDC requests) have to be
processed iteratively, without knowledge of the future VDCs.
Let consider a VDC request Gv , which is received by the InP
while a part of its infrastructure has already been reserved. We
express in the following the constraints for the embedding of
Gv . We first have to define the output variables.

Let xuv be a set of binary variables for the mapping of
equipment u ∈ Sv (respectively u ∈ Xv) into a physical

server v ∈ Sp (respectively v ∈ Xp).

xuv =

{
1 if u is embedded into v
0 otherwise

Let y(uu′)(vv′) be a set of binary variables for the mapping
of virtual link (uu′) ∈ Ev into physical link (vv′) ∈ Ep.

y(uu′)(vv′) =

{
1 if (uu′) is embedded into (vv′)
0 otherwise

An embedding can be done if the following constraints are
fulfilled for the mapping of equipments.∑

v∈Sp∪Xp

xuv = 1, ∀u ∈ Sv ∪Xv (1)∑
u∈Sv∪Xv

xuv × ci(u) ≤ c̄i(v), ∀v ∈ Sp ∪Xp,∀i (2)

Constraints (1) ensure that a VM is embedded into one and
only one physical server. It also makes sure that all VMs
are embedded. Constraints (2) guarantee that the capacities
of physical servers are not overused by the embedded VMs.

For the link mapping, here are the constraints:∑
(vv′)∈Ep

y(uu′)(vv′) ≥ 1, ∀(uu′) ∈ Ev (3)

∑
(uu′)∈Ev

y(uu′)(vv′) × b((uu′)) ≤ b̄((vv′)),

∀(vv′) ∈ Ep (4)

Constraints (3) ensure that a virtual link can be mapped
to several physical links or a physical path. Constraints (4)
guarantee that physical links have enough bandwidth to host
embedded virtual links.

For one given VDC and one infrastructure configuration,
several embeddings can fulfill all above constraints. But some
of them succeed in preserving “nearby” resources for future
VDCs although others barely allow the next VDCs to be
embedded. The quality of the online embedding algorithm
for VDCs directly relates to the capacity of the embedding
algorithm to be friendly for the next VDCs.

III. ITERATIVE HEURISTICS: MAIN PRINCIPLE

Optimization problems for embeddings that include both
nodes and links are known to be NP-hard. For practical imple-
mentations, heuristics are needed. We discuss in this Section
the main principles of an iterative three-steps algorithm for
the embedding. We go into the details of our main proposal
in Section IV.

A. Introducing the Three Phases

For the processing of a new VDC Gv , an iterative heuristic
consists of the three following rounds.
Phase I: VMs mapping – in this first step, the objective is

to map each VM in Sv into one physical server. The
mapping should respect the constraints (2), that is, the
physical server that host a VM should have enough
capacity. Various strategies can be implemented. With

regard to the following steps, the proximity of the selected
physical servers is critical.

Phase II: Virtual switches mapping – the second step is
about mapping each virtual switch in Xv to a physical
switch. Besides constraints (2), the main idea here is to
associate virtual switches to physical ones while taking
into account the previous VM mapping. It makes more
sense to map a virtual switch between two already
embedded VM so that the distance between the chosen
physical switch and the physical servers that host the VM
is small.

Phase III: Virtual links mapping – the final step is to map
the virtual links into physical links, with respect to con-
straints (4). Many paths can exist between two physical
servers in the real topology. The goal here is to find the
paths between the physical servers that host the virtual
equipments that are given in Ev so that all virtual links
can be embedded. paths

In this heuristic, each step critically impacts the following
steps because the input of each phase depends on the output
of the previous phase. Therefore, we have to implement a
mechanism that allows to get back to a previous phase if ever
one phase cannot be fulfilled. For example, the impossibility
to find a mapping for virtual switches does not mean that
the whole VDC cannot be embedded. Another VM mapping
may enable a successful switch mapping. On the other hands,
a heuristic does not explore all possible solutions. A trade-
off should be found between the number of tested solutions
allowed by such a retro-mechanism and the efficiency of the
whole algorithm, which should be fast.

B. A Randomized Heuristic

We illustrate the presentation of the iterative heuristic by an
example: a simple algorithm based on randomized processes.
For each VM, a physical server is randomly picked and if it
has the capacity to host the VM, the algorithm processes the
next VM, otherwise another physical server is picked. This
algorithm iterates on the whole set of VMs until all VMs are
successfully mapped. The switch mapping is done in the same
manner. Finally, the link mapping is based on a random walk
between the endpoints of each virtual links.

For this randomized heuristic, it is obvious that some of the
mappings, even successful ones, can result in poor mappings,
which do not allow the other mapping to be successful. When
any phase fails, the retro-mechanism that can be implemented
is based on a threshold. We define δ as the maximum times a
new mapping can be computed. When any of the phase fails
more than δ times, the algorithm stops and rejects the VDC
request.

IV. OUR HEURISTIC

We present now our heuristic. First, we present the rationale
of our solutions. Then, we describe our implementations of the
three steps.

A. Rationale

The main idea of our heuristic is to reduce server fragmenta-
tion, minimize communication costs between VMs and virtual
switches, increase the residual bandwidth of the network, and
offer load balancing capabilities to the network. For the sake
of simplicity, we consider only one resource for the server
(e.g. CPU).
Reduce server fragmentation. We use the variance of the
residual CPU capacity of the physical servers. The rationale
behind using variance in server defragmentation is explained
in Figure 1 with basic physical topology. Initially, two physical
servers have residual capacity of 3 CPU units each. After
receiving a VM request (1) of 1 CPU unit, the residual CPU
of the servers become 2 CPU units and 3 CPU units. A future
VM request of 2 CPU units has two possible mappings. In the
first one (2), the residual CPU of one server is 3 CPU units,
which allows a future VM request requiring 3 CPU units. In
the second mapping (3), the residual CPU of the servers are
2 CPU units and 1 CPU unit. In this latter case, a future VM
request with 3 CPU cannot be accepted. The variance of the
residual CPU capacity in the first allocation is 4.5 and 0.5 in
the second allocation. We observe that the higher the variance
is, the higher the resource defragmentation is and higher the
possibility of accepting higher number of VDC requests.

!

• !"#$"%&'!()!#'*$+,"-!./0!&"1"&$23!

445 6 789:4; 6 7898<49 68=445"6>789:4;"6>7898<49"68

=!?>7

• !"!#$%!$##&'"!()!$!*+!,&-.&/"!()!0!123

@'*$+,"-!

."1"&$23!

=!4!123

@'*$+,"-!

."1"&$23!

=!;!./0

!A!#'B,'*2!()!6 ./0

@'*$+,"-!

."1"&$23!

=!;!./0

@'*$+,"-!

."1"&$23!

=!;!./0

@'*$+,"-!

."1"&$23!

=!5 123

@'*$+,"-!

."1"&$23!

=!;!./0

@'*$+,"-!

."1"&$23!

=!9!./0

@'*$+,"-!

."1"&$23!

=!6!123

• !"#$"%&'!()!#'*$+,"-!./0!&"1"&$23!

=449"6>789:46"6>7898<49"68

=!5>75

?• !"!#$%!%("!$##&'"!()!$!*+!,&-.&/"!()!0!123

(1)
(2)

(3)

Fig. 1. Using variance for resource defragmentation.

Let (c̄i) be the average residual capacity of hardware i
(here we have only CPU, represented by c1) over all nodes
sp. Formally, the solution that we select among all possible
solutions satisfying the previously defined constraints should
take into account Vcpu, which is defined as:

Vcpu =
|Sp|∑

u∈Sp

(
c̄1(u)− c̄1

)2 (5)

Minimize communication cost and increase residual band-
width. We consider the hop-count between the virtual nodes
(i.e., VM or virtual switch) multiplied by the corresponding
requested bandwidth of the virtual link connecting the two

!"
#$

!"
%
$

!"
&
$

3

5

2 4 6

5

(a) Virtual request

!"#$!"%$

!"%$

(b) Physical network

Fig. 2. Minimizing communication cost

virtual nodes. For example, in Figure 2 the cost of mapping
virtual switch xv

1 (Fig. 2(a)) to physical switch xp
2 (Fig. 2(b))

is 2 (hop count from physical switch xp
2 to the red physical

server) ×3 (bandwidth required between the virtual switch xv
1

and the red virtual server) +2 (hop count from physical switch
xp
2 to the yellow physical server) ×2 (bandwidth required

between the virtual switch xv
1 and the yellow virtual server)

= 10, if we consider only the red and yellow virtual machines,
which are the closest ones to the virtual switch xv

1 .
A solution that matches our needs takes into account Vsw,

which is defined as:

Vsw =
∑

(vv′)∈Ep

∑
(uu′)∈Ev

y(uu′)(vv′)×b((uu′))×hop count(vv′)

(6)
Avoid bottleneck link. Mapping virtual switches to other
locations can possibly require a high number of virtual links
and result in network bottlenecks. In order to avoid bottleneck
of physical links, we also use load balancing for virtual
links having the same communication cost by minimizing the
variance of the residual network bandwidth.

In the same manner as for Vcpu, we define Vlink as:

Vlink =

∑
(vv′)∈Ep

(
b̄(vv′)− (b̄)

)2

|Ep|
(7)

Overall Optimization. In order to consider all aforementioned
objectives, we define one unique objective, which is to mini-
mize:

α× Vsw + β × Vcpu + γ × Vlink (8)

Since such optimization problem of VDC embedding is NP
hard [11], we present a heuristic (shown in Algorithm 1) to
solve the problem that has three phases: VM mapping, virtual
switch mapping, and virtual link mapping. In order to achieve
locality of the VMs, we try to start the mapping process from
one physical server. If any of the three phases fails, we increase
the number of physical servers adding one adjacent server
and try the mapping process again, until we consider all the
physical servers in the data center.

B. VM Mapping

In the VM mapping, we map VMs to the physical servers;
we do it sequentially so that more than one VM can be mapped

Algorithm 1 VDC Embedding Algorithm
1: for (|Sp| = 1; |Sp| ≤ TotalNumberofServers;Sp =

Sp ∪ {AdjacentServer}) do
2: VM Mapping:
3: Sort the VMs, sv ∈ Sv according the requested
4: resource capacity
5: for each sv ∈ Sv do
6: for each sp ∈ Sp do
7: Add an edge from sv to sp if sp satisfies the
8: capacities of sv

9: end for
10: Add a source node and add an edge from source
11: node to sv .
12: Add a destination node and add an edge from
13: each of sp to destination node.
14: Solve min-cost flow problem and goto line 1 if fails
15: update residual capacities of sp.
16: end for
17: Switch Mapping:
18: for each xv ∈ Xv do
19: for each xp ∈ Xp do
20: Add an edge from xv to xp if xp satisfies the
21: capacities of xv

22: end for
23: end for
24: Add a source node and add an edge from source
25: node to each of sv .
26: Add a destination node and add an edge from each
27: of sp to destination node.
28: Solve min-cost flow problem and go to line 1 if fails
29: update residual capacities of xp.
30: Link Mapping:
31: for each ev ∈ Ev do
32: Remove each ep ∈ Ep where b(ep) < b(ev)
33: Run BFS to compute the shortest path and go
34: to line 1, if no path found
35: Update capacity of each link ep in that path
36: end for
37: If all mapping phases are successful, break
38: end for

to one physical server. We rely on the used bandwidth of
physical servers for load balancing, and on the difference be-
tween the residual resource capacity and the average resource
capacity of physical servers for server defragmentation. In the
beginning, requested VMs are sorted according to a requested
resource capacity in a descending order. Thus, we can reject
a request quickly if there is not enough capacity to satisfy the
request. Then we map VMs sequentially so that more than one
VM can be mapped to a physical server. First, we take the first
VM in the sorted list and build a bipartite graph putting the
VM on the left side and all physical servers on the right side.
We add an edge from the VM to a physical server if the server
can satisfy the resource constraints of the selected VM. Then,

we add a source node in the left of the VM and a destination
node in the right of the physical servers. After that, we add an
edge from the source node to the VM and an edge from each
of the physical servers to the destination node. Thus it forms
a min-cost flow problem from source to the destination node.

Minimize
∑

(i,j)∈E

a(i, j).x(i, j) (9)

where, x(i, j) ∈ {0, 1}∑
j∈V

x(i, j) = 0, for all i 6= s, t∑
j∈V

x(s, j) = number of virtual machines∑
i∈P

x(i, t) = number of physical servers

E = Set of edges in the graph
V = Set of virtual machines in the graph
P = Set of physical servers in the graph
s = source node of the graph
t = destination node of the graph

(10)

The cost function a(i, j) for each edge is defined by,

a(i, j) = b(j)× 1

|c̄1(j)− c̄1|
(11)

where b(j) is the used bandwidth of the server j and (c̄1)
is the mean of the residual CPU of the physical servers.
This cost function is used as weight for each of the edge
in the graph of min-cost flow problem. The variable x(i, j)
gives the mapping of VM to physical servers. We rely on the
used bandwidth of physical servers for load balancing, and
on the difference between the residual resource capacity and
the average resource capacity of physical servers for server
defragmentation, that will satisfy our objectives mentioned in
Section IV-A.

C. Switch Mapping

After mapping VMs, we proceed to switch mapping. Similar
to VM mapping, we build a bipartite graph keeping virtual
switches in the left and the physical switches in the right. Then,
we add an edge from a virtual switch i to a physical switch j if
the residual capacity of the physical switch j can satisfy the
requested capacity of the virtual switch i. We add a source
node s at the left of the virtual switches and a destination
node d at the right of the physical switches. Following that,
we add an edge from the source node s to each of the virtual
switches and an edge from each of the physical switches to
the destination node d, as shown in Figure 3. This reduced the
switch mapping problem to finding min-cost flow from source
s to destination d.

Fig. 3. Graph of min-cost flow problem for switch mapping.

Minimize
∑

(i,j)∈E

a(i, j).x(i, j) (12)

where, x(i, j) ∈ {0, 1}∑
j∈V

x(i, j) = 0, for all i 6= s, t∑
j∈V

x(s, j) = number of virtual switches∑
i∈P

x(i, t) = number of physical switches

E = Set of edges in the graph
V = Set of virtual switches in the graph
P = Set of physical switches in the graph
s = source node of the graph
t = destination node of the graph

(13)

The cost function a(i, j) for each edge between a virtual
switch i and a physical switch j is defined by a(i, j) =∑

[hop count(j,m)× bandwidth(i, n)], where m ∈ Sp,
n ∈ Sv , and n in mapped into m. The intuition behind the cost
function is to map the virtual switch to the physical switch
that offers the lowest communication cost (hop count ×
bandwidth) for VMs of the same VDC connecting to the
virtual switch i. The cost function described above is used
as the weight for each edge in the graph of min-cost flow
problem. The variable x(i, j) gives the mapping of virtual
switches to physical switches. If the value of x(i, j) is 1, it
indicates that the virtual switch i is mapped to the physical
switch j. By considering the bandwidth of the links when map-
ping switches, the algorithm increases the residual bandwidth
of the network, which ultimately results in higher acceptance
ratio of VDC requests.

D. Link Mapping

Finally, we start link mapping after finishing the node
mapping and switch mapping. We map each of the virtual links
to physical links one by one. Before allocating any link, we
first remove all the physical links having residual bandwidth
capacity less than the requested bandwidth capacity of the

virtual link. Then, we calculate the shortest path between
the physical nodes, where the source and destination nodes
of the virtual link are mapped, to reduce the communication
cost. We use Breadth First Search (BFS) algorithm to find the
unweighted shortest path.

V. PERFORMANCE EVALUATION

We studied the performance of our VDC allocation algo-
rithm through simulation. In this section, we describe the
simulation environments followed by performance metrics and
result analysis. We have shown that our VDC algorithm can
embed VDC requests that include virtual switches. As no other
existing work consider switch mapping in VDC embedding
algorithm, we have showed the advantages of our algorithm
for VDC allocation by comparing acceptance ratio, network
and CPU utilization with random VM mapping and random
switch mapping.

A. Simulation Environment

We implemented a discrete event simulator for the evalu-
ation of our proposed algorithm using C++ and used open
source C++ template library LEMON(Library for Efficient
Modeling and Optimization in Networks) [13] to solve
minimum-cost flow problem.

We used VL2 [3] topology for our physical data center
network topology. Our physical data center has 24 servers,
22 switches and 144 links. The links between servers and
ToR (top-of-rack) switches have bandwidth 1000 unit whereas
the links between ToR switches and aggregate switches have
10 000 units and the links between aggregate switches and
intermediate switches have the capacities of 10 000 units. The
normalized values of CPU and storage were real numbers,
uniformly distributed between 0.5 and 1.

For the VDC requests, we used VL2 topology, star topology
and mixed of them. For all the topologies, the CPU and
storage of the VMs were real numbers uniformly distributed
between 0.08 and 0. For the VL2 topology, the bandwidth of
the links between servers and ToR switches, ToR switches and
aggregate switches, and aggregate switches and intermediate
switches, were uniformly distributed from 1 to 100, 1 to 1000,
and 1 to 1000 respectively. For the start topology, the number
of VMs are uniformly distributed from 3 to 10 and the links
between the switch and the servers have bandwidth, uniformly
distributed from 1 to 100. The VDC requests arrived in a
Poisson process. The durations of the VDC requests were
following a Poisson distribution having average of 500 time
units. Our embedding algorithm serves the VDC requests
online and with the passage of time, VDC requests, whose
duration have passed, leave the physical data center and new
VDC requests arrive.

B. Performance Metrics

1) Acceptance Ratio: The acceptance ratio of a certain
point of time is the ratio of the number of accepted VDC
requests and the total number of VDC requests until that time.
This gives a sense of how well an algorithm is performing,

(a) (b)

(c) (d)

Fig. 4. Comparison of acceptance ratio, resource utilization and revenue over time for VDC requests of VL2 topology. (a) Acceptance Ratio. (b) CPU
Utilization. (c) Network Utilization. (d) Revenue

but can not completely capture the whole picture of the per-
formance. An algorithm may accept more number of smaller
VDC requests which can end up less revenue.

2) CPU Utilization: The CPU utilization is the total CPU
used for embedding VDC requests divided by the total CPU
capacity of the physical data center at a certain point of time,
which is expressed as percentage.

3) Network Utilization: The network utilization is the total
bandwidth of the links used for embedding VDC request
divided by the total bandwidth capacity of the physical data
center at a certain point of time, which is also expressed as
percentage.

4) Revenue: We also computed the revenue generated for
an embedding algorithm over time. Revenues are expressed
in terms of allocated resources. We have used a revenue
model [7] where revenue is considered as sum of bandwidth
and CPU. α is used to strike a balance between the two
resources.

Revenue(Gv) =
∑

ev∈Ep

b(ev) + α
∑

sp∈Sp

c1(s
p)

C. Results analysis

After running the simulation, we observed that our algo-
rithm was able to embed the VMs as well as the virtual
switches to the physical resources. It also embeds both types
of topologies which shows the ability of our algorithm to
embed VDC of any topology. To show the effectiveness
of our algorithm, we compared our algorithm with random

switch mapping and random VM mapping. Figure 4 shows
the comparison of performance metrics of our algorithm with
random switch mapping and random VM and switch mapping
when VL2 topologies were used for input VDC requests. Our
algorithm outperforms the random algorithms in terms of each
of the metrics. For example, at 20 000 time unit, our algorithm
has 0.83 acceptance ratio whereas the random switch map-
ping and random VM and switch mapping algorithms have
acceptance ratio of 0.68 and 0.66 respectively. Our algorithm
also has higher CPU and network utilization and revenue. As
our algorithm considers the used CPU and bandwidth of the
servers while doing VM mapping and bandwidth of the links
while doing switch mapping, it can accept higher number of
VDC requests as well as higher revenue.

Figure 5 shows the comparison of performance metrics of
the algorithms when both VL2 topologies and star topologies
were used for input VDC requests. Here, again we see that our
algorithm outperforms the random algorithms in terms of each
of the metrics. But here the random algorithms comparatively
perform better than for the VL2 only topologies. Because,
VDC requests of star topology were added to the input.
Star topology has only one virtual switch and all the VMs
are connected to the switch. So, there is less diversity for
the embedding algorithm, specially for the switch mapping.
Our algorithm has higher acceptance ratio, CPU and network
utilization and revenue than the other two algorithms. We
also observe that random switch mapping performs better

(a) (b)

(c) (d)

Fig. 5. Comparison of acceptance ratio, resource utilization and revenue over time for VDC requests of mix of VL2 and star topology. (a) Acceptance Ratio.
(b) CPU Utilization. (c) Network Utilization. (d) Revenue

than random VM and switch mapping because random switch
mapping utilizes our VM mapping phase for its VM mapping.
In both of the above cases, our algorithm has higher acceptance
ratio, as well as, higher revenue, which demonstrates the
advantages of our VDC embedding algorithm.

VI. CONCLUSION

We have proposed a new formulation of VDC embedding
problem where along with VMs and virtual links, we also
considered virtual switches in the VDC requests. We also
proposed a three-phase minimum-cost-flow-based heuristic to
solve the embedding problem, considering residual bandwidth,
server defragmentation, communication costs and load bal-
ancing, which can efficiently embed VDC requests of any
topology. A discrete event simulator was developed to evaluate
our proposed VDC embedding algorithm. We have showed
that our embedding algorithm was able to embed VMs and
virtual links, as well as virtual switches and our algorithm
has higher acceptance ratio, CPU and network utilization, as
well as higher revenue. We are planning to extend our work
by considering VDC embedding across multiple data centers.
Another possible extension of this work is to consider energy-
aware VDC embedding.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in Proceedings ACM SIGCOMM,
August 2008.

[2] C. Guo, G. Lhttp://matwbn.icm.edu.pl/ksiazki/amc/amc21/amc2125.pdfu,
D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu, “BCube:
A High Performance, Server-centric Network Architecture for Modular
Data Centers,” in Proceedings ACM SIGCOMM, August 2009.

[3] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proceedings ACM SIGCOMM, August 2009.

[4] G. Wang and E. Ng, “The Impact of Virtualization on Network Perfor-
mance of Amazon EC2 Data Center,” in Proceedings IEEE INFOCOM,
March 2010.

[5] M. Bari, R. Boutaba, R. Esteves, L. Granvilley, M. Podlesny, M. Rab-
bani, Q. Zhang, and F. Zhani, “Data Center Network Virtualization:
A Survey,” to appear in IEEE Communications Surveys and Tutorials,
2012.

[6] N. M. M. K. Chowdhury and R. Boutaba, “Network Virtualization: State
of the Art and Research Challenges,” IEEE Comm. Mag., vol. 47, pp.
20–26, Jul. 2009.

[7] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking Virtual Network
Embedding: Substrate Support for Path Splitting and Migration,” ACM
Computer Communication Review, vol. 38, no. 2, pp. 17–29, April 2008.

[8] M. Chowdhury, M. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
Networking, IEEE/ACM Transactions on, vol. 20, no. 1, pp. 206 –219,
feb. 2012.

[9] M. R. Rahman, I. Aib, and R. Boutaba, “Survivable Virtual Network
Embedding,” in Proceedings IFIP Networking, May 2010.

[10] N. F. Butt, N. M. M. K. Chowdhury, and R. Boutaba, “Topology-
Awareness and Reoptimization Mechanism for Virtual Network Embed-
ding,” in Proceedings IFIP Networking, May 2010.

[11] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “SecondNet: A Data Center Network Virtualization Archi-
tecture with Bandwidth Guarantees,” in Proceedings ACM CoNEXT,
December 2010.

[12] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
Predictable Datacenter Networks,” in Proceedings ACM SIGCOMM,
August 2011.

[13] LEMON Graph Library. http://lemon.cs.elte.hu/trac/lemon.

