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SHARP ESTIMATES OF THE ONE-DIMENSIONAL BOUNDARY CONTROL
COST FOR PARABOLIC SYSTEMS AND APPLICATION TO THE
N-DIMENSIONAL BOUNDARY NULL-CONTROLLABILITY IN

CYLINDRICAL DOMAINS

ASSIA BENABDALLAH ∗, FRANCK BOYER † , MANUEL GONZÁLEZ-BURGOS ‡ , AND GUILLAUME
OLIVE §

Abstract. In this paper we consider the boundary null-controllability of a system of n parabolic equations
on domains of the form Ω = (0, π) × Ω2 with Ω2 a smooth domain of RN−1, N > 1. When the control is exerted
on {0} × ω2 with ω2 ⊂ Ω2, we obtain a necessary and sufficient condition that completely characterizes the null-
controllability. This result is obtained through the Lebeau-Robbiano strategy and require an upper bound of the
cost of the one-dimensional boundary null-control on (0, π). This latter is obtained using the moment method and
it is shown to be bounded by CeC/T when T goes to 0+.

Key words. Parabolic systems, Boundary Controllability, Biorthogonal families, Kalman Rank condition.

AMS subject classifications. 93B05, 93C05, 35K05.

1. Introduction. The controllability of systems of n partial differential equations by m < n
controls is a relatively recent subject. We can quote [LZ98], [dT00], [BN02] among the first
works. More recently in [AKBDGB09b], with fine tools of partial differential equations, the so-
called Kalman rank condition, which characterizes the controllability of linear systems in finite
dimension, has been generalized in view of the distributed null-controllability of some classes of
linear parabolic systems. On the other hand, while for scalar problems the boundary controllability
is known to be equivalent to the distributed controllability, it has been proved in [FCGBdT10]
that this is no more the case for systems. This reveals that the controllability of systems is much
more subtle. In [AKBGBdT12], it is even showed that a minimal time of control can appear if the
diffusion is different on each equation, which is quite surprising for a system possessing an infinite
speed of propagation. It is important to emphasize that the previous quoted results concerning
the boundary controllability were established in space dimension one. They used the moment
method, generalizing the works of [FR71, FR75] concerning the boundary controllability of the
one-dimensional scalar heat equation. We refer to [AKBGBdT11b] for more details and a survey
on the controllability of parabolic systems.

In higher space dimension the boundary controllability of parabolic systems remains widely
open and it is the main purpose of this article to give some partial answers. To our knowledge,
the only results on this issue are the one of [ABL12] and [AB12]. Let us also mention [Oli13] for
related questions for the approximate controllability problem. In [ABL12, AB12] the results for
parabolic systems are deduced from the study of the boundary control problem of two coupled
wave equations using transmutation techniques. As a result there are some geometric constraints
on the control domain. We will see that this restriction is not necessary.

In the present work, we focus on the boundary null-controllability of the following n coupled
parabolic equations by m controls in dimension N > 1

∂ty = ∆y +Ay in (0, T )× Ω,

y = 1γBv on (0, T )× ∂Ω,

y(0) = y0 in Ω,

(1.1)
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in the case where the domain Ω has a Cartesian product structure

Ω = Ω1 × Ω2,

where Ωi ⊂ RNi , i = 1, 2 are bounded open regular domains. In (1.1), T > 0 is the control time,
the non-empty relative subset γ ⊂ ∂Ω is the control domain, y is the state, y0 is the initial data,
A ∈Mn(C) and B ∈Mn×m(C) are constant matrices and v is the boundary control.

Under appropriate assumptions we show that the controllability of System (1.1) is reduced to
the controllability of the same system posed on Ω1 (see Theorem 1.3 below). The proof is based
on the method of Lebeau-Robiano [LR95]. This strategy (already used in a different framework
in [BDR07]) requires an estimate of the cost of the N1-dimensional control with respect to the
control time when T → 0+.

In a second part, we establish that the cost of the one-dimensional null-control on (0, T ) is
bounded by CeC/T , for some C > 0, as T → 0+ (see Theorem 1.4 below). This is the second main
result of this paper and this also shows that our first result above can be applied at least in the
case N1 = 1. The demonstration of this result follows the approach of [FR71] and [Mil04] (for the
scalar case). It requires to take back the proofs contained in [AKBGBdT11a]. In the scalar case,
[Sei84] (see also [FCZ00]) gave a similar estimate of the cost of the boundary control of the heat
equation, which is known to be optimal thanks to the work [Güi85].

Note finally, that the extension of the present results to more general domains Ω in RN as well
as the study of the case with different diffusion coefficient on each equation remain open problems.

1.1. Reminders and notations. Let us first recall that System (1.1) is well-posed in the
sense that, for every y0 ∈ H−1(Ω)n and v ∈ L2(0, T ;L2(∂Ω)m), there exists a unique solution
y ∈ C0([0, T ];H−1(Ω)n) ∩ L2(0, T ;L2(Ω)n), defined by transposition. Moreover, this solution
depends continuously on the initial data y0 and the control v. More precisely,

‖y‖C0([0,T ];H−1(Ω)n) ≤ Ce
CT
(
‖y0‖H−1(Ω)n + ‖v‖L2(0,T ;L2(∂Ω)m)

)
, (1.2)

where here and all along this work C > 0 denotes a generic positive constant that may change
line to line but which does not depend on T nor y0. We shall also use sometimes the notations
C ′, C ′′, and so on.

Let us now precise the concept of controllability we will deal with in this paper. We say
that System (1.1) is null-controllable at time T if for every y0 ∈ H−1(Ω)n, there exists a control
v ∈ L2(0, T ;L2(∂Ω)m) such that the corresponding solution y satisfies

y(T ) = 0.

In such a case, it is well-known that there exists CT > 0 such that

‖v‖L2(0,T ;L2(∂Ω)m) ≤ CT ‖y0‖H−1(Ω)n , ∀y0 ∈ H−1(Ω)n. (1.3)

The infimum of the constants CT satisfying (1.3) is called the cost of the null-control at time T .
Remark 1. Even if it means replacing y(t) by e−µty(t) and A by A− µ, with µ > 0, we can

assume without loss of generality that the matrix A is stable: all its eigenvalues have a negative
real part.

Finally, let us recall the well-known duality between controllability and observability.
Theorem 1.1. Let E be a closed subspace of H1

0 (Ω)n and set E−1 = −∆E ⊂ H−1(Ω)n. Let
us denote ΠE (resp. ΠE−1) the orthogonal projection on E (resp. E−1). Let CT > 0 be fixed. For
every y0 ∈ E−1 there exists a control v ∈ L2(0, T ;L2(∂Ω)m) such that{

ΠE−1y(T ) = 0,

‖v‖L2(0,T ;L2(∂Ω)m) ≤ CT ‖y0‖H−1(Ω)n ,

where y is the corresponding solution to (1.1), if and only if

‖ΠEz(0)‖2H1
0 (Ω)n ≤ C

2
T

∫ T

0

‖1γB∗∂nz(t)‖2L2(∂Ω)mdt, ∀zT ∈ E,
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where z is the solution to the adjoint system
−∂tz = ∆z +A∗z in (0, T )× Ω,

z = 0 on (0, T )× ∂Ω,

z(0) = zT in Ω.

(1.4)

Notations. We gather here some standard notations that we shall use all along this paper.
For any real numbers a < b we denote Ja, bK = [a, b]∩Z. For z ∈ C, <(z) and =(z) denote the real
and imaginary part of z. Finally, x ∈ R 7→ bxc ∈ Z denotes the floor function.

1.2. Main results.

1.2.1. Boundary controllability for a multidimensional parabolic system. The first
main achievement of this work is the following.

Theorem 1.2. Let ω2 ⊂ Ω2 be a non-empty open subset and take Ω1 = (0, π). Then, System
(1.1) is null-controllable at time T on γ = {0} × ω2 if and only if

rank (Bk|AkBk|A2
kBk| · · · |Ank−1

k Bk) = nk, ∀k ≥ 1, (1.5)

where we have introduced the notations

Ak =



−λ1 +A 0 · · · · · · 0

0 −λ2 +A
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 −λk +A


∈Mnk(C), Bk =



B

B
...
...

B


∈Mnk×m(C).

(1.6)

One may think to a cylindrical domain where the control domain is a subset of the top or
bottom face (see Figure 1.1).

γ

Ω1

Ω2

Fig. 1.1. Typical geometric situation

This result will be otained as a corollary of some other theorems that are important results
too. The first one is the following and it should be connected with [Fat75] and [Mil05].

Theorem 1.3. Let γ1 ⊂ ∂Ω1 be a non-empty relative subset. Assume that the following
N1-dimensional system 

∂ty
1 = ∆x1y

1 +Ay1 in (0, T )× Ω1,

y1 = 1γ1
Bv1 on (0, T )× ∂Ω1,

y1(0) = y1
0 in Ω1,

(1.7)

3



is null-controllable for any time T > 0, with in addition the following bound for the control cost
CΩ1

T

CΩ1

T ≤ Ce
C/T , ∀T > 0. (1.8)

Then, for any non-empty open set ω2 ⊂ Ω2, the N -dimensional System (1.1) is null-controllable
at any time T > 0 on the control domain γ = γ1 × ω2.

Remark 2. The converse of Theorem 1.3 also holds. More precisely, if the N -dimensional
System (1.1) is null-controllable at time T , then the N1-dimensional System (1.7) is also null-
controllable at time T . This can be proved using a Fourier decomposition in the direction of Ω2.

It is worth mentioning that, such a decomposition also shows that, when ω2 = Ω2, the proof
of Theorem 1.3 is much simpler and it does not need the control cost estimate (1.8). Moreover,
the domain Ω2 can even be unbounded in this case.

1.2.2. Estimate of the control cost for a 1D boundary controllability problem. The
second result of this paper provides an important example where Theorem 1.3 can be successfully
applied.

More precisely, we show that the assumption (1.8) on the short time behavior of the control
cost actually holds in the 1D case for the following system if we assume the rank condition (1.5)

∂ty = ∂2
xxy +Ay in (0, T )× (0, π),

y(t, 0) = Bv(t), y(t, π) = 0 in (0, T ),

y(0) = y0 in (0, π).

(1.9)

We recall that it has been established in [AKBGBdT11a] that System (1.9) is null-controllable
at time T > 0 if and only if the rank condition (1.5) holds.

However, in the above-mentioned reference, no estimate on the control cost is provided. This is
the next goal of the present paper, to give a more precise insight into the proof of the controllability
result for System (1.9) that allows a precise estimate of the control cost as a function of T .

Theorem 1.4. Assume that the rank condition (1.5) holds. Then, for every T > 0 and
y0 ∈ H−1(0, π)n there exists a null-control v ∈ L2(0, T )m for System (1.9) which, in addition,
satisfies

‖v‖L2(0,T )m ≤ Ce
C/T ‖y0‖H−1(0,π)n .

This theorem, combined with Theorem 1.3 and Remark 2 give a proof of Theorem 1.2.

1.2.3. Bounds on biorthogonal families of exponentials. The proof of Theorem 1.4 is
mainly based on the existence of a suitable biorthogonal family of time-dependent exponential
functions. The construction provided in [AKBGBdT11a] does not allow to estimate the control
cost. That is the reason why we propose here a slightly different approach which is the key to
obtain the factor eC/T . This abstract result, which is interesting in itself and potentially useful in
other situations, can be formulated as follows.

Theorem 1.5. Let {Λk}k≥1 ⊂ C be a sequence of complex numbers with the following prop-
erties
(H1) Λk 6= Λn for all k, n ∈ N with k 6= n.
(H2) <(Λk) > 0 for every k ≥ 1.
(H3) For some β > 0,

|=(Λk)| ≤ β
√
<(Λk), ∀k ≥ 1.

(H4) {Λk}k≥1 is non-decreasing in modulus

|Λk| ≤ |Λk+1| , ∀k ≥ 1.
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(H5) {Λk}k≥1 satisfies the following gap condition: for some ρ, q > 0,
|Λk − Λn| ≥ ρ

∣∣k2 − n2
∣∣ , ∀k, n : |k − n| ≥ q.

inf
k 6=n:|k−n|<q

|Λk − Λn| > 0.

(H6) For some p, α > 0, ∣∣p√r −N (r)
∣∣ ≤ α, ∀r > 0, (1.10)

where N is the counting function associated with the sequence {Λk}k≥1, that is the function
defined by

N (r) = # {k : |Λk| ≤ r} , ∀r > 0. (1.11)

Then, there exists T0 > 0 such that, for every η ≥ 1 and 0 < T < T0, we can find a family of
C-valued functions

{ϕk,j}k≥1,j∈J0,η−1K ⊂ L
2(−T/2, T/2)

biorthogonal 1 to {ek,j}k≥1,j∈J0,η−1K, where for every t ∈ (−T/2, T/2),

ek,j(t) = tje−Λkt,

with in addition

‖ϕk,j‖L2(−T/2,T/2) ≤ Ce
C
√
<(Λk)+C

T , (1.12)

for any k ≥ 1, j ∈ J0, η − 1K.

2. Boundary null-controllability on product domains.

2.1. Settings and preliminary remarks. Let λΩ1
j (resp. λΩ2

j ), j ≥ 1, be the Dirichlet
eigenvalues of the Laplacian on Ω1 (resp. Ω2), and let φΩ1

j (resp. φΩ1
j ) be the corresponding

normalized eigenfunction.
Let us introduce the (closed) subspaces of H1

0 (Ω)n on which we will establish the partial
observability later on (section 2.2)

EJ =


J∑
j=1

〈
u, φΩ2

j

〉
L2(Ω2)

φΩ2
j

∣∣∣∣∣∣u ∈ H1
0 (Ω)n

 ⊂ H1
0 (Ω)n, J ≥ 1,

where the notation
∑J
j=1〈u, φ

Ω2
j 〉L2(Ω2)φ

Ω2
j is used to mean the function

(x1, x2) ∈ Ω 7−→
J∑
j=1

〈u(x1, ·), φΩ2
j 〉L2(Ω2)φ

Ω2
j (x2).

We then define the "dual" spaces of EJ

E−1
J = −∆EJ ⊂ H−1(Ω)n, J ≥ 1.

Let us recall that we denote by ΠEJ (resp. ΠE−1
J

) the orthogonal projection in H1
0 (Ω)n (resp.

H−1(Ω)n) onto EJ (resp. E−1
J ). It is not difficult to see that we have the relation ΠE−1

J
(−∆u) =

−∆ΠEJu for any u ∈ H1
0 (Ω)n.

Lemma 2.1. For any u ∈ H1
0 (Ω)n, we have

u =

+∞∑
j=1

〈u, φΩ2
j 〉L2(Ω2)φ

Ω2
j .

It follows from this lemma that ΠEJu =
∑J
j=1〈u, φ

Ω2
j 〉L2(Ω2)φ

Ω2
j for any u ∈ H1

0 (Ω)n.

1that is
〈
ϕk,j , el,ν

〉
L2(−T/2,T/2) =

∫ T/2
−T/2 ϕk,j(t)el,ν(t) dt = δklδjν .
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Proof of Lemma 2.1. Let us show that the sequence {SJu}J≥1 defined by

SJu =

J∑
j=1

〈u, φΩ2
j 〉L2(Ω2)φ

Ω2
j ,

is a Cauchy sequence of H1
0 (Ω)n. For any J > K ≥ 1 we have

‖SJu− SKu‖2H1
0 (Ω)n =

∥∥∥∥∥∥
J∑

j=K+1

〈
u, φΩ2

j

〉
L2(Ω2)

φΩ2
j

∥∥∥∥∥∥
2

H1
0 (Ω)n

=

J∑
j=K+1

∥∥∥∥〈u, φΩ2
j

〉
L2(Ω2)

∥∥∥∥2

H1
0 (Ω1)n

+

J∑
j=K+1

λΩ2
j

∥∥∥∥〈u, φΩ2
j

〉
L2(Ω2)

∥∥∥∥2

L2(Ω1)n

Using Lebesgue’s dominated convergence theorem it is not difficult to see that these terms go

to zero as J,K −→ +∞. As a result SJu
H1

0−−−−−→
J→+∞

v for some v ∈ H1
0 (Ω)n. In particular,

〈v, φΩ1

k φΩ2
j 〉L2(Ω) = 〈u, φΩ1

k φΩ2
j 〉L2(Ω) for every j, k ≥ 1, and it follows that v = u.

2.2. Partial observability. One of the key points to make use of the Lebeau-Robbiano
strategy is the estimate of the cost of the partial observabilities on the approximation subspaces.
This will be used for the active control phase.

Proposition 2.2. Let Ω2 be of class C2. Assume that System (1.7) is controllable at time T
with cost CΩ1

T . Then,

‖ΠEJ z(0)‖2H1
0 (Ω)n ≤ C(CΩ1

T )
2
eC
√
λ

Ω2
J

∫ T

0

‖1γ1×ω2
B∗∂nz(t)‖2L2(∂Ω)mdt, ∀zT ∈ EJ , (2.1)

where z is the solution to the adjoint system (1.4).
By Theorem 1.1 we deduce that
Corollary 2.3. For every J ≥ 1 and y0 ∈ E−1

J , there exists a control v(y0) ∈ L2(0, T ;L2(∂Ω)m)
with

‖v(y0)‖L2(0,T ;L2(∂Ω)m) ≤ C (CΩ1

T )eC
√
λ

Ω2
J ‖y0‖H−1(Ω)n , (2.2)

such that the solution y to system (1.1) satisfies

ΠE−1
J
y(T ) = 0.

Proof of Proposition 2.2. Let zT ∈ EJ so that

zT (x1, x2) =

J∑
j=1

zjT (x1)φΩ2
j (x2),

for some zjT ∈ H1
0 (Ω1)n. Let z be the solution of (1.4), the adjoint system of (1.1), associated

with zT . Thus,

z(t, x1, x2) =

J∑
j=1

zj(t, x1)φΩ2
j (x2),

where zj is the solution to
−∂tzj =

(
∆x1
− λΩ2

j

)
zj +A∗zj in (0, T )× Ω1,

zj = 0 on (0, T )× ∂Ω1,

zj(T ) = zjT in Ω1.
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Note that ΠEJ z(0) = z(0). A computation of ‖z(0)‖2H1
0 (Ω)n gives

‖z(0)‖2H1
0 (Ω)n =

J∑
j=1

∥∥zj(0)
∥∥2

H1
0 (Ω1)n

+

J∑
j=1

λΩ2
j

∥∥zj(0)
∥∥2

L2(Ω1)n
.

Using the Poincaré inequality we obtain,

‖z(0)‖2H1
0 (Ω)n ≤ Cλ

Ω2

J

J∑
j=1

∥∥zj(0)
∥∥2

H1
0 (Ω1)n

. (2.3)

Observe now that zj(t) = e−(T−t)λΩ2
j ψ(t), where ψ is the solution to the adjoint system of (1.7)

associated with zjT . Thus, using the assumption that (1.7) is controllable with cost CΩ1

T , we obtain
by Theorem 1.1 that

∥∥zj(0)
∥∥2

H1
0 (Ω1)n

≤ (CΩ1

T )
2
∫ T

0

∥∥1γ1
B∗∂n1

zj(t)
∥∥2

L2(∂Ω1)m
dt,

where n1 denotes the unit outward normal vector of Ω1. Combined to (2.3), this gives

‖z(0)‖2H1
0 (Ω)n ≤ C(CΩ1

T )
2
λΩ2

J

∫ T

0

J∑
j=1

∥∥1γ1
B∗∂n1

zj(t)
∥∥2

L2(∂Ω1)m
dt.

Let us denote by Bk the kth column of B. Applying the Lebeau-Robbiano’s spectral inequality
[LR95] (see also [LR07, Section 3.A] 2)

J∑
j=1

|aj |2 ≤ CeC
√
λ

Ω2
J

∫
ω2

∣∣∣∣∣∣
J∑
j=1

ajφ
Ω2
j (x2)

∣∣∣∣∣∣
2

dx2

to the sequence of scalars aj = B∗k∂n1
zj(t, σ1), σ1 ∈ ∂Ω1 being fixed, and summing over 1 ≤ k ≤ m,

this gives

J∑
j=1

∣∣B∗∂n1z
j(t, σ1)

∣∣2
Cn ≤ Ce

C

√
λ

Ω2
J

∫
ω2

∣∣∣∣∣∣
J∑
j=1

B∗∂n1z
j(t, σ1)φΩ2

j (x2)

∣∣∣∣∣∣
2

Cn

dx2.

To conclude it only remains to integrate over γ1 and observe that

n(σ) =

 n1(σ1)

0

 for σ = (σ1, x2) ∈ ∂Ω1 × Ω2.

2.3. Dissipation along the direction Ω2. The other point of the Lebeau-Robbiano strat-
egy relies on the natural dissipation of the system when no control is exerted (the passive phase).
For our purpose, we need an exponential dissipation in the direction Ω2.

Proposition 2.4. If there is no control on (t0, t1) (i.e. v = 0 on (t0, t1)) and the correspond-
ing solution y of System (1.1) satisfies

ΠE−1
J
y(t0) = 0,

then we have the following dissipation estimate

‖y(t)‖H−1(Ω)n ≤ Ce
−λΩ2

J+1(t−t0)‖y(t0)‖H−1(Ω)n , ∀t ∈ (t0, t1).

2and [TT11, Theorem 1.5] when Ω2 is a rectangular domain.
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Proof. Let y(t0) = −∆ỹ0, ỹ0 ∈ H1
0 (Ω)n. The assumption ΠE−1

J
y(t0) = 0 translates into

ΠEJ ỹ0 = 0.
Let ỹ be the solution in H1

0 (Ω)n to
∂tỹ = ∆ỹ +Aỹ in (t0, t1)× Ω,

ỹ = 0 on (t0, t1)× ∂Ω,

ỹ(t0) = ỹ0 in Ω.

Since the matrix A is constant, we can check that

y = −∆ỹ in (t0, t1)× Ω,

and thus

‖y(t)‖H−1(Ω)n = ‖ỹ(t)‖H1
0 (Ω)n , ‖y(t0)‖H−1(Ω)n = ‖ỹ0‖H1

0 (Ω)n .

As a consequence it only remains to prove the dissipation for regular data, namely

‖ỹ(t)‖H1
0 (Ω)n ≤ Ce

−λΩ2
J+1(t−t0)‖ỹ0‖H1

0 (Ω)n , ∀t ∈ (t0, t1),

for ỹ0 such that ΠEJ ỹ0 = 0 i.e. of the form (see Lemma 2.1)

ỹ0 =

+∞∑
j=J+1

ỹ0,jφ
Ω2
j , ỹ0,j =

〈
ỹ0, φ

Ω2
j

〉
L2(Ω2)n

∈ H1
0 (Ω1)n.

Since ΠEJ ỹ0 = 0 and A is constant, we have ΠEJ ỹ(t) = 0 for every t ∈ (t0, t1) and as a result the
following Poincaré inequality holds

λΩ2

J+1‖ỹ(t)‖2L2(Ω)n ≤ ‖∇ỹ(t)‖2L2(Ω)n ∀t ∈ (t0, t1).

Combined to Young’s inequality this leads to

λΩ2

J+1‖∇ỹ(t)‖2L2(Ω)n ≤ 4‖∆ỹ(t)‖2L2(Ω)n for a.e. t ∈ (t0, t1).

Using now standard energy estimates and the fact that the matrix A is constant and stable (see
Remark 1), we finally obtain the desired dissipation

‖ỹ(t)‖H1
0 (Ω)n ≤ Ce

−λΩ2
J+1(t−t0)‖ỹ0‖H1

0 (Ω)n .

2.4. Lebeau-Robbiano time procedure. We are now ready to prove Theorem 1.3.
Let y0 ∈ H−1(Ω)n be fixed. Let us decompose the interval [0, T ) as follows

[0, T ) =

+∞⋃
k=0

[ak, ak+1],

with

a0 = 0, ak+1 = ak + 2Tk, Tk = M2−kρ.

where ρ ∈ (0, 1
N2

) and M = T
2 (1− 2−ρ) has been determined to ensure that 2

∑+∞
k=0 Tk = T .
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0

|
T

|
ak

control

∼ ec(2k)
1
N2

dissipation

∼ e−c(2k)
2
N2
−ρ

•
Π
E−1

2k
y = 0 ak+1

We define the control v and the corresponding solution y piecewisely and by induction as
follows

v(t) =

 v
(

ΠE−1

2k
y(ak)

)
(t) if t ∈ (ak, ak + Tk),

0 if t ∈ (ak + Tk, ak+1).

Let us show that v belongs to L2(0, T ;L2(∂Ω)m) and steers y to 0 at time T .
Step 1 : Estimate on the interval [ak, ak +Tk]. From the continuous dependence with respect

to the data (1.2) and since Tk ≤ T we know that

‖y(ak + Tk)‖H−1(Ω)n ≤ C
(
‖y(ak)‖H−1(Ω)n + ‖v‖L2(ak,ak+Tk;L2(∂Ω)m)

)
. (2.4)

Using the estimate of the cost of the control (2.2) we have

‖v‖L2(ak,ak+Tk;L2(∂Ω)m) ≤ CC
Ω1

Tk
e
C
√
λ

Ω2

2k

∥∥∥ΠE−1

2k
y(ak)

∥∥∥
H−1(Ω)n

and since
∥∥∥ΠE−1

2k

∥∥∥
L(H−1)

≤ 1, this gives

‖v‖L2(ak,ak+Tk;L2(∂Ω)m) ≤ CC
Ω1

Tk
e
C
√
λ

Ω2

2k ‖y(ak)‖H−1(Ω)n .

Using now the estimate of CΩ1

T with respect to T (assumption (1.8)), this leads to

‖v‖L2(ak,ak+Tk;L2(∂Ω)m) ≤ ce
c
(

1
Tk

+
√
λ

Ω2

2k

)
‖y(ak)‖H−1(Ω)n .

On the other hand, Weyl’s asymptotic formula states that√
λΩ2

2k
∼

+∞
C
(
2k
) 1
N2

and (by the choice of ρ)

1

Tk
=

1

M
2kρ ≤ C2

k
N2 ,

so that

‖v‖L2(ak,ak+Tk;L2(∂Ω)m) ≤ Ce
C2

k
N2 ‖y(ak)‖H−1(Ω)n . (2.5)

Combined to (2.4) this yields

‖y(ak + Tk)‖H−1(Ω)n ≤ C
(

1 + eC2
k
N2

)
‖y(ak)‖H−1(Ω)n

≤ CeC2
k
N2 ‖y(ak)‖H−1(Ω)n .

(2.6)
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Step 2 : Estimate on the interval [ak + Tk, ak+1]. Since ΠE−1

2k
y(ak + Tk) = 0, the dissipation

(Proposition 2.4) gives

‖y(ak+1)‖H−1(Ω)n ≤ Ce
−λΩ2

2k+1
Tk‖y(ak + Tk)‖H−1(Ω)n . (2.7)

Step 3 : Final estimate. From (2.7) and (2.6) we deduce

‖y(ak+1)‖H−1(Ω)n ≤ Ce
−λΩ2

2k+1
Tk+C2

k
N2 ‖y(ak)‖H−1(Ω)n .

By induction we obtain

‖y(ak+1)‖H−1(Ω)n ≤ Ce
∑k
p=0

(
−λΩ2

2p+1
Tp+C2

p
N2

)
‖y0‖H−1(Ω)n .

Since

λΩ2
2p+1Tp ∼+∞ C(2p + 1)

2
N2 2−pρ ≥ C ′(2p)

2
N2
−ρ
,

we obtain

‖y(ak+1)‖H−1(Ω)n ≤ Ce
∑k
p=0

(
−C′(2p)

2
N2
−ρ

+C(2p)
1
N2

)
‖y0‖H−1(Ω)n .

Since ρ < 1
N2

, there exists a p0 ≥ 1 such that

− C ′(2p)
2
N2
−ρ

+ C(2p)
1
N2 ≤ −C ′′(2p)

2
N2
−ρ
, ∀p ≥ p0. (2.8)

It follows that, for k ≥ p0, we have

k∑
p=0

(
−C ′(2p)

2
N2
−ρ

+ C(2p)
1
N2

)
≤ C ′′′ − C ′′

k∑
p=p0

(2p)
2
N2
−ρ ≤ C ′′′ − C ′′

(
2k
) 2
N2
−ρ
.

So that, finally,

‖y(ak+1)‖H−1(Ω)n ≤ Ce
−C(2k)

2
N2
−ρ

‖y0‖H−1(Ω)n . (2.9)

Step 4 : The function v is a control. Estimates (2.5) and (2.9) show that the function v is in
L2(0, T ;L2(∂Ω)):

‖v‖2L2(0,T :L2(∂Ω)m) =

+∞∑
k=0

‖v‖2L2(ak,ak+Tk:L2(∂Ω)m) ≤ C

(
+∞∑
k=0

eC2
k
N2 −C′(2k)

2
N2
−ρ
)

︸ ︷︷ ︸
<+∞ by (2.8)

‖y0‖2H−1(Ω)n .

Moreover, estimate (2.9) also shows that the function v is indeed a control:

‖y(ak+1)‖H−1(Ω)n −−−−−→
k→+∞

0 = ‖y(T )‖H−1(Ω)n .

3. Cost of the one-dimensional boundary null-control. We prove here Theorem 1.4
assuming Theorem 1.5 is proved (see the next section). All along this part we shall use the
notations of [AKBGBdT11a].
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3.1. Arrangement and properties of the eigenvalues. Let us first recall that the Dirich-
let eigenvalues of the Laplacian −∂2

xx on (0, π) (with domain H2(0, π) ∩ H1
0 (0, π)) are λk = k2,

k ≥ 1.
We denote by {µl}l∈J1,pK ⊂ C the set of distinct eigenvalues of A∗. For l ∈ J1, pK, we denote

the dimension of the eigenspace of A∗ associated with µl by nl and the size of its Jordan chains
by τl,j , j ∈ J1, nlK. In [AKBGBdT11a, Case 2, p. 583], it is shown that we can always assume
that τl,j = τl is independent of j. Finally, we set n̂ = maxl∈J1,pK nl.

We assume that the set {µl}l∈J1,pK is arranged in the following (non unique) way

∀l ∈ J1, p− 1K,

 <(µl) ≥ <(µl+1),

|µl| ≤ |µl+1| if <(µl) = <(µl+1).
(3.1)

We should point out that in [AKBGBdT11a, page 562], it is assumed that {µl}l∈J1,pK is ordered in
such a way that n̂ = n1. Actually, this is only used for commodity and the same reasoning holds
if we take n̂ instead of n1.

Let us now recall that the eigenvalues of the operator ∂2
xx + A∗ (with domain H2(0, π)n ∩

H1
0 (0, π)n) are given by −λk + µi, k ≥ 1 and i ∈ J1, pK. Moreover, there exists k0 ≥ 1 such that

− λk + µi 6= −λl + µj , (3.2)

for every k ≥ k0, l ≥ 1, l 6= k, and i, j ∈ J1, pK with i 6= j (see [AKBGBdT11a, Proposition 3.2]).
From (3.1), we see that there exists k1 ≥ 1 large enough so that

2λk1
(<(µl)−<(µl+1)) + |µl+1|2 − |µl|2 ≥ 0,

for every l ∈ J1, p− 1K. Therefore, we deduce that

|λk − µl| ≤ |λk − µl+1| , (3.3)

for every k ≥ k1 and l ∈ J1, p− 1K.
Finally, let k2 ≥ 1 be large enough so that

1 + |λk − µi| ≤ |λk+1 − µj | , (3.4)

for every k ≥ k2 and i, j ∈ J1, pK with i 6= j, which is always possible since λk = k2.
We set

K0 = max {k0, k1, k2} .

To this K0 we associate p̃ ≥ 1, the number of distinct eigenvalues of the matrix A∗K0
defined

in (1.6). Let {γ`}`∈J1,p̃K ⊂ {−λk + µl}k∈J1,K0K,l∈J1,pK be the set of distinct eigenvalues of A∗K0

arranged in such a way that |γ`| ≤ |γ`+1| for every ` ∈ J1, p̃− 1K.
For ` ∈ J1, p̃K, the dimension of the eigenspace of A∗K0

associated with γ` is denoted by N`,
and the size of its Jordan chains by τ̃`,j , j ∈ J1, N`K. Since we assumed that τl,j = τl it follows
that τ̃`,j = τ̃` is also independent of j. Finally, we set N̂ = max`∈J1,p̃KN`.

We choose to arrange the eigenvalues {Λk}k≥1 ⊂ C of the operator −(∆ +A∗) as follows: Λ` = −γ`, for ` ∈ J1, p̃K,

Λp̃+i = λK0+j − µl, with j =
⌊
i−1
p

⌋
+ 1 and l = i−

⌊
i−1
p

⌋
p, for i ≥ 1.

Observe that the sequence {Λk}k≥1 satisfies the assumptions (H1)-(H5) of Theorem 1.5:
• (H1) follows from (3.2).
• (H2) holds because the matrix A is stable (see Remark 1).
• (H3) is clear since |=(Λk)| ≤ maxl∈J1,pK |=(µl)| and <(Λk) ≥ λ1−maxl∈J1,pK <(µl) (which

is positive since A∗ is stable).
11



• (H4) is a consequence of (3.3) and (3.4).
• Finally, let us show that (H5) holds for q large enough. Let k = p̃ + ik and n = p̃ + in

(the case k ≤ p̃ or n ≤ p̃ is simpler). Let jk, jn and lk, ln be such that Λk = λK0+jk − µlk
and Λn = λK0+jn − µln . We have

|Λn − Λk|2 = |λK0+jk − λK0+jn + µln − µlk |
2 ≥

∣∣∣ |λK0+jk − λK0+jn | − |µln − µlk |
∣∣∣2

≥ |λK0+jk − λK0+jn |
2 − 2 |λK0+jk − λK0+jn | |µln − µlk |+ |µln − µlk |

2
.

Let us denote m = min1≤l,l′≤p
l 6=l′

|µl − µl′ |, M = max1≤l,l′≤p
l 6=l′

|µl − µl′ |, d = |jk − jn|, s =

jk + jn and x = d(s+ 2K0). Thus,

|Λn − Λk|2 ≥ x2 − 2Mx+m.

On the other hand, since |ik − in| < p(|jk − jn|+ 1) and ik + in ≤ p(jk + jn) + 2, we have∣∣k2 − n2
∣∣2 = |ik − in|2 (ik + in + 2p̃)2 ≤ p2(d+ 1)2(sp+ 2 + 2p̃)2

By assumption d, s −→ +∞, so that∣∣k2 − n2
∣∣2 ≤ Cd2(s+ 2K0)2 = Cx2.

Taking for instance ρ = 1/
√

2C and x large enough we obtain the first property of (H5).
The second property is actually satisfied for any q.

The counting function. We recall that the counting function N associated with the sequence
{Λk}k≥1 is given by

N (r) = # {k : |Λk| ≤ r} , ∀r > 0.

This function N is piecewise constant and non-decreasing on the interval [0,+∞). Thanks to
(H5) we have limk→+∞ |Λk| = +∞, so thatN (r) < +∞ for every r ∈ [0,+∞) and limr→+∞N (r) =
+∞. Moreover, (H4) shows that, for every r > 0, we have

N (r) = n⇐⇒ (|Λn| ≤ r and |Λn+1| > r) , (3.5)

so that, in particular, we have √∣∣ΛN (r)

∣∣ ≤ √r <√∣∣ΛN (r)+1

∣∣.
On the other hand, from the very definition of Λk for k > p̃, we have(

N (r)

p
+ K̃0

)2

−M ≤
∣∣ΛN (r)

∣∣ ≤ (N (r)

p
+
˜̃
K0

)2

+M, for any r s.t. N (r) > p̃,

where M = maxl∈J1,pK |µl|, K̃0 = K0 − p̃+1
p + 1 and ˜̃K0 = K̃0 + 1. Combining the two previous

estimates, it is not difficult to obtain the last assumption (H6) of Theorem 1.5.

3.2. The moment problem. In [AKBGBdT11a] it has been proved (Proposition 5.1) that,
under the assumption (1.5), System (1.9) is null-controllable at time T if for every q ∈ J1, N̂K there
exists a solution uq ∈ L2(0, T ) to the moments problem

∫ T

0

tν

ν!
eγ`t uq(t) dt = c`,ν,q(y0;T ), ∀` ∈ J1, p̃K,∀ν ∈ J0, τ̃` − 1K,∫ T

0

tσ

σ!
e(−λk+µl)t uq(t) dt = dkl,σ,q(y0;T ), ∀k > K0,∀l ∈ J1, pK,∀σ ∈ J0, τl − 1K,

(3.6)
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where c`,ν,q and dkl,σ,q are given in [AKBGBdT11a, Proposition 5.1]. The precise definition of those
terms is not really important here, however we recall that they satisfy the following estimates (see
[AKBGBdT11a, Equations (49) and (52)])

|c`,ν,q(y0;T )| ≤ C
∥∥∥eA∗K0

T
∥∥∥
MnK0

(C)
‖y0‖H−1(0,π)n

≤ CeCT ‖y0‖H−1(0,π)n ,
(3.7)

and ∣∣∣dkl,σ,q(y0;T )
∣∣∣ ≤ C

k

∥∥∥e(−λk+A∗)T
∥∥∥
Mn(C)

∣∣∣〈y0, φk〉H−1,H1
0 (0,π)

∣∣∣
Cn

≤ CeCT
√
λk
k

e−λkT ‖y0‖H−1(0,π)n .

(3.8)

The control v(t) is then given as a linear combination of uq(T − t), q ∈ J1, N̂K, and as a result
satisfies

‖v‖L2(0,T )m ≤ C max
q∈J1,N̂K

‖uq‖L2(0,T ). (3.9)

Assume for the moment that Theorem 1.5 is proved. Let T0 > 0 be the time given by Theorem
1.5 and set

η = max {τl, τ̃`, | l ∈ J1, pK, ` ∈ J1, p̃K} .

For T < T0 we can then introduce the biorthogonal family {ϕk,j}k≥1,j∈J0,η−1K ⊂ L2(−T/2, T/2)

associated with the sequence {Λk}k≥1. As we need to work on the interval (−T/2, T/2), we
perform the change of variable s = t− T

2 in (3.6) and obtain

∫ T
2

−T2

1

ν!

(
s+

T

2

)ν
eγ`s uq

(
s+

T

2

)
ds = e−

T
2 γ`c`,ν,q(y0;T ), ∀` ∈ J1, p̃K,∀ν ∈ J0, τ̃` − 1K,

∫ T
2

−T2

1

σ!

(
s+

T

2

)σ
e(−λk+µl)s uq

(
s+

T

2

)
ds = e−(−λk+µl)

T
2 dkl,σ,q(y0;T ), ∀k > K0,∀l ∈ J1, pK,∀σ ∈ J0, τl − 1K.

Using the binomial formula
(
s+ T

2

)J
=
∑J
j=0

(
J
j

)
sJ−j

(
T
2

)j we finally have

ν∑
j=0

(
ν

j

)(
T

2

)j ∫ T
2

−T2
sν−jeγ`s uq

(
s+

T

2

)
ds = ĉ`,ν,q(y0;T ), ∀` ∈ J1, p̃K,∀ν ∈ J0, τ̃` − 1K,

σ∑
j=0

(
σ

j

)(
T

2

)j ∫ T
2

−T2
sσ−je(−λk+µl)s uq

(
s+

T

2

)
ds = d̂kl,σ,q(y0;T ), ∀k > K0,∀l ∈ J1, pK,∀σ ∈ J0, τl − 1K,

with

ĉ`,ν,q(y0;T ) = ν!e−
T
2 γ`c`,ν,q(y0;T ), d̂kl,σ,q(y0;T ) = σ!e−(−λk+µl)

T
2 dkl,σ,q(y0;T ). (3.10)

For T < T0, a solution to the moments problem (3.6) is then given for every t ∈ (0, T ) by
(note that −λk + µl = Λp̃+(k−K0−1)p+l for k > K0)

uq(t) =

p̃∑
`=1

τ̃`−1∑
ν=0

̂̂c`,ν,q(y0;T )ϕ`,ν

(
t− T

2

)

+
∑
k>K0

p∑
l=1

τl−1∑
σ=0

̂̂
dkl,σ,q(y0;T )ϕp̃+(k−K0−1)p+l,σ

(
t− T

2

)
,
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provided that uq lies in L2(0, T ) (see below), and where ̂̂c`,ν,q and
̂̂
dkl,σ,q solve the triangular systems

P (T )


̂̂c`,0,q
...

̂̂c`,τ̃`−1,q

 =


ĉ`,0,q
...

ĉ`,ν,q

 , Q(T )


̂̂
dkl,0,q
...

̂̂
dkl,τl−1,q

 =


d̂kl,0,q
...

̂dkl,τl−1,q

 ,

where the coefficients of P (T ) and Q(T ) are respectively given for i ≥ j by pij(T ) =
(
i−1
j−1

) (
T
2

)i−j ,
qij(T ) =

(
i−1
j−1

) (
T
2

)i−j and pij(T ) = qij(T ) = 0 otherwise. Observe that∥∥P (T )−1
∥∥
Mτ̃`−1(C)

≤ CT τ̃`−1,
∥∥Q(T )−1

∥∥
Mτl−1(C)

≤ CT τl−1.

From this, the definition (3.10) of ĉ`,ν,q and d̂kl,σ,q, and the estimates (3.7) and (3.8) of c`,ν,q and
dkl,σ,q, we obtain∣∣∣̂̂c`,ν,q(y0;T )

∣∣∣ ≤ CT τ̃`−1
∣∣∣e−T2 γ` ∣∣∣ eCT ‖y0‖H−1(0,π)n ≤ Ce

CT ‖y0‖H−1(0,π)n , (3.11)

and ∣∣∣∣̂̂dkl,σ,q(y0;T )

∣∣∣∣ ≤ CT τl−1
∣∣∣e−(−λk+µl)

T
2

∣∣∣ √λk
k

eCT e−λkT ‖y0‖H−1(0,π)n ,

≤ CeCT
√
λk
k

e−λk
T
2 ‖y0‖H−1(0,π)n .

(3.12)

It remains to prove that uq ∈ L2(0, T ) and to estimate its norm with respect to T and y0.
This is actually thanks to the estimate (1.12) that this latter can be achieved. Indeed, using also
(3.11) and (3.12) we have

‖uq‖L2(0,T ) ≤ CeCT
p̃∑
`=1

eC
√
−<(γ`)+

C
T ‖y0‖H−1(0,π)n ,

+CeCT
∑
k>K0

√
λk
k

e−λk
T
2

p∑
l=1

eC
√
λk−<(µl)+

C
T ‖y0‖H−1(0,π)n ,

≤ CeCT+C
T

(
1 +

∑
k>K0

√
λk
k

e−λk
T
2 +C

√
λk

)
‖y0‖H−1(0,π)n .

(3.13)

Let us now estimate the series. Young’s inequality gives

C
√
λk ≤ λk

T

4
+
C2

T
,

for every k ≥ 1 and T > 0, so that

−λk
T

2
+ C

√
λk ≤ −λk

T

4
+
C2

T
.

Thus, using also that λk = k2, we obtain∑
k>K0

√
λk
k

e−λk
T
2 +C

√
λk ≤ eCT

∑
k≥0

e−k
2 T

4 .

A comparison with the Gauss integral gives∑
k≥0

e−k
2 T

4 ≤ 2

√
4π

T
≤ CeCT .
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Coming back to (3.13) we then have

‖uq‖L2(0,T ) ≤ Ce
CT+C

T ‖y0‖H−1(0,π)n .

Finally, (3.9) gives, for every T < T0,

‖v‖L2(0,T ) ≤ Ce
C
T ‖y0‖H−1(0,π)n .

Thus, when T < T0 we have obtained a null-control to System (1.9) which satisfies the desired
estimate. The case T ≥ T0 is actually reduced to the previous one. Indeed, any continuation by
zero of a control on (0, T0/2) is a control on (0, T ) and the estimate follows from the decrease of
the cost with respect to the time.

4. Biorthogonal families to complex matrix exponentials.. This section is devoted to
the proof of Theorem 1.5.

4.1. Idea of the proof. For any η ≥ 1 and T small enough (depending on η), we have to
construct a family {ϕk,j}k≥1,j∈J0,η−1K in L2(−T/2, T/2) such that

∫ T
2

−T2
ϕk,j(t)t

νe−Λlt dt = δklδjν ,

for every k, l ≥ 1 and j, ν ∈ J0, η − 1K, with in addition the following bound

‖ϕk,j‖L2(−T2 ,
T
2 ) ≤ Ce

C
√
<(Λk)+C

T ,

for any k ≥ 1 and j ∈ J0, η − 1K.
The idea is to use the Fourier transform with the help of the Paley-Wiener theorem (see

[Rud74, Theorem 19.3]) that we recall here.
Theorem 4.1. Let Φ be an entire function of exponential type T/2 (that is |Φ(z)| ≤ Ce

T
2 |z|

for all z ∈ C3) such that

‖Φ‖2L2(−∞,+∞) =

∫ +∞

−∞
|Φ(x)|2 dx < +∞.

Then, there exists ϕ ∈ L2(−T/2, T/2) such that

Φ(z) =
1√
2π

∫ T
2

−T2
ϕ(t)eitz dt, ∀z ∈ C. (4.1)

Moreover, the Plancherel theorem gives

‖ϕ‖L2(−T2 ,
T
2 ) = ‖Φ‖L2(−∞,+∞).

Observe that the function in (4.1) is infinitely derivable on C with, for every ν ∈ J0, η − 1K,

Φ(ν)(z) =
iν√
2π

∫ T
2

−T2
ϕ(t)tνeitz dt, ∀z ∈ C.

Thus, Theorem 1.5 will be proved if we manage to build suitable entire functions as stated in
the following result.

Theorem 4.2. Assume that the sequence {Λk}k≥1 ⊂ C satisfies the assumptions (H1)-(H6).

3Here and only here, C may even depend on T without affecting the result.
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There exists T0 > 0 such that, for any η ≥ 1 and 0 < T < T0, there exists a family
{Φk,j}k≥1,j∈J0,η−1K of entire functions of exponential type T/2 satisfying

Φ
(ν)
k,j(iΛl) =

iν√
2π
δklδjν , ∀k, l ≥ 1, ∀j, ν ∈ J0, η − 1K, (4.2)

and

‖Φk,j‖L2(−∞,+∞) ≤ Ce
C
√
<(Λk)+C

T , (4.3)

for any k ≥ 1 and j ∈ J0, η − 1K.
Remark 3. A sequence {Λk}k≥1 ⊂ C satisfies the assumptions (H1)-(H6) if and only if so

does the sequence
{

Λk
}
k≥1

. For this reason, and commodity, we will prove Theorem 4.2 for the
sequence

{
Λk
}
k≥1

.

4.2. Proof of Theorem 4.2.
Some preliminary remarks. It is interesting to point out some properties of the sequence

{Λk}k≥1 which can be deduced from assumptions (H3), (H4) and (H6).
1. First, under assumptions (H4) and (H6) we have that∑

k≥1

1

|Λk|
< +∞. (4.4)

Indeed, using that N is piecewise constant and non-decreasing on the interval [0,+∞),
we can write∑
k≥1

1

|Λk|
=

∫ +∞

|Λ1|−

1

r
dN (r) =

∫ +∞

|Λ1|

1

r2
N (r) dr ≤

∫ +∞

|Λ1|

α+ p
√
r

r2
dr =

α

|Λ1|
+

2p√
|Λ1|

< +∞.

2. Then, from assumption (H3) we can also deduce the following behavior of the sequence
{Λk}k≥1

|Λk| − <(Λk) ≤ β
√
<(Λk) and |Λk| ≤ C<(Λk), ∀k ≥ 1. (4.5)

Indeed, one has

|Λk|2 = <(Λk)2 + =(Λk)2 ≤ <(Λk)2 + β2<(Λk) ≤
(
<(Λk) + β

√
<(Λk)

)2

.

Let us now introduce the complex functions given, for every z ∈ C, by

f(z) =
∏
k≥1

(
1− z

Λk

)
, fn(z) =

∏
k≥1
k 6=n

(
1− z

Λk

)
. (4.6)

Thanks to (4.4), the previous products are uniformly convergent on compact sets of C and
therefore f and fn are entire functions. Moreover, the zeros of f and fn are exactly {Λk}k≥1 and
{Λk}k 6=n and they are zeros of multiplicity 1 (recall that the Λk are distinct by (H1)). For a proof
of these facts we refer to [Rud74, Theorem 15.4].

On the other hand, let us fix d = pπ+ 2. For any τ > 0 such that τ < d2/2 we define the real
positive sequence {an}n≥0 given by

an =
d2

τ2
+

4
(
n2 − 1

)
d2

, ∀n ≥ 0, (4.7)

To this sequence we associate a complex function M defined by

M(z) =
∏
n≥1

sin(z/an)

z/an
, ∀z ∈ C. (4.8)
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Since ∣∣∣∣ sin(z)

z

∣∣∣∣ ≤ e|z|, ∀z ∈ C,

and an ∼
+∞

Cn2, the previous product is uniformly convergent on compact sets of C and M is an
entire function of exponential type τM > 0, where

τM =
∑
n≥1

1

an
< +∞. (4.9)

More precisely, M satisfies

|M(z)| ≤ eτM |z|, ∀z ∈ C. (4.10)

Observe that there is no constant in front of the term eτM |z|. This point will be very important
in the sequel (see the proof of Proposition 4.3 in Appendix) to obtain estimates with constants C
that do not depend on τ (which will play the role of T , see below). Note also that M has only
real zeros since {an}n≥1 is a real sequence. Finally, we will often use that τM < τ . This fact is
proved in Lemma A.2 in Appendix.

Proof of Theorem 4.2. We follow some techniques developed in [AKBGBdT11a] (see in par-
ticular Lemma 4.4 in this reference).

Set T0 = d2 and, for any 0 < T < T0, set τ = T
2η , in such a way that the condition τ < d2/2

holds. The function M defined above will then correspond to this value of τ .
Let us consider the functions

Φk(z) =
1

η!
[Wk(z)]

η
, Wk(z) =

f(−iz)
−if ′(Λk)

M(z + =(Λk))

M(i<(Λk))
,

Φ̃k(z) =
1

η!

[
W̃k(z)

]η
W̃k(z) =

fk(−iz)
−if ′(Λk)

M(z + =(Λk))

M(i<(Λk))
,

(4.11)

defined for every z ∈ C and k ≥ 1.
Let us already give some estimates for the functions Wk, W̃k (and as result also for Φk and

Φ̃k) that will be used later:
Proposition 4.3. Assume that the sequence {Λk}k≥1 satisfies the assumptions (H1)-(H6),

and let τ < d2/2. Then, for any k ≥ 1 and z ∈ C,

|Wk(z)|+ |W̃k(z)| ≤ eC
√
|z|+τM (|z|−<(Λk))+C

√
<(Λk)+C

τ . (4.12)

On the other hand, for any k ≥ 1 and x ∈ R,

|Wk(x)|+ |W̃k(x)| ≤ e−
√
|x|+C

√
<(Λk)+C

τ . (4.13)

The proof of this rather technical proposition is given in Appendix. For now, let us continue
with the proof of Theorem 4.2.

Since the functionM only has real zeros, all the functions introduced in (4.11) are well-defined
and they are entire functions. For every l ≥ 1, iΛl is a simple zero of the function Wk since Λl
is a simple zero of f and iΛl + =(Λk) is not a zero of M (=[iΛl + =(Λk)] = <(Λl) 6= 0 by (H2)).
Thus, we deduce that, for every l ≥ 1, iΛl is a zero of Φk with exact multiplicity η, i.e.,

Φ
(η)
k (iΛl) = [W ′k(iΛl)]

η 6= 0 and Φ
(ν)
k (iΛl) = 0, ∀k, l ≥ 1, ∀ν ∈ J0, η − 1K.

Observe that, in particular Φ
(η)
k (iΛk) = 1. At this point, the function Φk,j = Φk then satisfies

(4.2) for l 6= k.
17



For any k ≥ 1, j ∈ J0, η − 1K and z ∈ C, let us now set

fk,j(z) =
Φk(z)

(z − iΛk)
η−j =

(
−1

iΛk

)η
Φ̃k(z)(z − iΛk)j .

Note that, for x ∈ R, we deduce from (4.13), (H4) and (4.5), that

|fk,j(x)| ≤ Ce−
η
2

√
|x|+C

√
<(Λk)+C

τ . (4.14)

From the properties of the function Φk, we get
f

(ν)
k,j (iΛl) = 0, ∀l ≥ 1 with l 6= k, ∀ν ∈ J0, η − 1K,

f
(ν)
k,j (iΛk) = 0, ∀ν ∈ J0, j − 1K,

f
(j+r)
k,j (iΛk) =

(j + r)!

(η + r)!
Φ

(η+r)
k (iΛk), ∀r ≥ 0.

(4.15)

We look now for Φk,j in the following form

Φk,j(z) = p(z)fk,j(z),

with p a polynomial function of degree η − j − 1 which depends on k, j (for simplicity, this
dependance is omitted in the notation).

As a consequence of inequality (4.12) and the fact that τM < τ , the function Φk,j is an entire
function of exponential type ητ = T/2.4

In view of (4.15), if we simply take p = 1, then the relations (4.2) are satisfied for l 6= k and
l = k if ν < j. Thus, in order to get (4.2), we have to choose p such that Φ

(j)
k,j(iΛk) = ij√

2π
and

Φ
(j+r)
k,j (iΛk) = 0 for r ∈ J1, η − j − 1K, that is

p(iΛk) =
ij√
2π

1

f
(j)
k,j (iΛk)

=
ij√
2π

η!

j!
,

r−1∑
`=0

ar`p
(`)(iΛk) + p(r)(iΛk) = 0, ∀r ∈ J1, η − j − 1K,

(4.16)

where

ar` =

(
j+r
l

)(
j+r
r

) f (j+r−`)
k,j (iΛk)

f
(j)
k,j (iΛk)

=
r!η!

`!(η + r − `)!
Φ

(η+r−`)
k (iΛk), (4.17)

for every r ∈ J1, η − j − 1K and ` ∈ J0, r − 1K (they are well-defined since f (j)
k,j (iΛk) 6= 0).

These relations allow us to compute p(r)(iΛk) for every r ∈ J0, η− j − 1K and thus completely
determine p which is then given by

p(z) =

η−j−1∑
r=0

p(r)(iΛk)

r!
(z − iΛk)r.

In order to get the bound (4.3) for Φk,j , let us prove some estimates of the polynomial p
previously constructed. If we set P =

(
p(r)(iΛk)

)
r∈J0,η−j−1K ∈ Cη−j , then we can rewrite the

4the constant C such that
∣∣Φk,j(z)∣∣ ≤ Ceητ |z| for every z ∈ C depends on k, j, τ , etc... but this is not important

as mentioned earlier.
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identities in (4.16) as a linear system of the form AP = B with

A =



1 0 · · · · · · 0

a10 1
. . .

...

a20 a21
. . . . . .

...
...

...
. . . . . . 0

aη−j−1,0 aη−j−1,1 · · · aη−j−1,η−j−2 1


∈Mη−j(C), B =



ij√
2π

η!
j!

0
...
...

0


∈ Cη−j ,

and ar` given in (4.17). Again, following [AKBGBdT11a, Eq. (31),p. 570], it is possible to show

|P |Cη−j ≤ C

 ∑
r∈J1,η−j−1K

`∈J0,rK

∣∣∣Φ(η+r−`)
k (iΛk)

∣∣∣2


η−j−1
2

. (4.18)

Finally, let us estimate |Φ(η+r−`)
k (iΛk)|, for r ∈ J1, η − j − 1K and ` ∈ J0, rK. Since Φk is an

entire function, we can write

Φ
(m)
k (iΛk) =

m!

2iπ

∫
|z−iΛk|=1

Φk(z)

(z − iΛk)m+1
dz, ∀m ≥ 0,

so that ∣∣∣Φ(m)
k (iΛk)

∣∣∣ ≤ C sup
z:|z−iΛk|=1

|Φk(z)| .

Using inequality (4.12), the fact that |z| ≤ 1 + |Λk| for z such that |z − iΛk| = 1, inequalities
(4.5), and the fact that τM < d2/2, we obtain∣∣∣Φ(m)

k (iΛk)
∣∣∣ ≤ CeC√<(Λk)+C

τ , ∀k ≥ 1, ∀m ≥ 0.

Going back to (4.18), we get

|P |Cη−j ≤ Ce
C
√
<(Λk)+C

τ .

Recall that the vector P contains the coefficients p(r)(iΛk) of the polynomial p. Thus, using that
|z|r/r! ≤ Ce

η
4

√
|z| for any r ∈ J0, ηK, and using (4.5), we obtain

|p(z)| ≤ Ce
η
4

√
|z|+C

√
<(Λk)+C

τ , ∀z ∈ C.

Combining the previous estimate, written for x ∈ R, and (4.14) we deduce the expected bound
(4.3) for Φk,j = pfk,j .

Appendix A. Proof of Proposition 4.3.
We start with another property satisfied by the sequence {Λk}k≥1, namely that it behaves as

k2.
Lemma A.1. Under assumptions (H4), (H5) and (H6), we have

Ck ≤
√
|Λk| ≤ C ′k, ∀k ≥ 1. (A.1)

The second lemma was often used.
Lemma A.2. Let τ < d2/2. For the function M given by (4.8) we have τM < τ (where τM is

given in (4.9)).
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The next lemma are devoted to give bounds of every terms involved in the definitions (4.11)
of Wk and W̃k.

Lemma A.3. Under assumption (H6) we have, for every z ∈ C and n ≥ 1,

log |f(z)| ≤ (d− 1)
√
|z|+ C, log |fn(z)| ≤ (d− 1)

√
|z|+ C,

where f and fn are defined in (4.6).
Lemma A.4. Under assumptions (H4), (H5) and (H6) we have, for every n ≥ 1,

log |f ′(Λn)| ≥ −C
√
|Λn|,

where f is defined in (4.6).
Lemma A.5. Let τ < d2/2. The function M given by (4.8) satisfies

M(0) = 1, log |M(x)| ≤ −d
√
|x|+ C

τ
, ∀x ∈ R. (A.2)

Lemma A.6. Let τ < d2/2. The function M given by (4.8) satisfies

log |M(iy)| ≥ 0, ∀y ∈ R, (A.3)

and also

log |M(iy)| ≥ τM |y| − C
√
|y| − C

τ
, ∀y ∈ R. (A.4)

Proof of Proposition 4.3. Let us recall the definition of Wk:

Wk(z) =
f(−iz)
−if ′(Λk)

M(z + =(Λk))

M(i<(Λk))
.

From Lemma A.3 and A.4 and |Λk| ≤ C<(Λk) (see (4.5)) we deduce that∣∣∣∣ f(−iz)
−if ′(Λk)

∣∣∣∣ ≤ e(d−1)
√
|z|+C

√
<(Λk). (A.5)

On the other hand, from inequality (A.4) of Lemma A.6 and using (4.10) we can also infer∣∣∣∣M(z + =(Λk))

M(i<(Λk))

∣∣∣∣ ≤ eτM |z|+τM (|=(Λk)|−<(Λk))+C
√
<(Λk)+C

τ .

Note that τM |=(Λk)| ≤ C
√
<(Λk) thanks to (H3) and τM < d2/2. Thus, putting both

inequalities together we deduce estimate (4.12) for the function Wk.
Let us now take x ∈ R. Applying inequality (A.2) of Lemma A.5 and, this time, inequality

(A.3) of Lemma A.6, we arrive to∣∣∣∣M(x+ =(Λk))

M(i<(Λk))

∣∣∣∣ ≤ e−d√|x|+d√|=(Λk)|+C
τ .

Note that
√
|=(Λk)| ≤ C

√
<(Λk) by (4.5). Thus, the previous inequality together with (A.5)

(written for x ∈ R) provide the estimate (4.13) for Wk(x), with x real.
The same reasoning provide the estimate for W̃k.
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Proof of Lemma A.1. The lower bound easily follows from (H5) by taking n = 1.
To prove the upper bound, let us first observe that, for any k and n such that |Λk| = |Λn|, we

have, using (H4),∣∣<(Λk)2 −<(Λn)2
∣∣ =

∣∣=(Λk)2 −=(Λn)2
∣∣ ≤ β2 (<(Λk) + <(Λn)) ,

so that

|<(Λk)−<(Λn)| ≤ β2.

It follows that (using (H4) again)

|Λk − Λn| ≤ |<(Λk)−<(Λn)|+ |=(Λk)−=(Λn)| ≤ β2 + 2β
√
|Λk|.

By using (H5), and the fact that k + n ≥ k, we obtain

|k − n| ≤ max

{
q,
β2 + 2β

√
|Λk|

ρk

}
.

Note that if k is such that β2+2β
√
|Λk|

ρk ≤ q then
√
|Λk| ≤

(
qρ
2β

)
k and we are done. Let us then

deal with the k such that β2+2β
√
|Λk|

ρk > q.
Applying the previous estimate with n = N (|Λk|) (which indeed satisfies |Λn| = |Λk| by (3.5)

and (H4)), we deduce that

N (|Λk|) ≤ k + |N (|Λk|)− k| ≤ k +
β2 + 2β

√
|Λk|

ρk
,

and by (H6) we finally obtain

p
√
|Λk| ≤ α+N (|Λk|) ≤ k +

β2 + 2β
√
|Λk|

ρk
.

For k large enough, we obtain

p

2

√
|Λk| ≤ k +

β2

ρk
≤
(

1 +
β2

ρ

)
k,

and the lemma is proved.
Proof of Lemma A.2. For the proof we will follow some ideas from [FR71] and [Mil04] (see

also [Red77]). Let us consider the counting function N associated with the sequence {an}n≥1

given by (4.7):

N(r) = #{n ≥ 1 : an ≤ r}.

Observe that the sequence {an}n≥0 can be written as

an = a0 +
n2

A2
, ∀n ≥ 1, with A =

d

2
and a0 =

d2

τ2
− 4

d2
,

and that a0 > 0 since we assumed that τ < d2/2. Thus, N(r) = 0 for r < a1, and

N(r) = bA
√
r − a0c, ∀r ≥ a1,

where we recall that b·c is the floor function. Note that

A
√
r −A

√
a0 ≤ N(r) ≤ A

√
r, ∀r ≥ 0.

These remarks in mind, we have

τM =
∑
n≥1

1

an
=

∫ +∞

a−1

1

r
dN(r) =

∫ +∞

a−1

N(r)

r2
dr ≤

∫ +∞

a1

A
√
r − a0

r2
dr

< A

∫ +∞

a1

√
r

r2
dr =

2A
√
a1

= τ,

where the last inequality is strict since a0 6= 0.
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Proof of Lemma A.3. Given z ∈ C, one has

log |f(z)| ≤
∑
k≥1

log

(
1 +

|z|
|Λk|

)
=

∫ +∞

|Λ1|−
log

(
1 +
|z|
t

)
dN (t).

Taking into account limt→+∞N (t)/t = 0 (consequence of (H6)) an integration by parts gives∫ +∞

|Λ1|−
log

(
1 +
|z|
t

)
dN (t) =

∫ +∞

|Λ1|−

|z|
t(|z|+ t)

N (t) dt.

After the change of variable t = |z|s, we obtain∫ +∞

|Λ1|−

|z|
t(|z|+ t)

N (t) dt =

∫ +∞

|Λ1|−/|z|

N (|z|s)
s(s+ 1)

ds.

From (H6), we conclude that∫ +∞

|Λ1|−/|z|

N (|z|s)
s(s+ 1)

ds ≤ p
√
|z|
∫ +∞

|Λ1|−/|z|

1√
s(s+ 1)

ds+ α

∫ +∞

|Λ1|−/|z|

1

s(s+ 1)
ds

≤ pπ
√
|z|+ α log

(
1 +

|z|
|Λ1|

)
.

Since the function z ∈ C 7−→ α log(1+ |z|/ |Λ1|)−
√
|z| is bounded on C, the lemma is proved.

Repeating the arguments, we obtain the same estimate for fn.
Proof of Lemma A.4. For proving the result we are going to follow some ideas from [LK71]

and [FR75] (see also [FCGBdT10]).
Firstly, note that

f ′(Λn) = − 1

Λn

∏
k 6=n

(
1− Λn

Λk

)
, ∀n ≥ 1. (A.6)

Given n ≥ 1, let us introduce the sets

S1(n) = {k 6= n : |Λk| ≤ 2|Λn|} and S2(n) = {k : |Λk| > 2|Λn|}.

and the infinite product

Pn =
∏
k 6=n

∣∣∣∣1− Λn
Λk

∣∣∣∣ . (A.7)

Let us give a lower bound for the product Pn. To this end, we split this product into two
parts using the sets S1(n) and S2(n):
1. From the definition of S1(n) and using (H5), we can write∏
k∈S1(n)

∣∣∣∣1− Λn
Λk

∣∣∣∣ =
∏

k∈S1(n)
|k−n|≥q

∣∣∣∣Λk − Λn
Λk

∣∣∣∣ ∏
k∈S1(n)
|k−n|<q

∣∣∣∣Λk − Λn
Λk

∣∣∣∣ ≥ ∏
k∈S1(n)
|k−n|≥q

ρ

2

|k − n|(k + n)

|Λn|
∏

k∈S1(n)
|k−n|<q

1

2

A

|Λn|
,

where

A = inf
k 6=n:|k−n|<q

|Λk − Λn| > 0.

It follows that∏
k∈S1(n)

∣∣∣∣1− Λn
Λk

∣∣∣∣ ≥ ∏
k∈S1(n)

ρ

2

|k − n|(k + n)

|Λn|
∏

k∈S1(n)
|k−n|<q

A

ρ|k − n|(k + n)
.
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Since

∏
k∈S1(n)
|k−n|<q

A

ρ|k − n|
≥
(
A

ρq

)2q−1

,
∏

k∈S1(n)
|k−n|<q

1

k + n
≥ 1

(2n+ q − 1)2q−1
, ∀n ≥ 1,

we deduce that ∏
k∈S1(n)
|k−n|<q

A

|k − n|(k + n)
≥ C

(2n+ q − 1)2q−1
.

As |Λn| ≥ Cn2 for every n ≥ 1 (see (A.1)), we obtain

∏
k∈S1(n)
|k−n|<q

A

|k − n|(k + n)
≥ C

|Λn|
2q−1

2

.

Let us define rn = #{k ∈ S1(n) : k < n} and sn = #{k ∈ S1(n) : k > n}. From (A.1), we
deduce that k + n ≥ C

√
|Λn| for any n, k ≥ 1. Thus,

∏
k∈S1(n)

∣∣∣∣1− Λn
Λk

∣∣∣∣ ≥ C |Λn|−q− 1
2 rn!

(
ργ2

2|Λn|1/2

)rn
sn!

(
ργ2

2|Λn|1/2

)sn
= C |Λn|−q−

1
2 P(1)

n P(2)
n , ∀n ≥ 1.

(A.8)
Let us argue with P(1)

n . A similar reasoning will provide a lower bound for P(2)
n .

Observe that there exists two constants c0, c1 > 0 such that

r! ≥ c0
(r
e

)r
, ∀r ≥ 1,

and

−c1 = inf
s>0

s(log s).

We can then write

P(1)
n = rn!

(
ργ2

2|Λn|1/2

)rn
≥ c0

(
ργ2rn

2e|Λn|1/2

)rn
= c0 exp

[
2e|Λn|1/2

ργ2

(
ργ2rn

2e|Λn|1/2

)
log

(
ργ2rn

2e|Λn|1/2

)]
≥ c0 exp

(
−2ec1
ργ2
|Λn|1/2

)
.

Putting this inequality (and the similar one for the product P(2)
n ) in (A.8) we obtain

∏
k∈S1(n)

∣∣∣∣1− Λn
Λk

∣∣∣∣ ≥ e−C√|Λn|−C , ∀n ≥ 1. (A.9)

2. Let us now estimate the product (A.7) for k ∈ S2(n) that we denote by P(3)
n . Let c2 > 0 be

such that

log(1− s) ≥ −c2s, ∀s ∈ [0, 1/2]. (A.10)
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Observe that, for k ∈ S2(n) one has |Λn|/|Λk| ≤ 1/2, so that we can use (A.10) to obtain

logP(3)
n ≥

∑
k∈S2(n)

log

(
1− |Λn|
|Λk|

)
≥ −c2|Λn|

∑
k∈S2(n)

1

|Λk|
= −c2|Λn|

∫
2|Λn|

1

r
dN (r)

= −c2|Λn|

(
−N (2|Λn|)

2|Λn|
+

∫
2|Λn|−

N (r)

r2
dr

)
≥ −c2|Λn|

∫
2|Λn|−

N (r)

r2
dr

≥ −c2|Λn|
∫

2|Λn|−

α+ p
√
r

r2
dr = −c2|Λn|

(
α

2|Λn|
+

2p√
2|Λn|

)
= −αc2

2
−
√

2pc2|Λn|1/2.

Putting (A.9) and this last inequality in (A.7), we deduce

Pn =
∏
k 6=n

∣∣∣∣1− Λn
Λk

∣∣∣∣ ≥ e−C√|Λn|−C , ∀n ≥ 1,

Since |Λn| ≥ |Λ1| for every n ≥ 1 (see (H4)) we finally have

Pn ≥ e−C
√
|Λn|, ∀n ≥ 1.

This inequality and formula (A.6) provide the desired estimate. This ends the proof.
Proof of Lemma A.5. For the proof we will follow some ideas from [FR71] and [Mil04] (see

also [Red77]). Let us first consider again the counting function N associated with the sequence
{an}n≥1 given by (4.7):

N(r) = #{n ≥ 1 : an ≤ r}.

Observe again that the sequence {an}n≥0 can be written as

an = a0 +
n2

A2
, ∀n ≥ 1, with A =

d

2
and a0 =

d2

τ2
− 4

d2
, (A.11)

and that a0 > 0 since we assumed that τ < d2/2. Thus, N(r) = 0 for r < a1, and

N(r) = bA
√
r − a0c, ∀r ≥ a1, (A.12)

We will often use that

A
√
r −A

√
a0 ≤ N(r) ≤ A

√
r, ∀r ≥ 0.

Let us prove the inequality (A.2). Observe thatM is an even function. So, we will show (A.2)
for x ∈ (0,+∞). From the definition (4.8) of M , one has

log |M(x)| =
∑
n≥1

log

∣∣∣∣ sin(x/an)

x/an

∣∣∣∣ =

∫ +∞

a−1

g
(x
r

)
dN(r),

here

g(s) = log

∣∣∣∣ sin ss
∣∣∣∣ , s ∈ R.

• Since, g is non increasing on [0, 1), for any x ∈ [0, a1], we have

log |M(x)| ≤ log |M(0)| = 0 ≤ −d
√
x+ d

√
a1 ≤ −d

√
x+

d2

τ
,

which gives the claim in that case.
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• Assume now that x > a1. We write

log |M(x)| =
∑
an≤x

g(x/an) +
∑
an>x

g(x/an) ≡ I + J.

Since g is negative and non increasing on [0, 1], the second sum J can be bounded as
follows

J ≤
∑

2x≥an>x

g(x/an) ≤ −|g(1/2)|(N(2x)−N(x))

≤ −|g(1/2)|(A
√

2x− a0 − 1−A
√
x− a0) = |g(1/2)| −A|g(1/2)| x√

2x− a0 +
√
x− a0

≤ |g(1/2)| −A |g(1/2)|√
2 + 1

√
x.

In the first sum I, we use the inequality g(s) ≤ − log s for any s ≥ 0, to get

I ≤ −
∑
an≤x

log(x/an) =

∫ x

a−1

log
( r
x

)
dN(r) = −

∫ x

a1

N(r)

r
dr

≤
∫ x

a1

1−A
√
r − a0

r
dr = log(x/a1)−A

(∫ x

a1

1√
r − a0

dr − a0

∫ x

a1

1

r
√
r − a0

dr

)
≤ log(x/a1)− 2A

√
x− a0 + 2A

√
a1 − a0 +A

√
a0

∫ +∞

1

1

r
√
r − 1

dr

≤ −2A
√
x+ c1A

√
a0 + log(x) + 2,

with c1 = 2 +
∫ +∞

1
1

r
√
r−1

dr.
Combining the two estimates gives

log |M(x)| ≤ −A
(

2 +
|g(1/2)|
1 +
√

2

)√
x+ log x+ c1A

√
a0 + 2 + |g(1/2)|.

Observe now that a0 ≤ d2/τ2, that 2A = d and that the function

x ∈ [0,+∞[7→ −A |g(1/2)|
1 +
√

2

√
x+ log(x) + 2 + |g(1/2)|,

is bounded by some number c2 > 0 depending only on A = d/2. We finally get the
inequality

log |M(x)| ≤ −d
√
x+

c1d
2

2τ
+ c2,

which gives the claim by using that 1 ≤ d2

2τ .
Proof of Lemma A.6. We start by observing that

sin iy

iy
=

sinh y

y
≥ 1, ∀y ∈ R.

As a consequence, we obtain M(iy) ≥ 1, for any y ∈ R. Thus, we immediately get (A.3).
We will now obtain the proof of (A.4) by adapting the proof of Lemma 6.3 of [FR71] to the

sequence {an}n≥1 given by (4.7). We set c0 = log
√

3 > 0.
• Assume first that |y|/c0 ≤ a1. Then, by using (A.3), we get

log |M(iy)| ≥ 0 ≥ τM |y| − τMc0a1 = τM |y| − τMc0
d2

τ2
≥ τM |y| − c0

d2

τ
, ∀|y|

c0
≤ a1 =

d2

τ2
,

and the claim is proved in that case.
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• Assume now that |y|/c0 ≥ a1. Observe that

sin(iy)

iy
=

1

2

(
ey − e−y

y

)
=
e|y| − e−|y|

2|y|
= e|y|

1− e−2|y|

2|y|
, ∀y 6= 0.

Thus, using the definitions (4.8) and (4.9) of M and τM , we have

log |M(iy)| =
∑
n≥1

|y|
an

+
∑
n≥1

log

(
1− e−2|y|/an

2|y|/an

)
= τM |y|+ I, (A.13)

where the sequence {an}n≥1 is given by (4.7).
In order to bound the series I, we will use the inequalities

1− e−2y

2y
≥ e−2y, ∀y > 0, and

1− e−2y

2y
≥ 1

3y
, ∀y ≥ log

√
3 = c0.

So, for y ∈ R with |y|/c0 ≥ a1, one has,

I =
∑
n≥1

log

(
1− e−2|y|/an

2|y|/an

)
≥ −

∑
n≥1

an>|y|/c0

2|y|
an

+
∑
n≥1

an≤|y|/c0

log

(
an
3|y|

)
≡ I1 + I2 . (A.14)

– Let us first bound from below I1 in the expression (A.14). One has

I1 = −
∑
n≥1

an>|y|/c0

2|y|
an

= −2|y|
∫ +∞

a−n0

dN(r)

r
≥ −2|y|

∫ +∞

|y|/c0

dN(r)

r
,

where n0 ≥ 1 is the smallest integer such that an0 > |y|/c0 and N(·) is the counting
function associated to the sequence {an}n≥1 (see (A.11) and (A.12)). Integrating by
parts, we obtain:

I1 ≥ −2|y|

[
1

r
N(r)

∣∣∣∣+∞
|y|/c0

+

∫ +∞

|y|/c0

N(r)

r2
dr

]
≥ −2|y|A

∫ +∞

|y|/c0

√
r − a0

r2
dr

≥ −2A|y|
∫ +∞

|y|/c0
r−3/2 dr,

that is to say,

I1 ≥ −4c
1/2
0 A

√
|y|, ∀|y|

c0
> a1 . (A.15)

– Let us deal with the second term I2 in (A.14) for |y| satisfying a1 < |y|/c0. Using
that for any r ∈ [a1, |y|/c0] one has r < 3|y| (c0 = log

√
3), we can write

I2 =
∑
n≥1

an≤|y|/c0

log

(
an
3|y|

)
=

∫ an1

a−1

log

(
r

3|y|

)
dN(r) ≥

∫ |y|/c0
a−1

log

(
r

3|y|

)
dN(r),

where n1 ≥ 1 is the largest integer such that an1 ≤ |y|/c0.
Again, integrating by parts, we deduce

I2 ≥ N(r) log

(
r

3|y|

)∣∣∣∣|y|/c0
a−1

−
∫ |y|/c0
a−1

N(r)

r
dr = − log(3c0)N(|y|/c0)−A

∫ |y|/c0
a−1

√
r − a0

r
dr

≥ − log(3c0)N(|y|/c0)−A
∫ |y|/c0

0

1√
r
dr ≥ −A (2 + log(3c0)) c

−1/2
0

√
|y|.
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In view of (A.13) and (A.14), this last inequality together with (A.15) provide (c0 =
log
√

3)

log |M(iy)| ≥ τM |y| − c1d
√
|y|,

with c1 = (1 + 2c0 + log(3c0)/2)c
−1/2
0 .

Owing to the previous calculations, we finally obtain the inequality (A.4). This ends the proof.
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