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1 Introduction

The vehicle routing problem with stochastic demands and probabilistic distance con-

straints (VRPSD-PDC) can be defined on a complete and undirected graph G = (V, E),
where V = {0, . . . , n} is the vertex set and E = {(v, u) : v, u ∈ V, v ̸= u} is the edge set.

Vertices v = 1, . . . , n represent the customers and vertex v = 0 represents the depot. A

distance de is associated with edge e = (v, u) = (u, v) ∈ E , and it represents the travel cost

between vertices v and u. Each customer v has a random demand ξv for a given product.

Customer demands are met using an unlimited fleet of homogeneous vehicles located at

the depot. Each vehicle has a maximum capacity Q and a maximum travel distance L.

The exact quantity demanded by each customer is not known until the vehicle arrives at

the customer location. It is assumed, however, that each customer’s demand follows an

independent and known probability distribution and that all demand realizations (actual

quantities) are nonnegative and less than the capacity of the vehicle.

We formulate the VRPSD-PDC as an extension of the classical two-stage stochastic

programming formulation for the VRPSD that includes chance constraints on the max-

imum travel distances of the routes. As the name suggests, the two-stage stochastic
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programming formulation for the VRPSD solves the problem in two stages. In the first

stage, a set R of planned routes is designed. Each route r ∈ R is a sequence of vertices

r = (0, v1, . . . , vi, . . . , vnr , 0), where vi ∈ V\{0} and nr is the number of customers serviced

by the route. During the planning phase, each route is designed so that the total expected

load does not exceed the capacity of the vehicle (i.e.,
∑

v∈r\0E[ξv] ≤ Q ∀ r ∈ R) and

every customer is visited by exactly one route. In the second stage, each route is executed

until a route failure occurs, that is, the capacity of the vehicle is exceeded. A recourse

action is then applied to recover the feasibility of the failing route. The recourse action is

classically defined as a return to the depot to reload the vehicle, followed by a trip back to

the customer location to complete the service. The route is then resumed from that point

as originally planned. It is worth noting that the literature includes more sophisticated

recourse actions. We decided to retain the classical policy because it is simple, suitable

for many practical applications, and allows a more direct comparison with previously pub-

lished results. The second-stage solution is then the actual set of routes traveled by the

vehicles. The problem is to determine in the first stage the set of planned routes R that

minimizes the expected cost E [C] of the second-stage solution given by:

E [C(R)] =
∑
r∈R

E [Cr] =
∑
r∈R

E
[
lr +Gr

(
ξ⃗
)]

=
∑
r∈R

lr +
∑
r∈R

E
[
Gr

(
ξ⃗
)]

(1)

where lr is the planned length (planned cost) and E
[
Gr

(
ξ⃗
)]

is the expected length of

the return trips to the depot, or the cost of recourse, caused by route failures for each

route r ∈ R. The planned cost of a route is simply the sum of the lengths of the arcs

traversed by the route. Under the selected recourse action, the expected cost of the failures

of a route is given by E
[
Gr

(
ξ⃗
)]

= 2 ×
∑nr

i=2 Pr(vi) × dvi,0, where Pr(vi) represents the

probability of having a route failure while servicing customer vi. The failure probability

is calculated as Pr(vi) =
∑i−1

f=1 Pr
(∑i−1

j=2 ξvj ≤ f ·Q <
∑i

j=2 ξvj

)
, where the probability

term represents the probability of having the fth failure while servicing customer vi.

Since the total travel distance of each route (i.e., Cr) is a random variable which

value is only known when the vehicle returns to the depot after completing the route.

The literature accounts for different strategies to deal with the distance constraint in the

context of the VRPSD. For instance, Yang et al. (2000) enforce the distance constraint on

the total expected cost of the planned route; Erera et al. (2010) impose a hard constraint on

the second-stage cost of the route, meaning that planned routes should verify the constraint

for any possible vector of demand realizations; and Tan et al. (2007) penalize violations

to the distance constraint in an additional objective function, driver remuneration, and

solve the problem as a multiobjective optimization problem with posterior articulation of

preferences. Alternatively, we model the distance constraint stating that:

Pr(Cr ≤ L) ≥ 1− β ∀r ∈ R (2)



where β is an acceptance threshold set by the decision maker according to his risk aversion

to violations to the distance constraint.

In this research, we propose an algorithm to analytically compute Pr(Cr ≤ L), and

thus evaluate constraints (2), and use that algorithm as a building block to construct a

GRASP with heuristic concentration (HC) for solving the VRPSD-PDC.

2 GRASP with heuristic concentration

The proposed approach operates as follows. At each iteration t the algorithm selects

a randomized TSP heuristic h ∈ H and uses it to build a giant TSP tour pt visiting

all customers. Then, the algorithm uses an adaptation of the the s-split procedure for

the VRPSD (Mendoza and Villegas, 2012) to optimally partition pt into a set of feasible

routes that make up a starting solution st. Next, the algorithm uses the first-improvement

versions of the re-locate and 2-opt neighborhoods to perform a Variable Neighborhood

Descent (VND) from the starting solution st. At the end of iteration t, our GRASP

updates the best known solution s∗ and adds the routes in the local optimum (i.e., st)

to a set Ω. After T iterations the GRASP stops and the heuristic concentration takes

place. In this phase, our method uses a commercial optimizer to solve a set-partitioning

formulation for the VRPSD-PDC over the set of routes Ω. To speed up the HC phase,

the algorithm uses the objective function of the best solution found by the GRASP (i.e.,

f(s∗)) as an initial upper bound for the set-partitioning problem.

Note that computing both the objective function (1) and the distance constraints

(2) while testing every single move in the local search phase may be computationally

prohibiting. To overcome this difficulty, our VND evaluates moves following a four-stage

hierarchical procedure. Let s be a search solution and s′ be the solution resulting from

applying a given move to s. The move evaluation procedure operates as follows. In

the first stage the algorithm checks that s′ verifies the expected load constraint. In the

second stage the algorithm calculates the planned cost of the candidate solution ls′ and

tests the following condition: ls′ ≤ E[C(s)] + α × E[C(s)], where α ∈ [−1, 1] is a pre-

tuned parameter; the procedure moves to the third stage only if the condition is verified.

The intuition behind this filter comes from the fact that the planned cost of a solution

tends to largely dominate the cost of recourse. Therefore, by setting α to close-to-zero

values, the algorithm is able to save expensive computations of the cost of recourse by

rapidly discarding moves that are unlikely to improve the solution (at the risk of rejecting

some improving moves). In the third stage, the algorithm completes the evaluation of

the objective function by computing the cost of recourse of s′. The evaluation procedure

advances to the fourth stage only if s′ is an improving solution. On the fourth stage the

algorithm verifies the distance constraint (2) and then accepts or rejects the move.



3 Computational experiments

We ran 10 times our GRASP+HC with β = 1 on each instance of the 40-instance testbed

for the classical VRPSD introduced in Christiansen and Lysgaard (2007) and compared

our results with the best known solutions for the testbed: 38 optimal solutions reported

in Gauvin (2012) and 2 heuristic solutions reported in Mendoza and Villegas (2012). We

obtained solutions with a maximum gap with respect to the BKSs of 0.03%. From each of

the 40 VRPSD instances, we built 2 VRPSDPDC instances by setting L to max{E[Cr]|r ∈
R} and 1.2 × max{E[Cr]|r ∈ R}, where R is the best solution found for the original

VRPSD instance. To analyze the impact of the probabilistic distance constraint on the

cost of VRPSD solutions, we ran our algorithm with β = {0.05, 0.10} on each of the 80

new VRPSDPDC instances. The data show that our method is able to generate solutions

that are more robust to violation of the distance constraint than those obtained for the

original VRPSD instances with small increments on the expected cost.
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Montréal, 2012.

J. E. Mendoza and J. G. Villegas. A multi-space sampling heuristic for the vehicle routing

problem with stochastic demands. Optimization Letters, 2012. DOI 10.1007/s11590-

012-0555-8.

K. C. Tan, C. Y. Cheong, and C. K. Goh. Solving multiobjective vehicle routing problem

with stochastic demand via evolutionary computation. European Journal of Operational

Research, 177(2):813–839, 2007.

W. H. Yang, K. Mathur, and R. Ballou. Stochastic vehicle routing with restocking. Trans-

portation Science, 34(1):99–112, 2000.


