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Universidad de los Andes, Bogotá, Colombia
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1 Introduction

Vehicle routing problems (VRPs) are concerned with the design of efficient routes that

deliver goods and services from (to) central depots to (from) customer locations, satisfying

specific business constraints. In the last 50 years, a vast amount of research has been

devoted to solve different VRP variants. Nonetheless, most of the solution methods for

VRPs are based on the premise that problem parameters such as travel times and customer

demands are known in advance. However, in a practical setting, more often than not the

problem parameters are uncertain and neglecting their stochastic nature may result in

poor routing decisions. In this research, we tackle a family of problems that have received

relatively little attention in the literature: the vehicle routing problems with stochastic

travel and service times. The main contributions of this research are twofold: proposing a

unified framework based on queueing theory to model stochastic travel and service times

and illustrating how this framework can be embedded into a routing optimization engine

to solve different problem variants.
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2 Modeling stochastic travel and service times

The family of vehicle routing problems with stochastic travel and service times can be

defined on a complete and undirected graph G = (V, E), where V = {0, . . . , n} is the vertex

set and E = {e = (vi, vj) : vi, vj ∈ V , vi ̸= vj} is the edge set. Vertices vi ∈ V\{0} represent
the customers and vertex 0 represents the depot. An edge weight t̃e is associated with edge

e = (vi, vj) = (vj , vi) ∈ E , and it represents the random travel time along edge e. Each

customer vi has a random service time s̃vi , a known demand dvi for a given product, and a

time window [t−vi , t
+
vi ], where t

−
vi and t+vi are the earliest and latest times when the customer

must be served. Both travel and service times are assumed to follow known distributions.

Customers are served by an unlimited fleet of homogeneous vehicles located at the depot.

Each vehicle has a maximum capacity Q and a maximum route duration T . The objective

is to design a route set R of minimum total expected duration E
[
T̃ (R)

]
=

∑
r∈RE

[
T̃r

]
,

where T̃ (R) is the total (random) duration of the route set, T̃r is the (random) duration

of route r, and E(·) denotes the expected value. Each route r ∈ R is a sequence of vertices

r =
(
0, v(1), . . . , v(i), . . . , v(nr), 0

)
, where v(i) ∈ V \ {0} is the i-th node in the sequence,

nr is the number of customers serviced by the route, and e = (v(i), v(i+1)) ∈ E (with

v(0) = v(nr+1) = 0). Aside from the classical capacity constraint, each route r ∈ R satisfies

a set of constraints C that involve the route’s duration, such as not exceeding the time

limit T or violating the customer time windows. The aforementioned problem definition

encompasses a number of problems such as the classical VRP with stochastic travel and

service times (Laporte et al., 1992), the VRP with stochastic travel times (Van Woensel

et al., 2003), and the VRP with stochastic travel times and time windows (Taş et al.,

2013), among others.

To tackle the VRP with stochastic travel and service times, the literature reports

several methods based on the expected values of the random variables that model travel

and service times. However, working with expected values could lead to partial information

regarding the performance of the route (e.g., expected route duration). In order to find

more refined information such as the distribution of the route duration, it is necessary to

compute the convolution of the distribution functions that represent the travel times along

the arcs and the service times at the vertices. While the derivation of this convolution is

straightforward in a few special cases, such as when all the travel and service times follow

a normal distribution, it is in general a complex task. We propose an approach based on

the family of Phase-type (PH) distributions and queueing theory to model the stochastic

travel and service times and derive their convolution.

The family of PH distributions is dense on the set of continuous density functions with

support on [0,∞), meaning that there exists a PH distribution arbitrarily close to any

positive continuous distribution. The expected value, probability density function, and

moments of a PH distribution can be found in closed form. This family of distributions



also possesses a number of closure properties: the convolution of PH distributions is again

a PH distribution, where the initial vector and generator matrix are easily obtained from

the original parameters of the distributions; the stationary waiting time distribution in

an M/PH/1 queue is PH; and the convex mixture of PH distributions is again a PH

distribution.

Uninterrupted traffic flow on a road or a highway can be studied using queueing theory

(Heidemann, 1996; Vandaele et al., 2000), since the relevant characteristics of a given road

(arc) can be mapped to parameters of a queueing model, allowing sensitivity analysis and

assessment of what-if scenarios. Parameters such as the maximum road density, the vehicle

flow rate, and the free-flow speed can be employed to construct a queueing system for a

segment of the road with a given length (a fraction of the length of an arc). Then, using

queueing theory, we can compute performance measures such as the expected sojourn time

in the road segment.

We propose to model each segment of the road as an M/M/c queue (Poisson arrivals

and exponential service times with c parallel servers). In such a model, the sojourn time

in the road segment consists of an exponentially distributed service phase and with a

certain probability an exponentially distributed wait phase. Hence, the distribution of

time across each arc can be computed using the distribution of time in each segment.

This type of distribution is called a Coxian-C2 distribution, which is a class of the family

of PH distributions. The service time of each customer can also be closely approximated

by a PH distribution, using appropriate fitting algorithms. Therefore, the distribution of

time spent traveling across a sequence of arcs (i.e., a particular route) whose travel times

follow PH distributions, and visiting the customers on the vertices whose service times

are approximated by PH distributions, is the convolution of a set of PH distributions

which is also PH. The parameters of the resulting PH convolution can be found from the

parameters of travel and service time distributions.

3 Embedding the queueing model into a routing engine

The proposed queueing model can be seen as a black box PH(r) that takes as input a route

r and computes, based on the travel time distribution of all arcs traversed by the route and

the service time distribution of each customer visited by the route, the PH distribution of

the total duration of r (i.e., T̃r ,
∑

e∈r t̃e+
∑

vi∈r s̃vi), namely, PHr. Besides the customary

total expected duration, PHr provides several performance metrics in connection to the

total duration of a route. For instance, it is possible to calculate the probability that the

route does not exceed time limit T or the probability of arriving at a customer vi within

the time window [t−vi , t
+
vi ]. By using PH(r) as a route evaluator, our approach is able to

tackle different stochastic VRP variants.



Our routing (search) engine is based on the multi-space sampling heuristic (MSH) by

Mendoza and Villegas (2012). Like the original MSH, our heuristic follows a two-phase

solution strategy. In the first phase, it samples multiple solution representation spaces;

while in the second phase, it uses the sampled elements to build a solution to the problem

on hand. The approach operates as follows. At each iteration t, the algorithm selects a

sampling heuristic from a setH of randomized traveling salesman problem (TSP) heuristics

and uses it to build a giant tour pt visiting all customers. Then, the algorithm makes a call

to a splitting procedure to retrieve a tuple ⟨Ωt, st⟩, where Ωt is the set of all feasible routes

that can be obtained from pt without altering the order of the customers, and st ∈ S
is the best solution that can be built using routes from Ωt. To verify the satisfaction of

constraints in C and to compute the expected duration E[T̃r] of a route r that is candidate

to join Ωt the splitting procedure invokes PH(r) to obtain the PH distribution of the route

duration (i.e., travel plus service times). The routes in Ωt join a set of sampled routes

Ω, while st is used to update an upper bound f(s∗) on the objective function of the final

solution. In the assembly phase, the heuristic solves a set partitioning formulation of the

underlying problem over Ω, using f(s∗) as an upper bound.
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