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A unified framework for vehicle routing problems with stochastic travel and service times

Introduction

Vehicle routing problems (VRPs) are concerned with the design of efficient routes that deliver goods and services from (to) central depots to (from) customer locations, satisfying specific business constraints. In the last 50 years, a vast amount of research has been devoted to solve different VRP variants. Nonetheless, most of the solution methods for VRPs are based on the premise that problem parameters such as travel times and customer demands are known in advance. However, in a practical setting, more often than not the problem parameters are uncertain and neglecting their stochastic nature may result in poor routing decisions. In this research, we tackle a family of problems that have received relatively little attention in the literature: the vehicle routing problems with stochastic travel and service times. The main contributions of this research are twofold: proposing a unified framework based on queueing theory to model stochastic travel and service times and illustrating how this framework can be embedded into a routing optimization engine to solve different problem variants.

Modeling stochastic travel and service times

The family of vehicle routing problems with stochastic travel and service times can be defined on a complete and undirected graph G = (V, E), where V = {0, . . . , n} is the vertex set and

E = {e = (v i , v j ) : v i , v j ∈ V, v i ̸ = v j } is the edge set. Vertices v i ∈ V \{0} represent
the customers and vertex 0 represents the depot. An edge weight te is associated with edge e = (v i , v j ) = (v j , v i ) ∈ E, and it represents the random travel time along edge e. Each customer v i has a random service time sv i , a known demand d v i for a given product, and a

time window [t - v i , t + v i ],
where t - v i and t + v i are the earliest and latest times when the customer must be served. Both travel and service times are assumed to follow known distributions.

Customers are served by an unlimited fleet of homogeneous vehicles located at the depot.

Each vehicle has a maximum capacity Q and a maximum route duration T . The objective is to design a route set R of minimum total expected duration E

[ T (R) ] = ∑ r∈R E [ Tr ] ,
where T (R) is the total (random) duration of the route set, Tr is the (random) duration of route r, and E(•) denotes the expected value. Each route r ∈ R is a sequence of vertices

r = ( 0, v (1) , . . . , v (i) , . . . , v (nr) , 0 ) , where v (i) ∈ V \ {0} is the i-th node in the sequence,
n r is the number of customers serviced by the route, and e = (v

(i) , v (i+1) ) ∈ E (with v (0) = v (nr+1) = 0)
. Aside from the classical capacity constraint, each route r ∈ R satisfies a set of constraints C that involve the route's duration, such as not exceeding the time limit T or violating the customer time windows. The aforementioned problem definition encompasses a number of problems such as the classical VRP with stochastic travel and service times [START_REF] Laporte | The vehicle routing problem with stochastic travel times[END_REF], the VRP with stochastic travel times [START_REF] Van Woensel | A vehicle routing problem with stochastic travel times[END_REF], and the VRP with stochastic travel times and time windows [START_REF] Taş | Vehicle routing problem with stochastic travel times including soft time windows and service costs[END_REF], among others.

To tackle the VRP with stochastic travel and service times, the literature reports several methods based on the expected values of the random variables that model travel and service times. However, working with expected values could lead to partial information regarding the performance of the route (e.g., expected route duration). In order to find more refined information such as the distribution of the route duration, it is necessary to compute the convolution of the distribution functions that represent the travel times along the arcs and the service times at the vertices. While the derivation of this convolution is straightforward in a few special cases, such as when all the travel and service times follow a normal distribution, it is in general a complex task. We propose an approach based on the family of Phase-type (PH) distributions and queueing theory to model the stochastic Uninterrupted traffic flow on a road or a highway can be studied using queueing theory [START_REF] Heidemann | A queueing theory approach to speed-flow-density relationships[END_REF][START_REF] Vandaele | A queueing based traffic flow model[END_REF], since the relevant characteristics of a given road (arc) can be mapped to parameters of a queueing model, allowing sensitivity analysis and assessment of what-if scenarios. Parameters such as the maximum road density, the vehicle flow rate, and the free-flow speed can be employed to construct a queueing system for a segment of the road with a given length (a fraction of the length of an arc). Then, using queueing theory, we can compute performance measures such as the expected sojourn time in the road segment.

We propose to model each segment of the road as an M/M/c queue (Poisson arrivals and exponential service times with c parallel servers). In such a model, the sojourn time in the road segment consists of an exponentially distributed service phase and with a certain probability an exponentially distributed wait phase. Hence, the distribution of time across each arc can be computed using the distribution of time in each segment.

This type of distribution is called a Coxian-C2 distribution, which is a class of the family of PH distributions. The service time of each customer can also be closely approximated by a PH distribution, using appropriate fitting algorithms. Therefore, the distribution of time spent traveling across a sequence of arcs (i.e., a particular route) whose travel times follow PH distributions, and visiting the customers on the vertices whose service times are approximated by PH distributions, is the convolution of a set of PH distributions which is also PH. The parameters of the resulting PH convolution can be found from the parameters of travel and service time distributions.

Embedding the queueing model into a routing engine

The proposed queueing model can be seen as a black box PH(r) that takes as input a route r and computes, based on the travel time distribution of all arcs traversed by the route and the service time distribution of each customer visited by the route, the PH distribution of the total duration of r (i.e., Tr ∑ e∈r te + ∑ v i ∈r sv i ), namely, PH r . Besides the customary total expected duration, PH r provides several performance metrics in connection to the total duration of a route. For instance, it is possible to calculate the probability that the route does not exceed time limit T or the probability of arriving at a customer v i within the time window [t - v i , t + v i ]. By using PH(r) as a route evaluator, our approach is able to tackle different stochastic VRP variants.

Our routing (search) engine is based on the multi-space sampling heuristic (MSH) by [START_REF] Mendoza | A multi-space sampling heuristic for the vehicle routing problem with stochastic demands[END_REF]. Like the original MSH, our heuristic follows a two-phase solution strategy. In the first phase, it samples multiple solution representation spaces; while in the second phase, it uses the sampled elements to build a solution to the problem on hand. The approach operates as follows. At each iteration t, the algorithm selects a sampling heuristic from a set H of randomized traveling salesman problem (TSP) heuristics and uses it to build a giant tour p t visiting all customers. Then, the algorithm makes a call to a splitting procedure to retrieve a tuple ⟨Ω t , s t ⟩, where Ω t is the set of all feasible routes that can be obtained from p t without altering the order of the customers, and s t ∈ S is the best solution that can be built using routes from Ω t . To verify the satisfaction of constraints in C and to compute the expected duration E[ Tr ] of a route r that is candidate to join Ω t the splitting procedure invokes PH(r) to obtain the PH distribution of the route duration (i.e., travel plus service times). The routes in Ω t join a set of sampled routes Ω, while s t is used to update an upper bound f (s * ) on the objective function of the final solution. In the assembly phase, the heuristic solves a set partitioning formulation of the underlying problem over Ω, using f (s * ) as an upper bound.
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