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Abstract This paper deals with control of Timed Event Graphs (TEG). In a first part the disturbance

decoupling problem for TEG is defined. In a second part we propose the synthesis of an optimal output

feedback controller ensuring the disturbance decoupling and preserving the state of the system.
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1 Introduction

About 20 years ago a linear theory is introduced for a particular class of Discrete Event Dynamic Systems

(DEDS) called Timed Event Graphs (TEG). Timed Event Graphs (TEG) constitute a subclass of timed

Petri nets of which each place has exactly one upstream and one downstream transition. Is is well known

that the timed/event behavior of a TEG, under the earliest functioning rule1, can be expressed by linear

relations over some dioids [1]. Strong analogies then appear between the classical linear system theory and

the (max,+)-linear system theory. In particular, the concept of control is well defined in the context of TEG

study. In the literature, an optimal control for TEG exists and is proposed in [9], [16]. It is an open-loop

control that requires the knowledge of the whole reference input trajectory to compute the control law.

For a given reference input, this open-loop control yields the latest input firing date in order to obtain the

output before the desired date. Morever, recent works deal with the problem of closed-loop control [11],

[12], which consists in synthesizing a controller in a model matching objective. Furthermore the proposed

controllers allow delaying, as much as possible, the tokens input inside the TEG. Several recent studies lead

to extend the range of systems admitting a linear representation in these algebraic structures (see [15] for

unstationary TEG, [17] for nonlinear TEG and [5] for continuous TEG).

Moreover, these algebraic structures are apprehended since 1996 under a geometric approach [6], [7], [8].

In the classical linear systems theory, the interest of the geometric point of view has been shown [19],

[2]. The notions of controllability and observability amount to surjectivity, resp. injectivity, of certain

linear operators. Hence images and kernels as geometric objects are central. In this paper the disturbance

decoupling problem for TEG is introduced.

In section 2, we summarize some theoretical results from the (max,+) literature. In the next parts, modeling

and properties of TEG in these algebraic structures are presented [1]. The fifth part introduces the problem

of disturbance decoupling into dioids. In particular, by taking into account the nature of these systems, the

direction to give to this problem is discussed. Section 6 presents synthesis of an output feedback controller

allowing the disturbance decoupling for TEG. Finally, an illustration of these results is given in section 7.

1
i.e. a transition is fired as soon as it is enabled
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2 Algebraic Preliminaries

We first recall in this section some notions from the dioid theory. The reader is invited to consult [1] for a

complete presentation2.

2.1 Dioid

Definition 1 (Dioid) A dioid D is a set endowed with two inner operations denoted by ⊕ (addition) and

⊗ (multiplication), both associative and both having neutral elements denoted by ε and e respectively, such

that ⊕ is also commutative and idempotent (i.e. a⊕ a = a). The ⊗ operation is distributive with respect to

⊕, and ε is absorbing for the product (i.e. ε ⊗ a = a ⊗ ε = ε, ∀a). When ⊗ is commutative, the dioid is

said to be commutative. The symbol ⊗ is often omitted.

Definition 2 (Order relation) An order relation can be associated with a dioid D by the following equiv-

alence : ∀ a, b ∈ D, a � b ⇔ a = a⊕ b.

Definition 3 (Complete dioid) A dioid D is complete if it is closed for infinite sums and if the product

distributes over infinite sums too.

Example 1 The set Z = Z ∪ {−∞,+∞} endowed with the max operator as sum and the classical sum +

as product is a complete dioid, usually denoted by Zmax, with ε = −∞ and e = 0.

Remark 1 If D is a dioid, the set Dn×n of n× n matrices with coefficients in D is also a dioid. Sum and

product are defined in the following way:

(A⊕B)ij = Aij ⊕Bij , (A⊗B)ij =
n
⊕

k=1

Aik ⊗Bkj .

Theorem 1 Over a complete dioid D, the implicit equation x = ax ⊕ b admits x = a∗b as least solution,

where a∗ =
⊕

i∈N

ai (Kleene star operator) with a0 = e.

2An electronic version is available on http://www-rocq.inria.fr/scilab/cohen/SED/book-online.html.
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Notation 1 The Kleene star operator, defined on a complete dioid D, will be represented by the application

K : D → D

x 7→
⊕

i∈N

xi.

Property 1 ([14]) Let D be a complete dioid.

∀ a, b ∈ D

(a∗)∗ = a∗ (1)

a∗a∗ = a∗ (2)

a(ba)∗ = (ab)∗a (3)

(a⊕ b)∗ = (a∗b)∗a∗ (4)

Definition 4 (Kernel [6],[7]) Let C : X → Y be a mapping. We call kernel of C (denoted by ker C), the

equivalence relation over X :

x
kerC
∼ y ⇔ C(x) = C(y). (5)

Remark 2 The usual kernel definition {x ∈ X | C(x) = ε} becomes meaningless in dioid algebra. The

definition (5) corresponds to the kernel definition of a mapping defined on lattices [13].

Definition 5 (Isotone mapping) A mapping f defined over ordered sets is isotone (resp. antitone) if

a � b ⇒ f(a) � f(b) (resp. f(a) � f(b)).

Definition 6 (Closure mapping) An isotone mapping f : E → E defined on an ordered set E is a closure

mapping if f � IdE and f ◦ f = f .

Example 2 The Kleene Star mapping (see Theorem 1) is a closure mapping since a∗ =
⊕

i∈N
ai � a and

(a∗)∗ = a∗ (see Property 1).

Definition 7 (Restricted mapping) Let f : E → F be a mapping and A ⊆ E. We will denote f|A : A →

F the mapping defined by f|A = f ◦ Id|A where Id|A : A → E, x 7→ x is the canonical injection. Identically,

let B ⊆ F with Imf ⊆ B. Mapping B|f : E → B is defined by f = Id|B ◦B| f , where Id|B : B → F , x 7→ x is

the canonical injection.
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2.2 Residuation theory

The residuation theory provides, under some assumptions, optimal solutions to inequalities such as f(x) � b,

where f is an isotone mapping defined over ordered sets. One can note that a complete presentation of this

theory is given in [3], and see [1] for a specialization to dioids.

Definition 8 (Residuated mapping) An isotone mapping f : E → F , where (E ,�E) and (F ,�F ) are

ordered sets, is a residuated mapping if for all y ∈ F the least upper bound of the subset {x ∈ E|f(x) �F y}

exists and belongs to this subset.

Theorem 2 Let f be an isotone mapping from the complete dioid (E ,�E) into the complete dioid (F ,�F ).

The following two statements are equivalent :

(i) f is residuated.

(ii) There exists an isotone mapping f ♯ : F → E such that f ◦ f ♯ �F IdF and f ♯ ◦ f�E IdE .

Consequently, f ♯ is unique. When f satisfies these properties, it is said to be residuated and f ♯ is called its

residual.

Proposition 1 ([10], [11]) Let f : E → E be a closure mapping. The mapping Imf |f is a residuated

mapping of which residual is the canonical injection Id|Imf : Imf → E, x 7→ x.

It means that a closure mapping restricted to its image is a residuated mapping, with the canonical injection

as residual.

Proof: According to Theorem 2, Imf |f is residuated if there exists a mapping g such that Imf |f ◦ g � Id and

g ◦Imf | f � Id, where identity mappings are respectively identity on Imf and on E. By setting g = Id|Imf , we

both verify Imf |f ◦ Id|Imf = Imf |f |Imf = Id (identity on Imf) since f ◦ f = f , and Id|Imf ◦Imf | f = f � Id (by

Definition 6).

2.3 Residuation theory and dioid

Theorem 3 ([1]) Let f : D → E be a mapping where D and E are complete dioids of which bottom

elements are respectively denoted by εD and εE . Then, f is residuated iff f(εD) = εE and ∀A ⊆ D,
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f(
⊕

x∈A

x) =
⊕

x∈A

f(x).

Example 3 ([1]) The mappings La : x 7→ ax and Ra : x 7→ xa defined over a complete dioid D are both

residuated. Their residuals are usually denoted by respectively L♯
a(x) = a◦\x = x

a and R♯
a(x) = x◦/a = x

a .

Theorem 4 ([4]) Let A ∈ Dn×n, are equivalent :

(i) A = A∗

(ii) A = A◦/A

We recall that A∗ belongs to the image of K (denoted by ImK).

Proposition 2 ([10]) The mapping ImK|K (Kleene star operator) is a residuated mapping of which residual

is (ImK|K)♯ = Id|ImK.

Proof: The proof is a direct application of Proposition 1, since K is a closure mapping.

3 TEG representation

3.1 Transfer function

Timed Event Graphs (TEG) are well adapted to model synchronization phenomena; moreover, they can be

seen as linear dynamic systems in dioid algebra [1]. TEG behavior can be expressed over many dioids, for

instance in the dioid of formal power series in one variable γ and coefficients in Zmax. This dioid is usually

denoted by Zmax[[γ]] in literature.

Consequently, for a given TEG we can obtain the following representation over the dioid Zmax[[γ]]















x = Ax⊕Bu

y = Cx⊕Du

(6)

where,

• x(·) ∈ X represents the state vector ; u(·) ∈ U represents the control vector ; y(·) ∈ Y represents the

output vector
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• The mappings An×n : X → X , Bn×r : U → X , Cm×n : X → Y et Dm×r : U → Y are represented by

constants matrices of which terms are in Zmax[[γ]].

We propose to describe the behavior of the TEG given in Fig 1. It models an elementary production

workshop composed of three machines (M1 to M3). The machine M1 can process 2 parts simultaneously,

each processing lasts 6 times units. The machine M3 processes the parts released by machines M1 and M2.

For this TEG (Fig 1.), a state representation is

















x1

x2

x3

















=

















6γ2 ε ε

ε 6γ2 ε

7 8 6γ2

































x1

x2

x3

















⊕

















11 ε

ε 9

ε ε

























u1

u2









(7)

(

y

)

=

(

ε ε 1

)

















x1

x2

x3

















(8)

Figure 1: TEG model of an assembly workshop

4 Perdiodicity, causality and realizability

The transfer function of a TEG is characterized by some periodic and causal properties which we re-

call below. Let us consider a series s =
⊕

k∈Z
s(k)γk in Zmax[[γ]]. The support of s is defined by

Supp(s) = { k∈Z | s(k) 6= ε }, and its valuation corresponds to the lower bound of Supp(s), i.e. val(s) =

min{ k∈Z | s(k) 6= ε }. A series s ∈ Zmax[[γ]] such that Supp(s) is finite is said to be polynomial.
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Definition 9 (Causality) A series s ∈ Zmax[[γ]] is causal if s = ε or if {val(s) ≥ 0 and s � γval(s)}. The

set of causal elements of Zmax[[γ]] has a complete dioid structure denoted by Z
+
max[[γ]].

Definition 10 (Periodicity) A series s ∈ Zmax[[γ]] is said to be periodic if it can be written as s =

p⊕ q(τγν)∗ with p and q two polynomials and ν, τ ∈ N. A matrix is said to be periodic if all its entries are

periodic.

Definition 11 (Realizability) A series s ∈ Zmax[[γ]] is said to be realizable if there exist three matrices

A,B and C with entries in N ∪ {−∞,+∞} such that s = C(γA)∗B. A matrix is said to be realizable if all

its entries are realizable3.

Theorem 5 ([1]) The following statements are equivalent :

(i) A series s is realizable.

(ii) A series s is periodic and causal.

The set of periodic series of Zmax[[γ]] has a dioid structure which is not complete. Nevertheless, we have the

following property.

Theorem 6 ([4]) Let s1 and s2 be two periodic series of Zmax[[γ]], then s1◦\s2 is also a periodic series.

Theorem 7 ([11]) The canonical injection Id|+ : Z
+
max[[γ]] → Zmax[[γ]] is residuated. We denote by Pr+ :

Zmax[[γ]]→ Z
+
max[[γ]] its residual.

The series Pr+(s) is the greatest causal series less than or equal to s. From a practical point of view, for all

s ∈ Zmax[[γ]], the computation of Pr+(s) is obtained by :

Pr+

(

⊕

k∈Z

s(k)γk

)

=
⊕

k∈Z

s+(k)γk where

s+(k) =















s(k) if (k, s(k)) ≥ (0, 0)

ε otherwise.

Theorem 8 ([11]) Let s be a periodic (not necessarily causal) series of Zmax[[γ]]. Then Pr+(s) is the greatest

realizable series less than or equal to s.

3In other words, a series s is realizable if there exists a TEG of which s is the transfer relation
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5 Disturbance decoupling in dioid

In this chapter we first discuss the sense of the disturbance decoupling problem for TEG. Examination of

this problem leads naturally to give a practical sense to the kernel definition of a mapping in dioid. Let us

consider the system :

x = Ax⊕Bu⊕ Sq (9)

y = Cx (10)

The term q in (9) represents a disturbance which is assumed to be not directly measurable by the controller.

Let us assume that q belongs to a set Q and that the mapping S : Q → X is a time-invariant mapping.

In the conventional linear system theory [18], the disturbance decoupling problem consists in finding a

control u such that disturbance q has no influence on the controlled output y. A particular problem is to

find (if possible) an output feedback F , i.e. u = Fy, which allows reaching this objective. The disturbance

decoupling problem can also be solved by the mean of a state feedback, y = Fx. From an algebraic point

of view, it amounts to find F such that the state trajectory remains in a subspace of the kernel of mapping

C, i.e. a state which leads to a null output ∀q.

Our problem must be stated in a different way since trajectories u, x, y and q are monotonous and no

decreasing (date xi(k + 1) is later than date xi(k)). The output cancellation is consequently meaningless in

this context. Nevertheless find a control u which keeps the state x in the kernel of C for all disturbance q

is relevant, provided that the notion of kernel be redefined. In dioid (see Definition 4), the kernel of C is

an equivalence relation4, i.e. the space splits up in equivalence classes (each class contains all the elements

which map to the same image, in [6] and [20], the term ”fibration” is used). Here, the disturbance decoupling

control amounts to find a control which keeps the state x in the same equivalence class as the one due to q

disturbance, i.e. in the class of states that yields the same output. Obviously the set of these controls may

contains many elements, hence we are interested in computing the greatest one, since it is the one which

satisfies the just-in-time criterion. Formally the disturbance decoupling problem can be established in the

4
i.e. the kernel of C is not a ’subspace’ of X
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following way. The explicit solution of (9) is :

x = A∗Bu⊕A∗Sq,

which leads to the output

y = CA∗Bu⊕ CA∗Sq.

This equation allows establishing that all controls u such as CABu � CA∗Sq keep unchanged the output

generated by q. In agreement with the objective stated previously, the disturbance decoupling for TEG

consists in establishing the greatest control u satisfying this inequation. This greatest control u allows

delaying as much as possible the tokens input inside the TEG. Actually, it is useless that tokens be inserted

too soon in the TEG since the uncontrollable disturbance q delay the output firing. The residuation of

mapping LCA∗B (Theorem 3) yields

u =
CA∗Sq

CA∗B
. (11)

Practically this control computation requires the disturbance5 knowledge. Our problem is then to find a

feedback F which allows avoiding this assumption.

6 Output feedback for disturbance decoupling

In this part we discuss the existence and the computation of two output feedbacks controllers which lead to

a closed-loop system making the disturbance decoupling. The objective of the first controller (denoted by

F1) is to keep unchanged output y whatever be the disturbance q. The second controller (denoted by F2)

kept unchanged state x whatever be the disturbance q.

5In a manufacturing system, q may represent the supply of raw material which is a priori known. The problem is then very

similar to the problem introduced in [16] which establishes an optimal open-loop control in presence of known uncontrollable

inputs.
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Figure 2: The output feedback control

A system provided with a controller F is represented Figure 2. Its behaviour is described by the following

equations:

x = Ax⊕BFy ⊕ Sq (12)

y = Cx (13)

6.1 Output Feedback which kept the state

In this section we are looking for a controller which achieves disturbance decoupling by keeping the state x.

The Equation (12) yields :

x = Ax⊕BFCx⊕ Sq = (A⊕BFC)x⊕ Sq, (14)

thanks to Theorem 1, we establish :

x = (A⊕BFC)∗Sq.

This equation is to be compared with the expression of the transfer between the state and the disturbance

in the absence of the controller : x = A∗Sq.

The problem of disturbance decoupling by the mean of a feedback controller which kept the state x, can

then be formally expressed as the controller synthesis F1 such that :

(A⊕BF1C)∗S = A∗S. (15)

11



This controller is such that the output remains unchanged with respect to q, i.e. x is kept in the kernel

equivalence classes of C generated by q, formally :

C((A⊕BF1C)∗S) = CA∗S ⇔ (A⊕BF1C)∗S
kerC
∼ A∗S (16)

Among the controllers satisfying the objective (Eq. ??) we seek the greatest one, i.e. the one which will

generate the greatest control : u = F1y. By Property (4) equation (17) becomes:

(A∗BF1C)∗A∗S = A∗S (17)

Equation (18) can be also written :

(A∗BF1C)∗ =
A∗S

A∗S
(18)

Term A∗S◦/A∗S ∈ ImK (Theorem 4), according to Proposition 2, we know that mapping K is a residuated

mapping whose residual (ImK|K)♯ is Id|ImK, then equation (19) is equivalent to :

A∗BF1C = A∗S
A∗S ,

from where we can extract the controller F1 :

F1 =
A∗S◦/A∗S

A∗B

C
(19)

This controller is the greatest which preserves state x generated by q unchanged what implies an unchanged

exit.

From a practical point of view it is the controller which will generate the greatest control u = F1y, i.e. the

controller F1 is then the feedback controller leading to the control trajectory which delays as much as possible

the input of tokens. For the disturbances having effect to delay the fire of these internal transitions, delay

input u avoids an useless accumulation of tokens in places of TEG upstream to the disturbed transitions.

6.2 Output feedback which maintains the output

Let us resolve (Theorem 1) directly implicit Equation (12) :

x = A∗BF2y ⊕A∗Sq,
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hence output y is expressed by :

y = CA∗BF2y ⊕ CA∗Sq. (20)

Equation (21) is also an implicit equation using Theorem 1 again, we obtain

y = (CA∗BF2)
∗CA∗Sq.

The objective of this controller is to leave the output unchanged whatever be disturbance q, i.e formally :

(CA∗BF2)
∗CA∗S = CA∗S

As in the previous part, we can write the above equation as:

(CA∗BF2)
∗ = CA∗S

CA∗S

Again, the term CA∗S
CA∗S ∈ ImK, thanks to Proposition 2, we known that the residual (ImK|K)♯ is Id|ImK, then

CA∗BF2 = CA∗S
CA∗S

Finally the controller F2 is equal to :

F2 =
CA∗S◦/CA∗S

CA∗B
(21)

This new controller F2 is the one which keep unchanged the output.

7 Application

Let the TEG of Figure 1, for which the various transfer matrices (7),(8) are calculated. Matrice S linking

the disturbance to the state is missing :

S =

















e ε ε

ε e ε

ε ε e

















,

Trajectories q1, q2 and q3 represent the input delaying the pieces output of machines M1,M2 and M3. They

can represent the history of machines stops due to external causes in the model. Our objective is thus to

13



synthesis the greatest state feedback controller F =









F11

F21









such as the control u = Fy is the greatest

leaving the unchanged state. Relation (20) provides the expression of this controller :

F =









−19(6γ2)∗

−18(6γ2)∗









All the coefficients of this matrice are periodicals, but they all are not causal (Definition 9). This corrector

is thus not realizable (Theorem 5), it is necessary for that to consider the Theorem 7 which makes it possible

to project the noncausal elements in the set of causal elements Z
+
max[[γ]]. For controller F it leads to matrice

F+ equal to :

F+ = Pr+(F ) =









5γ8(6γ2)∗

γ6(6γ2)∗









(22)

A realization in the form of TEG of this controller is given on the Figure 3. It leads to the following control

laws in Zmax :














u1(k) = 6u1(k − 2)⊕ 5y(k − 8)

u2(k) = 6u1(k − 2)⊕ y(k − 6)

Figure 3: In solid black lines system H, in dotted arcs a realization of the output feedback controller F+.
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7.1 Numerical application

Let the following trajectories for inputs :

v1 = e⊕ 2γ ⊕ 5γ3 ⊕ 8γ5 ⊕+∞γ6,

v2 = 2γ ⊕ 5γ2 ⊕ 8γ4 ⊕ 10γ5 ⊕+∞γ6.

The states are delayed by disturbances whose trajectories are as follows:

q1 = 20⊕ 22γ ⊕ 30γ2 ⊕ 32γ3 ⊕+∞γ6,

q2 = 22⊕ 23γ ⊕ 31γ2 ⊕ 32γ3 ⊕+∞γ6,

q3 = 21⊕ 25γ ⊕ 33γ2 ⊕ 34γ4 ⊕+∞γ6.

The state X of the TEG (Figure 1, with V = U) in open loop is equal to :

X =

















x1

x2

x3

















= A∗B









v1

v2









⊕A∗S

















q1

q2

q3

















=

















20⊕ 22γ ⊕ 30γ2 ⊕ 32γ3 ⊕ 36γ4 ⊕ 38γ5 ⊕+∞γ6

22⊕ 23γ ⊕ 31γ2 ⊕ 32γ3 ⊕ 37γ4 ⊕ 38γ5 ⊕+∞γ6

30⊕ 31γ ⊕ 39γ2 ⊕ 40γ3 ⊕ 45γ4 ⊕ 46γ5 ⊕+∞γ6

















By considering the GET in closed loop (Figure 3), now state vector of system is

X = A∗BFY ⊕A∗BV ⊕A∗SQ,

with Y equal to :

Y = (CA∗BF )∗CA∗BV ⊕ (CA∗BF )CA∗SQ.

The controller objective (18) calculated previously was : taking into account the disturbances acting on the

TEG, to find a controller allow delaying, as much as possible, the token input inside the TEG (decreasing

work-in-process) without slowing down more than the disturbances on the state of TEG. The controller F

calculated in the previous part (20) allows to achieve this goal. Considering trajectories (u1, u2, q1, q2 and

q3), it is possible to determine the greatest closed loop control UBF giving the same state which the open

loop control :
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8 Conclusion

In this paper is introduced the problem of disturbance decoupling in dioids. The objective is to synthesize

a control law maintaining state x in the kernel of C, which presents a strong analogy with the disturbance

decoupling of the traditional automatic. It is however necessary to note that the reached objective does

not lead to a output cancellation, indeed the specific kernel definition of a mapping on a lattice and the

nature of the considered systems leads to obtain the greatest control such as the output remains unchanged

whatever is the disturbance.
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