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This paper deals with control of Timed Event Graphs (TEG). In a first part the disturbance decoupling problem for TEG is defined. In a second part we propose the synthesis of an optimal output feedback controller ensuring the disturbance decoupling and preserving the state of the system.

Introduction

About 20 years ago a linear theory is introduced for a particular class of Discrete Event Dynamic Systems (DEDS) called Timed Event Graphs (TEG). Timed Event Graphs (TEG) constitute a subclass of timed Petri nets of which each place has exactly one upstream and one downstream transition. Is is well known that the timed/event behavior of a TEG, under the earliest functioning rule 1 , can be expressed by linear relations over some dioids [START_REF] Baccelli | Synchronization and Linearity : An Algebra for Discrete Event Systems[END_REF]. Strong analogies then appear between the classical linear system theory and the (max, +)-linear system theory. In particular, the concept of control is well defined in the context of TEG study. In the literature, an optimal control for TEG exists and is proposed in [START_REF] Cohen | Algebraic Tools for the Performance Evaluation of Discrete Event Systems[END_REF], [START_REF] Menguy | Just-in-time Control of Timed Event Graphic Update of Reference Input, Presence of Uncontrollable Input[END_REF]. It is an open-loop control that requires the knowledge of the whole reference input trajectory to compute the control law.

For a given reference input, this open-loop control yields the latest input firing date in order to obtain the output before the desired date. Morever, recent works deal with the problem of closed-loop control [START_REF] Cottenceau | Synthesis of Greatest Linear Feedback for TEG in Dioid[END_REF], [START_REF] Cottenceau | Model Reference Control for Timed Event Graphs in Dioid[END_REF], which consists in synthesizing a controller in a model matching objective. Furthermore the proposed controllers allow delaying, as much as possible, the tokens input inside the TEG. Several recent studies lead to extend the range of systems admitting a linear representation in these algebraic structures (see [START_REF] Lahaye | Contribution l'tude des systmes linaires non stationnaires sur les diodes[END_REF] for unstationary TEG, [START_REF] Trouillet | Sur la modlisation du comportement dynamique des graphes d'vnements pondrs[END_REF] for nonlinear TEG and [START_REF] Cohen | Algebraic system analysis of timed Petri nets[END_REF] for continuous TEG).

Moreover, these algebraic structures are apprehended since 1996 under a geometric approach [START_REF] Cohen | Kernels, images and projections in dioids[END_REF], [START_REF] Cohen | Linear projectors in the max-plus algebra[END_REF], [START_REF] Cohen | Max-plus algebra and system theory : Where we are and where to go now[END_REF].

In the classical linear systems theory, the interest of the geometric point of view has been shown [START_REF] Wonham | Linear multivariable control : A geometric approach[END_REF], [START_REF] Basile | Controlled and Conditioned Invariants in Linear System Theory[END_REF]. The notions of controllability and observability amount to surjectivity, resp. injectivity, of certain linear operators. Hence images and kernels as geometric objects are central. In this paper the disturbance decoupling problem for TEG is introduced.

In section 2, we summarize some theoretical results from the (max, +) literature. In the next parts, modeling and properties of TEG in these algebraic structures are presented [START_REF] Baccelli | Synchronization and Linearity : An Algebra for Discrete Event Systems[END_REF]. The fifth part introduces the problem of disturbance decoupling into dioids. In particular, by taking into account the nature of these systems, the direction to give to this problem is discussed. Section 6 presents synthesis of an output feedback controller allowing the disturbance decoupling for TEG. Finally, an illustration of these results is given in section 7.

We first recall in this section some notions from the dioid theory. The reader is invited to consult [START_REF] Baccelli | Synchronization and Linearity : An Algebra for Discrete Event Systems[END_REF] for a complete presentation2 .

Dioid

Definition 1 (Dioid) A dioid D is a set endowed with two inner operations denoted by ⊕ (addition) and ⊗ (multiplication), both associative and both having neutral elements denoted by ε and e respectively, such that ⊕ is also commutative and idempotent (i.e. a ⊕ a = a). The ⊗ operation is distributive with respect to ⊕, and ε is absorbing for the product (i.e. ε ⊗ a = a ⊗ ε = ε, ∀a). When ⊗ is commutative, the dioid is said to be commutative. The symbol ⊗ is often omitted.

Definition 2 (Order relation) An order relation can be associated with a dioid D by the following equiv-

alence : ∀ a, b ∈ D, a b ⇔ a = a ⊕ b. Definition 3 (Complete dioid) A dioid D is complete if it is closed
for infinite sums and if the product distributes over infinite sums too.

Example 1

The set Z = Z ∪ {-∞, +∞} endowed with the max operator as sum and the classical sum + as product is a complete dioid, usually denoted by Z max , with ε = -∞ and e = 0.

Remark 1 If D is a dioid, the set D n×n of n × n matrices with coefficients in D is also a dioid. Sum and product are defined in the following way: Notation 1 The Kleene star operator, defined on a complete dioid D, will be represented by the application

(A ⊕ B) ij = A ij ⊕ B ij , (A ⊗ B) ij = n k=1 A ik ⊗ B kj .
K : D → D x → i∈N x i . Property 1 ([14]) Let D be a complete dioid. ∀ a, b ∈ D (a * ) * = a * (1) 
a * a * = a * (2) 
a(ba

) * = (ab) * a (3) (a ⊕ b) * = (a * b) * a * (4) 
Definition 4 (Kernel [START_REF] Cohen | Kernels, images and projections in dioids[END_REF], [START_REF] Cohen | Linear projectors in the max-plus algebra[END_REF]) Let C : X → Y be a mapping. We call kernel of C (denoted by ker C), the equivalence relation over X :

x kerC ∼ y ⇔ C(x) = C(y). (5) 
Remark 2 The usual kernel definition {x ∈ X | C(x) = ε} becomes meaningless in dioid algebra. The definition [START_REF] Cohen | Algebraic system analysis of timed Petri nets[END_REF] corresponds to the kernel definition of a mapping defined on lattices [START_REF] Davey | Introduction to Lattices and Order[END_REF].

Definition 5 (Isotone mapping) A mapping f defined over ordered sets is isotone (resp. antitone) if 

a b ⇒ f (a) f (b) (resp. f (a) f (b)).

Residuation theory

The residuation theory provides, under some assumptions, optimal solutions to inequalities such as f (x) b, where f is an isotone mapping defined over ordered sets. One can note that a complete presentation of this theory is given in [START_REF] Blyth | Residuation Theory[END_REF], and see [START_REF] Baccelli | Synchronization and Linearity : An Algebra for Discrete Event Systems[END_REF] for a specialization to dioids.

Definition 8 (Residuated mapping) An isotone mapping f : E → F, where (E, E ) and (F, F ) are ordered sets, is a residuated mapping if for all y ∈ F the least upper bound of the subset {x ∈ E|f (x) F y} exists and belongs to this subset.

Theorem 2 Let f be an isotone mapping from the complete dioid (E, E ) into the complete dioid (F, F ).

The following two statements are equivalent :

(i) f is residuated.

(ii) There exists an isotone mapping

f ♯ : F → E such that f • f ♯ F Id F and f ♯ • f E Id E .
Consequently, f ♯ is unique. When f satisfies these properties, it is said to be residuated and f ♯ is called its residual.

Proposition 1 ([10], [START_REF] Cottenceau | Synthesis of Greatest Linear Feedback for TEG in Dioid[END_REF]) Let f : E → E be a closure mapping. The mapping Imf | f is a residuated mapping of which residual is the canonical injection

Id |Imf : Imf → E, x → x.
It means that a closure mapping restricted to its image is a residuated mapping, with the canonical injection as residual.

Proof: According to Theorem 2,

Imf | f is residuated if there exists a mapping g such that Imf | f • g Id and g • Imf | f Id,
where identity mappings are respectively identity on Imf and on E. 

By setting g = Id |Imf , we both verify Imf | f • Id |Imf = Imf | f |Imf = Id (identity on Imf ) since f • f = f , and Id |Imf • Imf | f = f Id (by Definition 6).

Residuation theory and dioid

E . Then, f is residuated iff f (ε D ) = ε E and ∀A ⊆ D, f ( x∈A x) = x∈A f (x).

Example 3 ([1])

The mappings L a : x → ax and R a : x → xa defined over a complete dioid D are both residuated. Their residuals are usually denoted by respectively

L ♯ a (x) = a• \x = x a and R ♯ a (x) = x• /a = x a .
Theorem 4 ([4]) Let A ∈ D n×n , are equivalent :

(i) A = A * (ii) A = A• /A
We recall that A * belongs to the image of K (denoted by ImK).

Proposition 2 ([10])

The mapping ImK| K (Kleene star operator) is a residuated mapping of which residual is

( ImK| K) ♯ = Id |ImK .
Proof: The proof is a direct application of Proposition 1, since K is a closure mapping.

TEG representation 3.1 Transfer function

Timed Event Graphs (TEG) are well adapted to model synchronization phenomena; moreover, they can be seen as linear dynamic systems in dioid algebra [START_REF] Baccelli | Synchronization and Linearity : An Algebra for Discrete Event Systems[END_REF]. TEG behavior can be expressed over many dioids, for instance in the dioid of formal power series in one variable γ and coefficients in Z max . This dioid is usually

denoted by Z max [[γ]] in literature.
Consequently, for a given TEG we can obtain the following representation over the dioid

Z max [[γ]]        x = Ax ⊕ Bu y = Cx ⊕ Du (6)
where,

• x(•) ∈ X represents the state vector ; u(•) ∈ U represents the control vector ; y(•) ∈ Y represents the output vector

• The mappings A n×n : X → X , B n×r : U → X , C m×n : X → Y et D m×r : U → Y are represented by constants matrices of which terms are in Z max [[γ]].
We propose to describe the behavior of the TEG given in Fig 1 . It models an elementary production workshop composed of three machines (M 1 to M 3 ). The machine M 1 can process 2 parts simultaneously, each processing lasts 6 times units. The machine M 3 processes the parts released by machines M 1 and M 2 .

For this TEG (Fig 1 .), a state representation is Definition 10 (Periodicity) A series s ∈ Z max [[γ]] is said to be periodic if it can be written as s = p ⊕ q(τ γ ν ) * with p and q two polynomials and ν, τ ∈ N. A matrix is said to be periodic if all its entries are periodic.

        x 1 x 2 x 3         =         6γ 2 ε ε ε 6γ 2 ε 7 8 6γ 2                 x 1 x 2 x 3         ⊕         11 ε ε 9 ε ε             u 1 u 2     (7) 
y = ε ε 1         x 1 x 2 x 3         (8) 
Definition 11 (Realizability) A series s ∈ Z max [[γ]] is said to be realizable if there exist three matrices A, B and C with entries in N ∪ {-∞, +∞} such that s = C(γA) * B. A matrix is said to be realizable if all its entries are realizable3 .

Theorem 5 ([1])

The following statements are equivalent :

(i) A series s is realizable.

(ii) A series s is periodic and causal.

The set of periodic series of Z max [[γ]] has a dioid structure which is not complete. Nevertheless, we have the following property.

Theorem 6 ([4]

) Let s 1 and s 2 be two periodic series of Z max [[γ]], then s 1 • \s 2 is also a periodic series.

Theorem 7 ([11]) The canonical injection

Id |+ : Z + max [[γ]] → Z max [[γ]
] is residuated. We denote by Pr + :

Z max [[γ]] → Z + max [[γ]] its residual.
The series Pr + (s) is the greatest causal series less than or equal to s. From a practical point of view, for all

s ∈ Z max [[γ]
], the computation of Pr + (s) is obtained by :

Pr + k∈Z s(k)γ k = k∈Z s + (k)γ k where s + (k) =        s(k) if (k, s(k)) ≥ (0, 0) ε otherwise.
Theorem 8 ( [START_REF] Cottenceau | Synthesis of Greatest Linear Feedback for TEG in Dioid[END_REF]) Let s be a periodic (not necessarily causal) series of Z max [[γ]]. Then Pr + (s) is the greatest realizable series less than or equal to s.

Disturbance decoupling in dioid

In this chapter we first discuss the sense of the disturbance decoupling problem for TEG. Examination of this problem leads naturally to give a practical sense to the kernel definition of a mapping in dioid. Let us consider the system :

x = Ax ⊕ Bu ⊕ Sq (9) y = Cx (10) 
The term q in (9) represents a disturbance which is assumed to be not directly measurable by the controller.

Let us assume that q belongs to a set Q and that the mapping S : Q → X is a time-invariant mapping.

In the conventional linear system theory [START_REF] Willems | Disturbance decoupling by measurement feedback with stabiliy and pole placement[END_REF], the disturbance decoupling problem consists in finding a control u such that disturbance q has no influence on the controlled output y. A particular problem is to find (if possible) an output feedback F , i.e. u = F y, which allows reaching this objective. The disturbance decoupling problem can also be solved by the mean of a state feedback, y = F x. From an algebraic point of view, it amounts to find F such that the state trajectory remains in a subspace of the kernel of mapping C, i.e. a state which leads to a null output ∀q.

Our problem must be stated in a different way since trajectories u, x, y and q are monotonous and no decreasing (date x i (k + 1) is later than date x i (k)). The output cancellation is consequently meaningless in this context. Nevertheless find a control u which keeps the state x in the kernel of C for all disturbance q is relevant, provided that the notion of kernel be redefined. In dioid (see Definition 4), the kernel of C is an equivalence relation4 , i.e. the space splits up in equivalence classes (each class contains all the elements which map to the same image, in [START_REF] Cohen | Kernels, images and projections in dioids[END_REF] and [START_REF] Wonham | Notes on the control of discrete-event systems[END_REF], the term "fibration" is used). Here, the disturbance decoupling control amounts to find a control which keeps the state x in the same equivalence class as the one due to q disturbance, i.e. in the class of states that yields the same output. Obviously the set of these controls may contains many elements, hence we are interested in computing the greatest one, since it is the one which satisfies the just-in-time criterion. Formally the disturbance decoupling problem can be established in the following way. The explicit solution of ( 9) is :

x = A * Bu ⊕ A * Sq,
which leads to the output

y = CA * Bu ⊕ CA * Sq.
This equation allows establishing that all controls u such as CABu CA * Sq keep unchanged the output generated by q. In agreement with the objective stated previously, the disturbance decoupling for TEG consists in establishing the greatest control u satisfying this inequation. This greatest control u allows delaying as much as possible the tokens input inside the TEG. Actually, it is useless that tokens be inserted too soon in the TEG since the uncontrollable disturbance q delay the output firing. The residuation of mapping L CA * B (Theorem 3) yields

u = CA * Sq CA * B . (11) 
Practically this control computation requires the disturbance5 knowledge. Our problem is then to find a feedback F which allows avoiding this assumption.

Output feedback for disturbance decoupling

In this part we discuss the existence and the computation of two output feedbacks controllers which lead to a closed-loop system making the disturbance decoupling. The objective of the first controller (denoted by F 1 ) is to keep unchanged output y whatever be the disturbance q. The second controller (denoted by F 2 ) kept unchanged state x whatever be the disturbance q. A system provided with a controller F is represented Figure 2. Its behaviour is described by the following equations:

x = Ax ⊕ BF y ⊕ Sq (12) 
y = Cx (13) 

Output Feedback which kept the state

In this section we are looking for a controller which achieves disturbance decoupling by keeping the state x.

The Equation (12) yields :

x = Ax ⊕ BF Cx ⊕ Sq = (A ⊕ BF C)x ⊕ Sq, (14) 
thanks to Theorem 1, we establish :

x = (A ⊕ BF C) * Sq.
This equation is to be compared with the expression of the transfer between the state and the disturbance in the absence of the controller :

x = A * Sq.
The problem of disturbance decoupling by the mean of a feedback controller which kept the state x, can then be formally expressed as the controller synthesis F 1 such that :

(A ⊕ BF 1 C) * S = A * S. (15) 
This controller is such that the output remains unchanged with respect to q, i.e. x is kept in the kernel equivalence classes of C generated by q, formally :

C((A ⊕ BF 1 C) * S) = CA * S ⇔ (A ⊕ BF 1 C) * S kerC ∼ A * S (16) 
Among the controllers satisfying the objective (Eq. ??) we seek the greatest one, i.e. the one which will generate the greatest control : u = F 1 y. By Property (4) equation ( 17) becomes:

(A * BF 1 C) * A * S = A * S (17) 
Equation ( 18) can be also written :

(A * BF 1 C) * = A * S A * S (18) 
Term A * S• /A * S ∈ ImK (Theorem 4), according to Proposition 2, we know that mapping K is a residuated mapping whose residual ( ImK| K) ♯ is Id |ImK , then equation ( 19) is equivalent to :

A * BF 1 C = A * S A * S ,
from where we can extract the controller F 1 :

F 1 = A * S• /A * S A * B C ( 19 
)
This controller is the greatest which preserves state x generated by q unchanged what implies an unchanged exit.

From a practical point of view it is the controller which will generate the greatest control u = F 1 y, i.e. the controller F 1 is then the feedback controller leading to the control trajectory which delays as much as possible the input of tokens. For the disturbances having effect to delay the fire of these internal transitions, delay input u avoids an useless accumulation of tokens in places of TEG upstream to the disturbed transitions.

Output feedback which maintains the output

Let us resolve (Theorem 1) directly implicit Equation ( 12) :

x = A * BF 2 y ⊕ A * Sq,
hence output y is expressed by :

y = CA * BF 2 y ⊕ CA * Sq. (20) 
Equation ( 21) is also an implicit equation using Theorem 1 again, we obtain y = (CA * BF 2 ) * CA * Sq.

The objective of this controller is to leave the output unchanged whatever be disturbance q, i.e formally :

(CA * BF 2 ) * CA * S = CA * S
As in the previous part, we can write the above equation as:

(CA * BF 2 ) * = CA * S CA * S
Again, the term CA * S CA * S ∈ ImK, thanks to Proposition 2, we known that the residual ( ImK| K) ♯ is Id |ImK , then

CA * BF 2 = CA * S CA * S
Finally the controller F 2 is equal to :

F 2 = CA * S• /CA * S CA * B (21) 
This new controller F 2 is the one which keep unchanged the output.

Application

Let the TEG of Figure 1, for which the various transfer matrices ( 7),(8) are calculated. Matrice S linking the disturbance to the state is missing :

S =         e ε ε ε e ε ε ε e         ,
Trajectories q 1 , q 2 and q 3 represent the input delaying the pieces output of machines M 1 , M 

F =     -19(6γ 2 ) * -18(6γ 2 ) *    
All the coefficients of this matrice are periodicals, but they all are not causal (Definition 9). This corrector is thus not realizable (Theorem 5), it is necessary for that to consider the Theorem 7 which makes it possible to project the noncausal elements in the set of causal elements

Z + max [[γ]].
For controller F it leads to matrice F + equal to :

F + = Pr + (F ) =     5γ 8 (6γ 2 ) * γ 6 (6γ 2 ) *     (22) 
A realization in the form of TEG of this controller is given on the Figure 3. It leads to the following control

laws in Z max :        u 1 (k) = 6u 1 (k -2) ⊕ 5y(k -8) u 2 (k) = 6u 1 (k -2) ⊕ y(k -6)
Figure 3: In solid black lines system H, in dotted arcs a realization of the output feedback controller F + .

Numerical application

Let the following trajectories for inputs :

v 1 = e ⊕ 2γ ⊕ 5γ 3 ⊕ 8γ 5 ⊕ +∞γ 6 , v 2 = 2γ ⊕ 5γ 2 ⊕ 8γ 4 ⊕ 10γ 5 ⊕ +∞γ 6 .
The states are delayed by disturbances whose trajectories are as follows:

q 1 = 20 ⊕ 22γ ⊕ 30γ 2 ⊕ 32γ 3 ⊕ +∞γ 6 , q 2 = 22 ⊕ 23γ ⊕ 31γ 2 ⊕ 32γ 3 ⊕ +∞γ 6 , q 3 = 21 ⊕ 25γ ⊕ 33γ 2 ⊕ 34γ 4 ⊕ +∞γ 6 .
The state X of the TEG (Figure 1, with V = U ) in open loop is equal to : The controller objective (18) calculated previously was : taking into account the disturbances acting on the TEG, to find a controller allow delaying, as much as possible, the token input inside the TEG (decreasing work-in-process) without slowing down more than the disturbances on the state of TEG. The controller F calculated in the previous part [START_REF] Wonham | Notes on the control of discrete-event systems[END_REF] allows to achieve this goal. Considering trajectories (u 1 , u 2 , q 1 , q 2 and q 3 ), it is possible to determine the greatest closed loop control U BF giving the same state which the open loop control :

X =         x 1 x 2 x 3         = A * B     v 1 v 2     ⊕ A * S         q 1 q 2 q 3         =         20 ⊕ 22γ ⊕ 30γ 2 ⊕ 32γ 3 ⊕ 36γ 4 ⊕

Conclusion

In this paper is introduced the problem of disturbance decoupling in dioids. The objective is to synthesize a control law maintaining state x in the kernel of C, which presents a strong analogy with the disturbance decoupling of the traditional automatic. It is however necessary to note that the reached objective does not lead to a output cancellation, indeed the specific kernel definition of a mapping on a lattice and the nature of the considered systems leads to obtain the greatest control such as the output remains unchanged whatever is the disturbance.
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	Definition 7 (Restricted mapping) Let f : E → F be a mapping and A ⊆ E. We will denote f |A : A →
	F the mapping defined by f

|B : B → F, x → x is the canonical injection.

i.e. a transition is fired as soon as it is enabled

An electronic version is available on http://www-rocq.inria.fr/scilab/cohen/SED/book-online.html.

In other words, a series s is realizable if there exists a TEG of which s is the transfer relation

i.e. the kernel of C is not a 'subspace' of X

In a manufacturing system, q may represent the supply of raw material which is a priori known. The problem is then very similar to the problem introduced in[START_REF] Menguy | Just-in-time Control of Timed Event Graphic Update of Reference Input, Presence of Uncontrollable Input[END_REF] which establishes an optimal open-loop control in presence of known uncontrollable inputs.