
HAL Id: hal-00845810
https://hal.science/hal-00845810v1

Submitted on 10 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KEDGEN2: A key establishment and derivation
protocol for EPC Gen2 RFID systems

Wiem Tounsi, Nora Cuppens-Boulahia, Joaquin Garcia Alfaro, Yannick
Chevalier, Frédéric Cuppens

To cite this version:
Wiem Tounsi, Nora Cuppens-Boulahia, Joaquin Garcia Alfaro, Yannick Chevalier, Frédéric Cuppens.
KEDGEN2: A key establishment and derivation protocol for EPC Gen2 RFID systems. Journal of
Network and Computer Applications (JNCA), 2014, 39, pp.152 - 166. �10.1016/j.jnca.2013.06.002�.
�hal-00845810�

https://hal.science/hal-00845810v1
https://hal.archives-ouvertes.fr

http://dx.doi.org/10.1016/j.jnca.2013.06.002

KEDGEN2: A key establishment and derivation
protocol for EPC Gen2 RFID systems

Wiem Tounsi1, Nora Cuppens-Boulahia1, Joaquin Garcia-Alfaro1,2, Yannick Chevalier3, Frédéric Cuppens1

1Institut Mines-Telecom, TELECOM Bretagne, CNRS Lab-STICC UMR 6285, France
2Institut Mines-Telecom, TELECOM SudParis, CNRS Samovar UMR 5157, France

3IRIT, Université de Toulouse, France
{FirstName.SurName}@telecom-bretagne.eu,

joaquin.garcia_alfaro@telecom-sudparis.eu,
y.chevali@irit.fr

Abstract

The EPC Class-1 Generation-2 (Gen2 for short) is a Radio Frequency IDentification (RFID) technology that is gaining a prominent
place in several domains. However, the Gen2 standard lacks of verifiable security functionalities. Eavesdropping attacks can, for in-
stance, affect the security of applications based on the Gen2 technology. To address this problem, RFID tags must be equipped with
a robust mechanism to authenticate readers before authorising them to access their data. In this paper, we propose a key establish-
ment and derivation protocol, which is applied at both identification phase and those remainder operations requiring security. Our
solution is based on a pseudorandom number generator that uses a low computational workload, while ensuring long term secure
communication to protect the secrecy of the exchanged data. Mutual authentication of the tag and the sensor and strong notions of
secrecy such as forward and backward secrecy are analysed, and we prove formally that after being amended, our protocol is secure
with respect to these properties.

Keywords: Radio Frequency IDentification, Electronic Product Code, Cryptographic Protocol Verification, Model Checking.

1. Introduction

The Radio Frequency IDentification (RFID) technology is
one of the most promising advances in current pervasive in-
frastructures [1]. It allows contactless identification of tagged
objects and people, and has gained a prominent place on the
retail industry and transportation systems [2, 3]. Today, it con-
tinues to gain places in even more sensitive contexts, like hos-
pitals and inpatient care systems [4, 5]. The EPC Gen2 stan-
dard, short-hand for the Electronic Product Code (EPC) Class-1
Generation-2 [6], is a proper example of passive RFID technol-
ogy. Gen2 scenarios rely on passive tags designed with very ba-
sic capabilities. Gen2 tags derive their transmission and compu-
tational power from the signal of an interrogating reader. Once
a scan is done by the reader, the tag responds with a unique ID,
called EPC, that is transferred to a back-end infrastructure for
further processing. EPC serves as an identifier for the physi-
cal objects, locations, assets carrying the tag which, moreover,
can be identified and tracked based on completely distributed
architectures [7].

The security model of the Gen2 technology presents impor-
tant drawbacks in sensitive contexts like healthcare systems [8].
Indeed, the security model of the Gen2 specification only con-
siders limited protection of some special operations that require
reader authentication, such as memory access and deactivation
operations. These operations require the communication of a
password prior the tag execution. This password must be sent

via the insecure reader-to-tag channel. Since this channel is
more likely to suffer from eavesdropping attacks than the tag-
to-reader channel, the Gen2 specification proposes to protect
the exchange as follows (Steps 3–5):

1. READER −→ TAG : RequestID
2. TAG −→ READER : TagID
3. READER −→ TAG : Key-request
4. TAG −→ READER : Key
5. READER −→ TAG : Password ⊕ Key

Steps 1 and 2 show a simplified inventory operation that we
name identification stage, where reader asks the identity of the
tag for further treatments. In Step 3, the reader informs that it
is waiting for a key necessary to protect sensitive data in the
following exchange (cf. Step 5). This exchange will eventu-
ally contain the required password to grant the execution of an
access operation. The key is generated by the tag as a random
bit string, and transmitted in Step 4 in plaintext to the reader.
This is done via the tag-to-reader channel which, in principle,
is expected to have an eavesdropping range much lower that
the reader-to-tag channel. This exchange supposes that an ad-
versary eavesdropping the reader-to-tag channel cannot capture
the sensitive data (either the password or the contents of the
password-protected operation). It is straightforward that an ad-
versary capable of eavesdropping the tag-to-reader channel us-
ing special hardware devices (e.g., readers with high sensitive
receivers and multiple antennas), or predicting the output of the

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

random bit generator of the tag (e.g., based on a flawed EPC
Gen2 pseudorandom generator [9, 10]), can obtain the key and
simply recover the access password by applying an Exclusive-
OR operation. Obtaining the access password permits to the
malicious adversary to access and modify the memory of the
tag. When the memory of the tag includes additional informa-
tion about objects which can be linked to people holding them
(e.g., information related to a particular medicine which may
link to a particular disease), information disclosure can be an
important threat. Such a threat can be handled by modifying
the security model of the Gen2 specification and providing a
more elaborated way of managing cryptographic keys in Gen2
systems.

A second issue to address is the lack of formally verified
security enhancements for Gen2 tags. While the community
of cryptographic algorithms designers relies on mathematical
proofs of the model they propose, the designers of RFID proto-
cols and security architectures using lightweight cryptographic
algorithms lack this sort of strong foundations. Thus, a major
need of proved and validated security RFID protocols appears.
These proofs may be done following a mathematical or logical
calculation or using some tools developed for the purpose. Un-
fortunately, this was not systematic in most work dealing with
RFID security where the correctness or security goals achieve-
ment were demonstrated intuitively. Recently many approaches
focus on solutions to enhance the security of the EPC Gen2
technology, e.g., proposing physical solutions including new
cryptographic primitives on-board of the tags or straightforward
protocols that remain to be adapted to the Gen2 constraints. A
great number of solutions have been reported as insecure. Re-
cent cases of authentication techniques were reported vulnera-
ble few time after their publication by [11, 12, 13]. These cases
show the lack of formal verification of new security techniques
for EPC Gen2, which we deem necessary [8, 14].

Motivated by these limitations (i.e., flawed Gen2 security
model and lack of formally verified security enhancements),
we propose in this paper a communication protocol designed
to share and refresh security keys between readers and tags in
Gen2 RFID environments. These keys encrypt security param-
eters and personal data when accessing the tag. Our protocol re-
lies on a pseudorandom generator shared between readers and
tags, used to derive random looking keys and encrypt secret
messages. The generated keys remain indistinguishable to ma-
licious adversaries, even after compromising the system. We
present the specification of our solution using the High Level
Protocol Specification Language (HLPSL) [15], a formal lan-
guage to verify cryptographic protocols based on Lamport’s
Temporal Logic of Actions [16], and evaluate our solution with
a verification tool of the Automated Validation of Internet Secu-
rity Protocols and Applications (AVISPA) model checker plat-
form [17]. The results of our evaluations show that our protocol
guarantees mutual authentication of participants and strong for-
ward secrecy of the keys in the presence of active adversaries,
even when the tag is totally compromised. The results show that
the protocol guarantees backward secrecy in the case of active
adversaries bounded by limited communication operations.

Paper organisation. Section 2 surveys related work. Section 3
presents the security assumptions. Section 4 provides the tar-
geted security properties we want to prove. Section 5 describes
the protocol. Section 6 presents the specification of both the
protocol and the security properties prior the verification. Sec-
tion 7 describes the results of the automatic verification process.
Section 8 provides a comparison with closest related work. Fi-
nally, Section 9 concludes the paper.

2. Related work

RFID key establishment protocols are used to rekey the in-
ternal system states in order to ensure that fresh keys are al-
ways used in every new session. The fresh keys are used in the
next authentication of the tag and the reader. In our approach,
the successful authentication means that the reader is authorised
to access the tag additional memory. There have been several
attempts to create authentication protocols for RFID systems.
Most of the first security solutions based their design on the use
of one way hash solutions. For instance, Weis et al. proposed in
[18] a hash-lock solution to prevent unauthorised readers from
reading tag contents. The design principle behind this solu-
tion includes the assumption that tags cannot be trusted to store
long-term secrets when left in isolation. Thus, the secret is first
sent by authorised readers to tags using a trusted environment.
Then, equipped with an internal hash function, the tags perform
a hash on this secret and store it within their internal memory.
Then, tags enter into a locked state in which they answer to any
possible query with the computed hash. Some weaknesses of
the hash-lock scheme were shown in [19] leaving the protocol
vulnerable to eavesdropping and replay attacks.

Another set of hash-based solutions were proposed by Oh-
kubo et al. [20], Avoine et al. [21] and Henrici et al. [19, 22].
In [20], the authors propose the use of hash chains to implement
on-tag security mechanism requiring the tag to perform a hash
operation on its ID and to send the result to the reader. The
reader then makes an exhaustive search for a match. The limi-
tations of this solution were discussed by Avoine et al. in [21]
(e.g., the protocol is subject to replay attacks). They propose
an enhanced hash-based RFID protocol to address privacy and
authentication by introducing a time variable to prevent replay
attacks. The solution of Henrici et al. [19] follows the same
vein, in that the reader and tag compare hash results. A more
general solution, based on hash chains, is proposed by Tsudik in
[23] to guarantee mutual authentication between tags and read-
ers. The use of chains is reported by the author as very memory
consuming and the solution is qualified as prone to availability
attacks on the server side. Moreover, since the publication in
[24, 25] by Feldhofer et al. and Bogdanov et al., most authors
in the literature agree that the use of hash functions is beyond
current capabilities of low-cost RFID tags such as Gen2 tags.

Physically Unclonable Functions (PUFs) are often used as a
complement to hash functions in more powerful RFID solutions
[26]. Half way between traditional cryptography and physical
protection defences, the PUF technology has traditionally been
used to implement challenge-response protocols. PUFs orig-
inated in [27] with the conception of optical mechanisms for

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

the construction of physical one-way functions. The key idea
is to fingerprint tags, based on their physical (i.e., fabrication)
properties, e.g., delay properties of the tag circuitry or startup
values of the tag memory. The main drawback is the necessity
of a great number of challenges (i.e., hundreds of them) ex-
changed between readers and tags at a given time, to conclude
the authentication process. Moreover, as it happens with many
other probabilistic identification schemes [28, 29], the solution
may expose the identification process between peers to an in-
crease in response delay and power consumption, and might be
acceptable only on short-distance RFID technologies with their
radio spectrum in low (LF) and high (HF) frequency bands.

Bolotnyy and Robins propose in [30] a solution to comple-
ment the use of PUFs with message authentication codes, aim-
ing to simplify the challenge-response communication scheme
of previous proposals. The approach does still require the ne-
cessity of huge lists of challenge-response pairs for each PUF/tag
which must be stored on back-end servers connected to the
readers. Indeed, once a given pair is sent, it must not be used
anymore. Otherwise, the protocol cannot guarantee that an ad-
versary eavesdropping data will not gain advantage by perform-
ing a replay attack. Distance bounding schemes, used in proto-
cols like [31, 32], are meant to counter this kind of attacks by
handling extra delays in the exchange of messages. However,
we are unaware of distance bounding protocols for UHF Gen2
RFID technologies, given their delay and power constraints.

With the motivation that traditional cryptographic protocols
are too computationally intensive to be utilised, Juels et al. pre-
sented in [33] the HB+ protocol which was inherited from Hop-
per and Blum’s early work [34]. This improved variant attempts
to prevent active attackers using a statistical conjecture to bound
the difficulty of learning a secret (e.g., the ID of the tag) given
a sequence of randomly chosen vectors with embedded noisy
information. Thus, the security relies to the difficulty of the
Learning Parity with Noise (LPN) problem, which has been
proved to be NP-hard. The success of the man-in-the-middle
attack in [35] on HB+ leads to other versions following the ba-
sic HB+ protocol, we cite as examples, HB-MP [36], Random-
HB# & HB# [37] and Trusted-HB [38].

Random-HB# & HB# have not been reported attacked yet,
but the use of Toeplitz Matrix for HB# and the use of an LFSR-
based Toeplitz Matrix to construct a hash function for Trusted-
HB are rather expensive for constrained tags like those of Gen2
technology. HB-MP protocol was the best candidate suited to
Gen2 tags, but it was explained in [37] that the amount of data
transferred remains high. Furthermore, [39] reports that the
protocol is vulnerable to man-in-the-middle attacks. The vul-
nerability found on HB-MP is due to the predictable repetition
of the internal state in each session. In [40], the authors pro-
pose a solution to randomise the internal state, relying on some
hash function. The solution, seems to be not yet supported by
basic Gen2 tags until now. Finally, HB-PUF is a PUF version
of the HB series [41]. Its main drawback is once again the re-
quirement of storing a very large number of challenge-response
pairs at either the reader or the back-end database.

Several other approaches aim at providing authentication
based only on bitwise operations and very low computational

primitives. The MAP family of protocols by Peris-Lopez et
al. is an appropriate set of protocols characterising this class
of lightweight protocols. We note LMAP [42], M2AP [43]
and EMAP [44]. Their goal is to provide mutual authentica-
tion between readers and tags. The authors eliminate the use
of hash primitives and involve only modular arithmetic on-tag
operations. The computation of costly operations is done at the
reader side. Although this effort to lighten the implementation
in the tag side, none of these proposal seems to resist adver-
saries able to learn the secrets (including the identifier) of the
tag with relative ease [45, 46, 47, 48]. For example, M2AP
was broken by eavesdropping for two consecutive runs of the
protocol. Improvements of these schemes [49] have also been
reported as vulnerable [11]. All these examples show the ne-
cessity of formally verifying the security of new authentication
schemes before their release.

Other recently efforts in [50, 51, 52, 53, 54, 55] have anal-
ysed forward security and other communication faults in RFID
systems at various levels of formality. These works are the clos-
est to our proposal (i.e., authors propose a protocol and a formal
approach to verify its security). In Section 8, we analyse them
more in detail and provide a comparison with our work.

3. System assumptions

3.1. Revised Security model

The security model in EPC Gen2 systems relies on the com-
munication of one-time sequences used to encrypt sensitive data
that must be sent over the insecure RFID channel. The purpose
of generating one-time sequences for security is typically that
both entities participating on the communications are able to
repeat the sequence. However, this is not the case in the EPC
Gen2 protocol, where only the tags have access to the sequence
generation function. Therefore, the generated sequences cannot
be reconstructed at the reader side, and must be sent as clear
text over the insecure channel (i.e., tag to reader channel) [56].
To handle this security flaw, we propose to use an alternative
model, and assume the use of a pseudorandom number genera-
tor (PRNG) whose algorithm is known at both sides (i.e., known
by readers and tags).

3.2. Pseudorandom number generators

In our work, a PRNG is defined as a pseudorandom bit
generator whose output is partitioned into blocks of a given
length n. Each block defines a random-looking n-bit number
said to be derived from the PRNG. The derived numbers are
random-looking bits (statically independent and unbiased bi-
nary digits). The PRNG takes a single input called state (seed,
if it is the initial state) and outputs a next state in addition to
the output. All states are assumed to be hidden at all times.
There are many nuances of PRNGs used in practise that are
often more complicated. For example, some of them are asso-
ciated to auxiliary inputs such as timestamps or counters which
also can be controlled by the adversary. There have been nu-
merous works on constructing PRNGs for symmetric encryp-
tion schemes. Common PRNGs consist of two components:

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

(1) a generation function that taking an internal state, generates
the next output and then updates the internal state accordingly;
and (2) a seed generation function that generates the initial state
(and/or key) of the system.

Some designers propose a model that combines the internal
state and the key of the PRNG (cf. [57] and [58]) while oth-
ers separate them. Our model meets the model cited in [59] in
considering the state and the master key separately. Indeed, the
role played by the key and our concept of internal state are quite
different. The key typically has a much longer lifetime and may
be repeatedly used for different invocations of the PRNG. The
internal state has an ephemeral nature, since it is usually up-
dated during every iteration of the generation algorithm. Our
construction concludes a solution to refresh the master key ev-
ery N interactions as it will be shown in Section 5.1.

PRNGs can be based on a wide range of cryptographic prim-
itives. The PRNGs that are in prelevant use today, are typi-
cally based on hash function or block cipher designs. Given
the limited computing power of Gen2 tags, we consider in our
work PRNGs built from block cipher designs with low-resource
hardware constraints. Existing implementations of block cipher
based designs for passive RFID tags, such as the 65nm imple-
mentation of the Advanced Encryption Standard (AES) in [60],
could be adapted for our purpose with a hardware complexity
of about 5000 equivalent logic gates. Other plausible solutions
could be adapted from HIGHT [61], Trivium [62], Grain [63],
LAMED [64], and J3Gen [65], with even lower complexity.
Such designs can be adapted to implement pseudorandom per-
mutations. A good block cipher Ek (i.e., whose permutations
are dependent of a key k) is designed to approximate, as closely
as possible, a random permutation function, in the sense that if
the key k is not known and only input/output examples of Ek are
captured, then, these should appear like input/output examples
of random permutations. More information about the security
and quality of block ciphers based designs is provided in Ap-
pendix A and Appendix C.

3.3. Adversary model

We assume an active adversaryAwho controls the commu-
nication channel shared between tags and sensors. Therefore,
A can eavesdrop, store, analyse, alter, redirect, and reuse in-
tercepted messages. A always knows the non-secret data and
the functions that each part execute, as well as the inner work-
ing of the system (e.g., algorithms and environment associated
with the protocol). Additionally, A can impersonate a sensor
or a tag, and inject new messages by such controlled entities.
However, A cannot modify those messages already sent by a
non-controlled entity, nor can he prevent non-controlled entities
from receiving a message already sent. Finally, A is motivated
by any possible scenario leading to the disclosure of secret in-
formation used in the protocol. Therefore, we expect from A
the application of the following scenarios:

• Protocol exposure. A can try to find any protocol flaw
to decrypt the derived keys relying on its a priori knowl-
edge of the system. Therefore, A can try to find any link

between captured messages to correlate two or more pro-
tocol outputs. The aim is to obtain information about the
derived keys.

• Key recovering. Using the derived keys,A can try to de-
tect, at least, a couple of internal state and derived key to
elaborate a relation between them. The aim is to conduct
an exhaustive key search attack (cf. Appendix A.1) to
derive the master key.

4. Targeted security properties

The protocol shall provide secrecy of the master and derived
keys in addition to assuring that mutual authentication is done
between honest participants preventing impersonation attacks.
Strong notions of secrecy such as forward and backward se-
crecy must also be guaranteed even if adversaryA corrupts the
whole system by obtaining the session master key and the inter-
nal state of the key generation function by external means (e.g.,
by physically exposing the data of the tags). Therefore, our
protocol shall guarantee the security properties defined below.

4.1. Mutual authentication

We define mutual authentication by the agreement of the
sensor and the tag on the value of a negotiated master key in
each session. When this key is also proved to be secret (i.e.,
nobody except the intended parties knows the key), this strong
agreement excludes potential man-in-the-middle and replay at-
tacks in which the adversary could impersonate one of the two
parties.

4.2. Secrecy of the master key.

At any time period, A cannot recover the master key from
the derived keys used in a given session and within the valid
period of generation (i.e., before reaching a given threshold N).

4.3. Forward secrecy.

After the exposure of a given master key, A cannot com-
pute previous master keys used in the system once the master
key is refreshed. In other words, let Kmi be the ith master key
negotiated between the tag and the sensor, ti be the last instant
of the time interval during which Kmi is in use, and tC be the
instant of the total compromise event of the tag and the sensor.
That is, if the knowledge ofA is Kt at instant t after tC thenA
cannot deduce Kmi from Kt: ti < tC < t then Kt 0 Kmi.

4.4. Backward secrecy

After the exposure of a given master key,A cannot compute
future master keys used in the system after the master key is re-
freshed. In other words, let Kmi be the ith master key negotiated
between the tag and the sensor, ti be the first instant of the time
interval during which Kmi is in use, and tC be the instant of the
total compromise event of the tag and the sensor. That is, if the
knowledge ofA isKt at instant t after tC thenA cannot deduce
Kmi from Kt: tC < ti < t then Kt 0 Kmi.

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

5. The KEDGEN2 protocol

Our protocol assumes dynamic master key establishment
based on key transportation techniques [66]. This rationale is
used since parties in our system have not the same capabilities.
Indeed, RFID readers are expected to have enough computa-
tional resources to calculate robust keys. Once computed, the
master keys are communicated to the tags, assumed to be re-
source constrained components. We first present the key gener-
ation model assumed in our work. Then, we detail the protocol
that uses these generated keys to encrypt secret data.

5.1. Modelling the key generation function
Let BS = (Kd,En,Dc) be the base symmetric encryp-

tion scheme, specified by its key generation Kd, encryption
En and decryption Dc algorithms. Let Gen = (S,G) be the
PRNG based on a block cipher primitive whose block size is
the length of the derived key of the base scheme. Gen consists
of two algorithms. The first algorithm S is a probabilistic al-
gorithm which takes no inputs and outputs an initial state S t1
and a master key Km1. The second is an iterative deterministic
generation algorithm G, computing in each iteration from three
inputs (a master key Km, a state S t, a counter cnt) an output
Kd and a new state S ti. The counter avoids cases where the
same state and key are used. It is a replay defence. For i > 1,
the generation algorithm G takes as input the key Km and the
current state S ti−1 (including the cnt) to generate Kdi and S ti
as: Kdi, S ti ← G(Km, S ti−1). We associate with our PRNG
a re-keyed encryption scheme, which establishes a new key in
every new session. The re-keying function can rely on a one
way function that is responsible for changing the keys for each
session.

An encryption/decryption process of the model we propose
is pictured in Figure 1. The objective is to encrypt every secret
message with a new derived key Kd using En. Thus, the derived
keys are used once in each transaction while the master key Km
has a longer life time.

G

G

En

Dc

Km

Km

M

M

Msg

Msg

tkn
tkn

Kd

Kd
tkn

tkn�

? =

Sti

Sti−1

Sti−1

Sti

cnt

cnt

Encrypt

Decrypt

Figure 1: Proposed encryption/decryption scheme

Notice that our aim is to minimise the advantage (i.e., the
likelihood) of the adversary to compromise the security of G

using the data he recovered in each transaction. The obvious
attack that takes advantage of the weaknesses of the encryp-
tion under block ciphers is the birthday attack [67]. To safely
encrypt more data, a practical solution is to enlarge the lim-
ited threshold leading to birthday attacks. Thus, we can use
the results of [68] by introducing a master key re-keying every
N = 2n/3 encryptions, where n is the block length. The solution
increases the encryption threshold from N = 2n/2 to N ≈ 22n/3.
This solution requires less resources than the data dependent
re-keying (cf. Appendix B). In addition, it follows the basic
protocol design in refreshing the keys every new session.

With this re-keying function, our encryption scheme is di-
vided into several stages (in a same session). In stage i, all en-
cryptions are performed using the base scheme with Kmi. An
encryption counter is maintained, and when N encryptions are
performed, the stage ends and a new stage begins with a new
counter cnt and a new master key.

5.2. Protocol components

We assume the following components:

• Tag. A passive constrained device that communicates
with readers via a radio interface. The tag is able to give
access to its memory only with one reader at a time. It
holds the function G of the generator Gen and is able to
derive keys according to its secret master key and state.

• Reader. An active entity communicating with the tags
and a back-end server. It implements a radio interface
to tags and a trusted interface to the server. It holds the
functions G and S and is responsible for refreshing mas-
ter keys when necessary.

• Back-end server. A trusted entity that stores in its database
all tags and readers information. It is responsible for set-
ting up the initial keys either in the tag or in the reader. It
also operates to reset the system when problems arise.

• Channels. There are a reader-to-server channel and a
reader-to-tag channel. The readers and the server are
related with a high-level security channel. They are as-
sumed to be secured with common security protocols (e.g.,
SSL/TLS). Reader-to-tag channel is the vulnerable chan-
nel that captures our interest.

• Sessions. We separate each execution of the protocol by
a process named session. For each communication ses-
sion between a pair of reader and tag, a different master
key is established. Session key ensures the independence
across sessions to avoid long-term storage of shared keys
and to limit the number of ciphertexts available for crypt-
analysis.

5.3. Protocol description

We describe now the steps of the protocol. For sake of
simplicity, the reader and the server refer to one entity named
sensor, since (i) readers do not store locally secret information

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

related to tags, and (ii) the linking channels to the server are
assumed to be secure.

Each tag and sensor store a generation algorithmG (cf. Sec-
tion 5.1) with a synchronised process. G is deterministic. Thus,
given Kmi and S ti, j−1 in the ith session and (j − 1)th derivation,
G always outputs the same derived key Kdi, j and State S ti, j.
The function of initialisation S is performed once, (i.e., the first
time the protocol is executed). It can be re-called if the sys-
tem has to be set up. The sensor stores in its database all the
tag information. For each tag, it records the tag pseudonym (or
identifier) TagID, its current state S ti, the master keys (Kmi−1,
Kmi) to recover the last key in case of desynchronisation, a gen-
erator counter cnt (cf., Section 5.1) and an encryption token tkn.
The token tkn can be a counter or a timestamp. In our scheme,
we are using a counter since tags are not usually connected to a
server that can synchronise their clocks. We assume in all trans-
actions that tkn guarantees that sent messages will be different
from the ones sent in the previous transactions. It is meant to
ensure the message integrity.

In case of loss in the transmission due to interference or
noise, the messages are assumed to be resent with the same
counters cnt and tkn. That is, if the reader or the tag does not
receive the acknowledgement of the last message, the message
can be retransmitted with a bit set to indicate that it is a dupli-
cate. Hence, the receiver accepts only one validated message.

The master key Km is sent to the destination whenever the
key generator G needs to be refreshed. This happens in the two
following situations :

1. when a new session begins. In this case, the sent master
key becomes the session key,

2. when the key generator counter cnt reaches a threshold N
leading to the possible birthday attack. At this time, G
has to be rekeyed with a new master key to extend its
lifetime against the birthday attack. In this case, the sent
master key replaces the actual session key.

In the following, we present the different steps of the proto-
col in more detail.

5.3.1. Sessions
A set-up phase is required for initialising the state and the

master key Km. In this phase, authentic and secret initial key-
ing material is distributed by a trusted third party over a secure
channel.

First session. The tag and the sensor agree on an initial secret
composed of: An initial master key Km, an initial internal state
seed and a shared token tkn. The cnt of the G function is also
initialised.

ith session. In the beginning of the ith session (i.e., before re-
freshment), the sensor and the tag share the function G with the
same properties as those used in the i − 1th session meaning
that they use Kmi−1 for generating derived keys. The period of
generation is assumed to be still valid for unpredictable derived
keys. After the establishment of the master key, the tag and the
sensor share: (1) a secret master key Kmi, (2) an internal state
S ti associated with a new counter cnt and (3) a token tkni which
are newly refreshed.

5.3.2. Refreshing G in the same session
When the generation counter cnt reaches the value of N,

the sensor sends a query for refreshing G as follows: Sensor
sends to the tag a special command S cmd xored with a new de-
rived key Kdi, j. Tag acknowledges the refreshment with Kdi, j+1.
Then, Sensor sends a new master key. The tag verifies the de-
rived key and the token used to encrypt the message and in case
they are equal to those it has already calculated, it accepts the
master key.

5.3.3. Stages

Request	

TagID	

M=(Kmi ॥ tkni,1) ⊕ Kdi,1 	

(Ack ॥ tkni,2) ⊕ Kdr
i,1 	

Tag 	

Identification	

Mutual Auth./ 	

Key establish.	

Sensor	
 Tag	

॥: Concatenation; ⊕: eXclusive OR	

(Resp ॥ tkni,4) ⊕ Kdr
i,3 	

Tag 	

Access 	

	

(Rcmd ॥ tkni,3) ⊕ Kdr
i,2 	

Reading operation	

(Wcmd ॥ tkni,3) ⊕ Kdr
i,2 	

(Ack ॥ tkni,4) ⊕ Kdr
i,3 	

Writing operation	

Kdi,1= (Kmi-1,Sti,1); Kdr
i,2= (Kmi,Sti,2); Kdr

i,3= (Kmi,Sti,3) 	
G G G

Figure 2: Main stages of the protocol

In each new session, three stages are required. One stage
for identification and another for authentication and key estab-
lishment. The third stage is a consequence of the successful
authentication which means the access to the internal memory
of the tag. These stages are shown in Figure 2.

1. Tag identification stage. The sensor starts by sending suc-
cessive requests to the Tag until it obtains the tag’s pseudonym
TagID. The sensor checks in its database the received TagID. If
there is a match, the sensor associates the TagID with the EPC
identification and the related secret information (i.e., the master
key and the state previously negotiated). Both sides must have
the same secrets. Otherwise, the next authentication process
will fail. The sensor calculates the response including the de-
rived key (by using G with the valid previous master key Kmi−1
and S ti−1) to prove that it recognises Tag and xores the result
with the new established master key Kmi. Notice that the sen-
sor stores both the current and previous master keys to handle
desynchronisation.

2. Mutual authentication and refreshment stage. Upon receiv-
ing the message M, Tag checks the derived key used for en-
cryption. Then, it calculates a new Kd′i,1 (i for current ses-
sion) and decrypts M by applying an xor operation as follow:
Op = (Kmi, tkni,1) ⊕ Kdi,1 ⊕ Kd′i,1. If the decrypted suffix of
Op is equal to the predefined token tkni,1, then Tag authenti-
cates Sensor and accepts Kmi as a new master key. It returns an
acknowledgement Ack associated with a new derived key Kdr

i,1

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

(r for refreshed key) set from the refreshed values. Otherwise,
Tag does not accept the sensor’s key and aborts the communi-
cation. Upon receiving the value of Kdr

i,1, Sensor verifies it and
authenticates Tag, in case of validity.

3. Tag access stage. After a successful authentication, the sen-
sor is authorised to access the tag. Thus, it has the ability to
execute privileged commands like reading or writing on it. The
same process of authentication is used to perform an access op-
eration. Instead of sending the master key, the sensor sends the
data to be written on the tag or the tag sends the data required
by the sensor encrypted with a fresh derived key:

• Writing operation: Sensor begins by sending the write
command Wcmd concatenated with the token and xored
with a new Kdr

i,2. Tag verifies this key and accepts the
command if the value is valid. Then, it acknowledges the
reception with Kdr

i,3. Otherwise, Tag aborts the commu-
nication.

• Reading operation: Sensor begins by sending the read
command Rcmd xored with the new generated key Kdr

i,2.
If Tag accepts the request by checking Kdr

i,2, it sends the
response Resp xored with Kdr

i,3.

5.3.4. Concurrent executions
The Gen2 technology is highly concurrent as a large number

of tags could be interrogated at the same time. Thus, it is impor-
tant for participants to separate concurrent protocol executions.
This issue is usually handled by adding a session ID field to the
exchanged messages. In our protocol, we assume that each pro-
tocol session is associated with an initial internal state, a secret
Km, and a token tkn that differentiate all the tags in the system.
The sensor can run concurrently many protocol sessions at a
time since it maintains a set of tag information. In contrast, the
tag cannot run concurrently many protocol sessions at a time,
particularly when it needs to update its secrets simultaneously
(e.g., the secrets have to be updated before starting a new ses-
sion). In the sequel, we consider that the tag can respond to
several identification requests by sending its pseudonym but for
privileged requests (reading/writing accesses), the tag does not
respond to simultaneous queries, nor is it able to increment its
internal state and token two times simultaneously. Finally, for
synchronisation reasons, the tag has to run each session for a
small period of time, and then switches off automatically (even
if the session has not ended).

6. Verifying the security of the protocol

We use model checking techniques to verify whether a secu-
rity property holds in a finite state machine. The goal is to find
errors (e.g., logical flaws) and attacks against the protocol im-
plementation in accordance with the security assumptions pro-
vided in Section 3. Automated reasoning is highly desirable to
avoid errors associated with hand-written proofs. If a security
design of complex systems is verified successfully by an auto-
mated tool, it increases the confidence of the system users.

Let us begin by presenting the tool we use for the verifi-
cation. Then, we give some notions about the HLPSL input
language and the structure of the outputs.

6.1. Checking Tool

There is a number of successful protocol verification tools
that are supporting algebraic reasoning, e.g., the extended Pro-
Verif [69], Maude-NRL Protocol Analyzer (MaudeNPA) [70],
On the Fly Model Checker (OFMC) [71] and Constraint-Logic
based Attack Searcher (CL-AtSe) [72]. They use different mod-
els and proof techniques. For example, extended ProVerif is
based on tree automata and Horn clauses techniques. Mau-
deNPA is based on rewriting techniques and backward search
of bad states. OFMC is based on a state space exploration and
CL-AtSe is based on a constraint solving technique. Each tool
has some strengths and weaknesses [73]. As a candidate, we
use CL-AtSe protocol analyser, the probably most mature tool
using the constraint solving technique [74]. The tool was part of
the AVISPA project [17] that has been extended recently by the
Avantssar [75] project. In this paper we use the new version of
CL-AtSe [72] to verify our protocol. The AVISPA platform is
a suite of applications commonly used for formal specification
and automated validation and verification of cryptographic pro-
tocols. It is composed of several modules: A translator called
HLPSL2IF [76] is used to transform a given HLPSL specifi-
cation to a low level specification IF and four different ver-
ification tools (CL-AtSe, OFMC, SAT based Model-Checker
(SAT-MC) [77] and Tree Automata based Protocol Analyser
(TA4SP) [78]) to analyse the IF specifications. The choice of
CL-AtSe tool to verify our protocol refers to its ability to anal-
yse protocols taking in account the algebraic properties of op-
erators like xor or exponentiation in addition to the possibility
to run many consecutive sessions.

The CL-AtSe tool. Constraint-Logic based Attack Searcher con-
sists in running the protocol or set of services in all possible
ways by representing families of traces with positive or neg-
ative constraints on the intruder knowledge, on variable val-
ues, on sets, etc. Thus, each run of a service step consists in
(1) adding new constraints on the current intruder and environ-
ment state, (2) reducing these constraints down to a normalised
form for which satisfiability is easily decidable, and (3) decid-
ing whether some security property has been violated up to this
point. CL-AtSe does not limit the service in any way except
for bounding the maximal number of times a service can be it-
erated, in the case such an iteration (or loop) is specified by
the user. Otherwise, the analysis might be non-terminating on
secure services and only heuristics, approximations, or restric-
tions on the input language could lift this limitation. In our
protocol verification, we specify three consecutive iterations
(i.e., sessions). This number is indeed representative of differ-
ent steps of our protocol and is sufficient to check the properties
we wish to verify.

6.2. HLPSL format

The protocol and the security properties are specified in
the High Level Protocol Specification Language (HLPSL) [15].

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

role A(param) played by ag
def= local L
init Init
transition
evt.0 ^ evt.1 = | > act.1
evt.2 = | > act.2
...
evt.n = | > act.n
end role

(a) role S (param)
def= const C
composition
R1 (param-1) ^ . . . ^ Rn
(param-n)
end role

(b)

role environment (param)
def= const C
intruder_knowledge = IN
composition
S1 (param-1) ^ . . . ^ Sn
(param-n)
end role

(c)

goal
secrecy_of sec_kn
end goal

(d)

Figure 3: HLPSL main elements. (a) Basic role structure. (b) Session role structure. (c) Environment role structure. (d) Secrecy in the goal section.

HLPSL is a specification language for formalising protocols
and security goals based on Lamport’s Temporal Logic of Ac-
tions (TLA) [16]). The language, developed in the context of
the AVISPA project [17], is a role-based language. Roles can
be basic (e.g., agent roles) describing the action of a legitimate
participant during the execution of the protocol or composed
(e.g., session and environment roles) describing scenarios of
basic roles to model an entire protocol run. Finally, the HLPSL
language allows to specify the knowledge and capacities of the
adversary model.
Basic roles. Figure 3(a) shows how the basic role is generally
structured. Each basic role declares its name (A), its initial in-
formation or parameters (param) and the agent playing the role
(ag). The basic role can declare a set of local variables (L). The
init section assigns the initial values to the local variables, if
required.

The transition section describes changes of the agent
state. It consists of a trigger (e.g., evt.2) and an action
(e.g., act.2) to be performed when the trigger event occurs.
The = | > symbol separates the two phases.

Composed roles. Composed roles combine basic roles, either
in parallel or in sequence. HLPSL defines two composed roles:
the session role and the environment role. Actions, in com-
posed roles, are not defined in a transition section like in
basic roles. Rather, a composition section is defined to in-
stantiate other roles Ri or Si, with sets of parameters param-i,
that run in parallel (cf. Figures 3(b) and 3(c)). The session
role, referred by S in Figure 3(b), instantiates in its composi-
tion section the basic roles and the different channels relating
them while the environment role instantiates in its composition
section all the sessions to be run (Si). The environment role is
called the main role, as it declares the global constants (C) and
defines the intruder knowledge denoted by IN.
Security properties. HLPSL provides an independent section
to declare the security properties required, named goal. The
goal declaration can be done either by using predefined macros
of the predefined security properties (secrecy, weak authentica-
tion, strong authentication) or by using Linear Temporal Logic
formulas [16]. We are interested in the predefined secrecy and
strong authentication properties. We use the predefined secrecy
property to check whether the secrecy of the key is maintained

in a given session and to check (with a slight change of the
specification) whether the forward/backward secrecy defined in
Sections 4.3 and 4.4 are guaranteed in last/next session respec-
tively, after the compromising of the system in a given session.
We use also the authentication property to validate the goals
defined in Section 4.1.

• Secrecy is modelled by means of the goal predicate se-
cret(Km,sec_km,Sensor,Tag) standing for the value of term
Km is a secret shared only between agents Sensor and
Tag. The secrecy property is violated every time the ad-
versary learns a value that is considered as secret and that
he is not allowed to know (i.e., Km).

• Authentication is modelled by means of the goal pred-
icates witness(A, B, id,T1), request(B, A, id,T1) and w-
request(B, A, id,T1). These predicates are used to check
if an instance of a role is right in believing that its peer
is present in the current session. It is done by agreeing
on a certain value (e.g., T1) which is typically fresh. The
predicates always appear in pair and have the same third
parameter. This third parameter id is the identifier of the
authentication goal and it is used in the goal section of
the HLPSL code. There exists two definitions of authen-
tication: weak and strong authentication.

1. witness(A, B, id,T1) for a strong or weak authen-
tication properties of A by B on T1, declares that
agent A is witness for information T1. This goal will
be identified by the constant id in the goal section;

2. request(B, A, id,T1) for a strong authentication prop-
erty of A by B on T1, declares that agent B requests
a check of the value T1. This goal will be identified
by the constant id in the goal section;

3. wrequest(B, A, id,T1) similar to request, but for a
weak authentication property. It is used to specify
an authentication goal with no replay protection.

Strong authentication is an extension of the weak authen-
tication which precludes replay attacks. We can thus con-
clude that, if strong authentication is achieved, then T1
has not been previously received by B in a given session.

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

role sensor(...)
…
/\ witness (A,Tag',sensor_tag_kd1,
 keygen(KM',succ(KM',InState')))
…
end role

role tag(...)
…
/\request
(Tag,Sensor,sensor_tag_kd1,keygen
(KM.InState))

end role

role environment(...)
…
tag_sensor_kd1 :protocol_id
…
end role

goal

 authentication_on
sensor_tag_kd1

end goal

Figure 4: Strong authentication property definition

Each property is added to the honest role and to the goal
section. It is identified by protocol_id type. Figure 4 shows
a declaration of a strong authentication property of the sensor
by the tag on the value of Kd1 = keygen(KM′, succ(KM′, In-
S tate′)) declaring that agent sensor is witness for the value of
Kd1 and that agent tag requests a check of the value Kd1. This
goal is identified by the constant sensor_tag_kd1 in the goal
section.

6.3. Output format
After the verification process, the output describes the re-

sults, and under what conditions they have been obtained (e.g.,
Figure 7 shows the verification results of the KEDGEN2 pro-
tocol). The output format is nearly common to all tools of the
framework. In the SUMMARY section, it indicates if the protocol
is safe, unsafe, or if the analysis is inconclusive. In a second
section titled DETAILS, the output shows conditions under what
the protocol is declared safe/unsafe/inconclusive. If a security
property of the input specification is violated then the tools out-
put a warning, some details about the analysis (e.g., whether
the considered model is typed or untyped), the property that
was violated (e.g., authentication), statistics on the number of
explored states, and, finally, an ATTACK TRACE that gives a de-
tailed account of the attack scenario. If no attack was found,
then similar information is provided without announcing any
violation and attack trace.

6.4. Our HLPSL specification
The specification of both the protocol and the security goals

is described into four HLPSL sections: the sensor, the tag, the
environment roles and the goal. Figure 5 shows the specifi-
cation with mutual authentication and secrecy of the master
key goals. The generation function G is specified by two func-
tions keygen and succ. The first function generates the derived
keys and the second one generates accordingly the new state
(i.e., InS tate). Figure 6 shows the specification of the protocol
to handle the forward secrecy. Note that for the cases of forward
and backward secrecy, we have slightly changed the specifica-
tion (compared to Figure 5) as the AVISPA tool only supports
a single execution trace. Thus, we have modelled the execution
of two consecutive iterations in order to show whether leaking
a secret during session i helps the adversary to obtain secrets
from session i-1 for forward secrecy or session i+1 for back-
ward secrecy. In the following, we detail the specification and
evaluation results.

7. Evaluation results

For each security property defined in Section 4 and specified
in Section 6, we show in this section the results obtained after
the evaluation of our protocol specifications under the CL-AtSe
tool.

7.1. Mutual authentication

Figure 7a shows the results of the evaluation of the mutual
authentication property. To obtain these results, we specify an
iteration of the protocol with legitimate roles and give to the
adversary the knowledge of the generation functions, roles and
standard commands used in the KEDGEN2 protocol communi-
cation (cf., Figure 5). In the HLPSL language, the authentica-
tion property is specified using the witness/request predicates.
These predicates are used to check if an instance of a role is
right in believing that its peer is present in the current session.
We use the HLPSL strong authentication definition to require
that a given value is accepted by the sensor in exactly the same
session in which it was proposed by the tag. We add these pred-
icates to the tag and sensor transactions to evaluate the authen-
tication of each of the two roles and prevent man-in-the-middle
and replay attacks. The tool finds no attack violation of the
strong authentication property. This strong property guarantees
the resilience to man-in-the-middle and replay attacks in which
the adversary could impersonate one of the two parties.

7.2. Secrecy of the master key

Figure 7a shows the results of the secrecy property evalua-
tion. We recall that the secrecy of the master key when shared
securely between the tag and the sensor is mathematically main-
tained since the security threshold N of distinguishability is not
reached. In other words, the adversary is not able to detect cor-
relations between the outputs of G, named the derived keys.
The model checker is used in our evaluation to confirm that the
adversary is not able to desynchronise the two participants and
replay some messages to reconstruct the master key (and with
that, the secret messages encrypted using such a key). To verify
the secrecy of the master key, we specify with HLPSL a sin-
gle instance of the protocol with legitimate roles and give the
adversary the knowledge of inner working of the system (cf.,
Figure 5). Secrecy is modelled by the mean of the goal predi-
cate secret(Km, sec_km, S ensor,Tag) standing for the value of
term Km is a secret shared only between agents Sensor and Tag.
The secrecy property is violated every time the adversary learns
the value Km that is considered as secret.

7.3. Forward secrecy

Figures 7b and 7c show the forward secrecy evaluation re-
sults. To prove forward secrecy, we consider a setting in which
the tag and the sensor try to establish a new master key NewKm
using the previous master key Km. Once NewKm has been es-
tablished, we reveal to the adversary the internal states NewKm,
InS tate, and Tkn of both the tag and the sensor. Our goal
is to prove that this knowledge is not sufficient to enable the
adversary to compute the previous Km. We prove first that

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

role sensor(A: agent,
 DataBase: (agent.text.message.text) set,
 Snd,Rcv : channel (dy)) played_by A def=

 local
 Tag:agent, InState:message,
 Tkn,KM,NewKM: text, State:nat

 init

State := 0

 transition

0.State=0 /\ Rcv(start) =|>
 Snd(A.reqID) /\ State':= 1

1.State=1 /\ Rcv(Tag')
/\ in(Tag'.Tkn'.InState'.KM',DataBase)
=|>

 State':=0 /\ NewKM':= new()
 /\ DataBase':=cons(Tag'.Tkn'.
 succ(KM',InState').KM',
 delete(Tag'.Tkn'.
 InState'.KM',DataBase))

/\ Snd(xor(NewKM'.Tkn',
 keygen(KM',succ(KM',InState'))))

/\ State':=2
/\ witness (A,Tag',sensor_tag_kd1,

 keygen(KM',succ(KM',InState')))
/\ secret(KM',sec_km1,{A,Tag'})

2.State=2
 /\ Rcv(keygen(KM',InState'))
 /\ in(Tag'.Tkn'.InState'.KM',DataBase)
 =|>
 request(A,Tag,tag_sensor_kd1r,
 keygen(KM'.InState))

end role

role tag(Tag,Sensor: agent,
 InState : message,
 KM : text,
 Tkn:text,
 Snd,Rcv: channel(dy)) played_by Tag def=

 local
 State : nat

 init
 State := 0

 transition

 0.State=0 /\ Rcv(Sensor.reqID) =|>
 State':=1 /\ Snd(Tag)
 /\ InState':= succ(KM,InState)

 1.State=1 /\ Rcv(xor((KM'.Tkn),
 keygen(KM.InState))) =|>
 Snd(Tag.keygen(KM'.succ(KM'.InState)))
 /\InState':=succ(KM'.succ(KM'.InState))

 /\ State':=0
 /\request(Tag,Sensor,sensor_tag_kd1,
 keygen(KM.InState))
 /\witness(Tag,Sensor,tag_sensor_kd1r,
 keygen(KM'.succ(KM'.InState)))

end role

role environment() def=

 const
sensor,tag1,tag2: agent,

 token1,token2: text,
 instate1,instate2: message,
 km1,km2:text,
 reqID: text,
 succ,keygen: function,
 r2t,t2r: channel (dy),

 a:agent,
 sec_km1,sensor_tag_kd1,
 tag_sensor_kd1r : protocol_id

 intruder_knowledge={reqID,succ,
 keygen,sensor,tag1,tag2,keygen}

 composition
 reader(sensor,

{
tag1.token1.instate1.km1,
tag2.token2.instate2.km2

},
r2t,t2r)

 /\ tag(tag1,sensor,instate1,
 km1,token1,t2r,r2t)
 /\ tag(tag2,sensor,instate2,
 km2,token2,t2r,r2t)

end role

goal
 secrecy_of sec_km1
 authentication_on sensor_tag_kd1
 authentication_on tag_sensor_kd1r
end goal

environment()

Figure 5: HLPSL specification of KEDGEN2 protocol to check for strong authentication and secrecy.

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

role sensor(A: agent,
 DataBase: (agent.text.message.text) set,
 Snd,Rcv : channel (dy)) played_by A def=

 local
 Iter:nat,Tag:agent,
 InState:message,Tkn,KM,NewKM: text,
 State:nat

 init

State := 0

 transition

0.State = 0 /\ Rcv(start) =|>
Snd(A.reqID) /\ State':= 1

1.State = 1 /\ Rcv(Tag')
/\ in(Tag'.Tkn'.InState'.KM',DataBase)
=|>
State':=0 /\ NewKM':= new()
/\ Snd(Tag'.NewKM'.Tkn'.

 succ(NewKM',succ(KM',InState')).
 xor(NewKM'.Tkn',
 keygen(KM',succ(KM',InState'))))
 /\ DataBase' := cons(Tag'.Tkn'.
 succ(NewKM',succ(KM',
 succ(KM',InState'))).NewKM',
 delete(Tag'.Tkn'.InState'.KM',

DataBase))

/\ secret(KM',sec_km1,{A,Tag'})

end role

role tag(Tag: agent,
 InState : message, % InState = instate0
 KM : text,Tkn:text,
 Snd,Rcv: channel(dy)) played_by Tag def=

 local
 Reader: agent,
 State : nat

 init
 State := 0

 transition

 0.State=0 /\ Rcv(Reader'.reqID) =|>
 State':=1 /\ Snd(Tag)
 /\ InState' := succ(KM,InState)

 1.State=1 /\ Rcv(xor((KM'.Tkn),
 keygen(KM,InState))) =|>

 State':=0
 /\ Snd(Tag.keygen(KM',

 succ(KM',InState)))
 /\ InState' :=
 succ(KM',succ(KM,InState))

end role

role environment() def=

 const
 sensor,tag1,tag2: agent,

 token1,token2: text,
 instate1,instate2: message,
 km1,km2:text,
 reqID: text,
 succ,keygen: function,
 r2t,t2r: channel (dy),

 sec_km1, sec_resp,
 sensor_tag_kd0,
 tag_sensor_kd1 : protocol_id

intruder_knowledge={reqID,succ,keygen
,sensor,tag1,tag2,keygen}

 composition
 reader(sensor,

{
tag1.token1.instate1.km1
,tag2.token2.instate2.km2

},
r2t,t2r)

 /\ tag(tag1,instate1,km1,
 token1,t2r,r2t)
 /\ tag(tag2,instate2,
 km2,token2,t2r,r2t)
end role

goal
 secrecy_of sec_km1
end goal

environment()

Figure 6: HLPSL modified specification of KEDGEN2 protocol to check for forward secrecy.

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

INPUT V7-1-ProtocolAuthentifSecrecy.if
SUMMARY NO_ATTACK_FOUND
DETAILS TYPED_MODEL
BACKEND CL-ATSE VERSION
2.5-8_(February_23th_2011)
STATISTICS TIME 44 ms
TESTED 105 transitions
REACHED 34 states
READING 0.04 seconds
ANALYSE 0.00 seconds

(a) Authentication and secrecy evaluation

INPUT V7-6-forward-orig-chiff.if
SUMMARY ATTACK_FOUND
GOAL:secrecy_of_sec_km1(km1,set_53)
DETAILS TYPED_MODEL
BACKEND CL-ATSE VERSION 2.5-8
_(February_23th_2011)
STATISTICS TIME 28 ms
TESTED 10 transitions
REACHED 6 states
READING 0.01 seconds
ANALYSE 0.02 seconds

(b) Forward secrecy evaluation (original specification)

INPUT V8-forward-chiff.if
SUMMARY NO_ATTACK_FOUND
GOAL:secrecy_of_sec_km1(km1,set_53)
DETAILS TYPED_MODEL
BACKEND CL-ATSE VERSION 2.5-8
_(February_23th_2011)
STATISTICS TIME 24 ms
TESTED 27 transitions
REACHED 17 states
READING 0.01 seconds
ANALYSE 0.01 seconds

(c) Forward secrecy evaluation (modified specification)

INPUT V7-6-backward-chiff.if
SUMMARY ATTACK_FOUND
GOAL: secrecy_of_sec_km1(n3(NewKM),set_55)
DETAILS TYPED_MODEL
BACKEND CL-ATSE VERSION
2.5-8_(February_23th_2011)
STATISTICS TIME 928 ms
TESTED 16 transitions
REACHED 12 states
READING 0.05 seconds
ANALYSE 0.88 seconds

(d) Backward secrecy evaluation

Figure 7: Evaluation results.

the original specification of our protocol (cf. Figure 5) does
not provide forward secrecy. This is shown with the results
in Figure 7b. The analysis of the attack trace shows that af-
ter establishing and sending the new master key to the tag (i.e.,
M = (NewKm||Tkn) ⊕ Kd1 where Kd1 = G(Km, InS tate1)),
the adversary obtains Km in the next generation of InS tate
(InS tate2 = G(NewKm, InS tate1)) relying on the knowledge

of NewKm and Kd1. The countermeasure is to hide the gener-
ation of InS tate2 by values which are not deduced by the ad-
versary. This way, the adversary cannot obtain the key Km. In
fact, by changing G(NewKm, InS tate1) to G(NewKm,G(Km,
InS tate1)), we use a double generation of the initial state de-
pending on values that cannot be computed by the adversary
(i.e., Km). This modification is shown in Figure 6. The evalua-
tion results in Figure 7c show that the modified version satisfies
the forward secrecy property even under the hypothesis of a
complete compromise in the following sessions.

7.4. Backward secrecy

Figure 7d shows the results of the backward secrecy prop-
erty evaluation. We consider two executions of the sensor. One
execution in which the tag and the sensor establish a master
key Km and another one where we reveal to the adversary the
last secrets (i.e., Km, S tate,Tkn) of both the tag and the sensor.
The goal is to verify if this knowledge is sufficient to enable
the adversary to compute the new master key NewKm related
to this execution. The results show that the protocol is insecure.
CL-AtSe finds an attack on the secrecy of the new master key.
Indeed, if the adversary follows all the messages sent in the
network, it is possible to reconstruct the following master key
NewKm because the new derived key used to encrypt the mes-
sage of refreshment (i.e., 3rd pass in the Figure 2) can be com-
puted. The new derived keys are based on the previous secrets
that the adversary has already gained, and once obtaining these
secrets, the adversary takes all the power of the target tag itself.
He can trace it at least during the authentication immediately
following the attack. This attack can be avoided by changing
the adversary capacities. If the adversary does not eavesdrop
on the tag continuously after the time of corruption, i.e., miss-
ing the master key establishment transaction, then it will not be
possible to predict the next refreshed derived keys. This notion
is known to restricted backward security through key insula-
tion [79, 80]. This assumption is realistic since in typical RFID
system environments, tags and readers operate only at a short
communication range and for a short period of time.

8. Comparative discussion

In this section, we present the most relevant works related to
our proposal as well as a comparative discussion between them.

Several papers e.g., [50, 51, 52, 53, 54, 55] have analysed
forward security and other communication faults in RFID sys-
tems at various levels of formality. Some of them define the
authentication and secrecy (named also privacy) in computa-
tional model, typically in terms of games. For example, in [50],
the authors define two security protocols to assure authenti-
cation and forward secrecy using the universal composability
framework. After detecting a synchronisation problem related
to [50], a new series of protocols was proposed by the same
authors. The last version in [51] ameliorates the protocol and
includes a verification of the backward secrecy property using
the same framework. The authors in [52], use a game-based
approach to prove the robustness of an RFID protocol against

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

Table 1: Comparison between recent related work using various models of formality

Main
characteristics

[50] [51] [52] [53] [54] [55] KEDGEN2

Formal model Computational Computational Computational Symbolic Symbolic Symbolic Symbolic

Framework Universal
composability

Universal
composability

CryptoVerif ProVerif FDR AVISPA
(OFMC)

AVISPA
(CL-AtSe)

Forward
secrecy

√ √ √ √ −1 − √

Backward
secrecy

− √2 − − − − √3

Authentication
√ √ √ √ √ √ √

Cryptographic
primitives

Pseudorandom
generator.
e.g., shrinking
generator

PRNG4 Three distinct
hash functions

Two dis-
tinct hash
functions

Hash func-
tion +

PRNG

Hash func-
tion

PRNG

Application
on highly
constrained tags

Possible Possible Not
possible

Not
possible

Not
possible

Not
possible

Possible

√
: Checked by the authors − not checked by the authors

1 A different definition of forward secrecy is checked named forward untraceability
2 Checked under the same adversary used for verifying the forward secrecy
3 Checked under a weaker adversary used for verifying the forward secrecy
4 PRNG: Pseudorandom Number Generator

a man-in-the-middle adversary. They do not propose a new
protocol to be applied on constrained tags but a new method
to prove the security of the OSK protocol [81] that they com-
bine with a mechanism to synchronise the internal state of the
tag and reader. The resulted protocol can be applied on RFID
tags supporting hash functions. The security of the protocol is
proved using the computational model of CryptoVerif verifica-
tion tool combined with some handwritten proofs to overcome
the limitations of the tool regarding desynchronisation and for-
ward privacy verification.

Works in [53], [54] and [55] have used the symbolic model
to formally verify the security properties. These works are clos-
est to ours. The advantage of using the symbolic model, as
our work does, is its ease to automatically prove the security
of cryptographic protocols and to clarify these complex proto-
cols with provided definitions of formal languages. In view of
this, the authors in [53] use the applied pi calculus language
with the ProVerif automated verification tool and apply their
proposed techniques to the OSK protocol [81] in order to for-
mally prove the untraceability and forward privacy properties.
The proposed technique, which consists in the concept of frame
independence between sessions, meet our security goals. How-
ever, the proposed verification technique is applied only on one
class of protocols that the authors call "single step" identifica-
tion. Furthermore, this new technique is applied on protocols
with two distinct hash functions. This is only possible on tags
computationally strong enough to use such functions. These
two criteria make the solution different from our proposal, i.e.,
our proposal uses more steps for both identification and authen-
tication in the context of Gen2 tags (without hashing capabil-

ities). In [54], the authors use an automated verification tool
called FDR (Failure Divergence Refinement). The work can be
compared to ours as it also uses a model checking tool to verify
the secrecy and authentication of an RFID protocol. However,
the use of a hash based scheme added to a pseudorandom num-
ber generator to implement the protocol presents a different so-
lution model. Moreover, as opposed to our proposal, authors
do not consider in their work strong secrecy notions such as
forward and backward secrecy that handle linkability between
the sessions. In [55], the authors propose a new protocol that
assures mutual authentication and privacy which they define as
anonymity and forward untraceability. The verified property of
forward untraceability is different from forward secrecy. Au-
thors define the protocol as attacked when the attacker detects
twice the same hash result, which means detecting the same tag.
Whereas in our case, an attack is shown when an attacker ob-
tains the secret keys of last sessions of communicated keys for
a given tag. Furthermore, the authors propose a one-way hash
function as a solution for a secured RFID protocol and use the
AVISPA OFMC tool for automated verification.

Differently from all cited protocols achieving a formal veri-
fication of their proposals in the symbolic model, our proposed
KEDGEN2 protocol is applied on highly constrained tags such
as Gen2 since it is only based on a pseudorandom number gen-
erators. Recall that in our work, we assume that the use of hash
functions is beyond the capabilities of low-cost RFID tags, as
reported in [24, 25] for EPC Gen2 tags. KEDGEN2 achieves
mutual authentication, and forward and backward secrecy in
different conditions. We prove these properties in the AVISPA
framework using the Constraint-Logic based Attack Searcher

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

(CL-AtSe) automated verification tool. This tool is based on
an attack construction methodology attempting to find vulner-
abilities using algebraic properties of protocols. This approach
is different from proof construction methodologies. Proof con-
struction methodologies are suitable for proving correctness and
completeness rather than finding vulnerabilities in a security
protocol.

It is worth noting that in [50] and [51], the authors apply
their protocols on the same category of Gen2 tags. However,
they use the universal composability framework, which is based
on the computational model.

To summarise, Table 1 shows the different aspects that dif-
ferentiate our KEDGEN2 protocol to such previous efforts.

9. Conclusion

With the goal of addressing security concerns on the use of
the EPC Gen2 RFID technology in sensitive domains, we pre-
sented the specification and verification of a key establishment
and derivation protocol for Gen2 systems. The KEDGEN2 pro-
tocol achieves secure data exchange between tags and readers,
based on a key generation model adapted to Gen2 RFID tags.
The generated keys are used in the proposed protocol as one
time encryption keys. To guarantee the security of the protocol,
the generation function has to respond to a number of prop-
erties, including the resilience against key recovery and the in-
distinguishability of the derived keys. We described the steps of
our protocol and verified the expected properties under the pres-
ence of an active adversary. The current version of the protocol
guarantees the properties of mutual authentication and forward
secrecy. Backward secrecy is also verified under weaker adver-
sary assumptions (consistent with typical RFID environments).
For future work, we plan to study how to k-anonymise informa-
tion stored in the tag memory. The goal is to reduce the privacy
impact on sensitive information transmitted without protection
in the insecure tag-to-sensor channel. We also plan to conduct
SPICE simulations to evaluate the power-consumption charac-
teristics of our solution.

Acknowledgements: The authors would like to thank the ano-
nymous reviewers for their valuable comments and suggestions
to improve the quality of the paper. J. Garcia-Alfaro acknowl-
edges the support received from the Spanish Government pro-
jects TSI2007-65406-C03-03 E-AEGIS, TIN2011-27076-C03-
02 CO-PRIVACY, CONSOLIDER INGENIO 2010 CSD2007-
0004 ARES, and TIN2010-15764 N-KHRONOUS.

References

[1] Q. Z. Sheng, S. Zeadally, A. Mitrokotsa, Z. Maamar, RFID technology,
systems, and applications, J. Network and Computer Applications 34 (3)
(2011) 797–798.

[2] W. Jakkhupan, S. Arch-int, Y. Li, Business process analysis and simu-
lation for the RFID and EPCglobal Network enabled supply chain: A
proof-of-concept approach, J. Network and Computer Applications 34 (3)
(2011) 949–957.

[3] F. Rizzo, M. Barboni, L. Faggion, G. Azzalin, M. Sironi, Improved secu-
rity for commercial container transports using an innovative active RFID
system, J. Network and Computer Applications 34 (3) (2011) 846–852.

[4] W. Yao, C.-H. Chu, Z. Li, Leveraging complex event processing for smart
hospitals using RFID, J. Network and Computer Applications 34 (3)
(2011) 799–810.

[5] P. Najera, J. Lopez, R. Roman, Real-time location and inpatient care
systems based on passive RFID, J. Network and Computer Applications
34 (3) (2011) 980–989.

[6] EPCglobal., EPC Radio-Frequency Identity Protocols Class-1
Generation-2 UHF RFID Protocol for Communications at 860-960
MHz, Tech. rep., Version 1.2.0 (2008).
URL http://www.epcglobalinc.org/standards/

[7] P. Manzanares-Lopez, J. P. Muñoz-Gea, J. Malgosa-Sanahuja, J. C.
Sanchez-Aarnoutse, An efficient distributed discovery service for EPC-
global network in nested package scenarios, J. Network and Computer
Applications 34 (3) (2011) 925–937.

[8] W. Tounsi, J. Garcia-Alfaro, N. Cuppens-Boulahia, F. Cuppens, Securing
the communications of home health care systems based on RFID sensor
networks, in: Eighth Annual Communication Networks and Services Re-
search Conference, IEEE, 2011, pp. 284–291.

[9] J. Melia-Segui, J. Garcia-Alfaro, J. Herrera-Joancomarti, Analysis and
improvement of a pseudorandom number generator for EPC Gen2 tags,
Financial cryptography and data security (2010) 34–46.

[10] J. Melia-Segui, J. Garcia-Alfaro, J. Herrera-Joancomarti, A practical im-
plementation attack on weak pseudorandom number generator designs for
EPC Gen2 tags, Wireless Personal Communications 59 (1) (2011) 27–42.

[11] T. Cao, E. Bertino, H. Lei, Security analysis of the SASI protocol, IEEE
Transactions on Dependable and Secure Computing 6 (2009) 73–77.

[12] T. Li, R. Deng, Vulnerability analysis of EMAP-an efficient RFID mu-
tual authentication protocol, in: The Second International Conference on
Availability, Reliability and Security, ARES’07, IEEE, 2007, pp. 238–
245.

[13] T. Li, G. Wang, Security analysis of two ultra-lightweight RFID authen-
tication protocols, New Approaches for Security, Privacy and Trust in
Complex Environments–IFIP-SEC’07 232 (2007) 109–120.

[14] W. Tounsi, N. Cuppens-Boulahia, F. Cuppens, J. Garcia-Alfaro, Formal
Verification of a Key Establishment Protocol for EPC Gen2 RFID Sys-
tems: Work in Progress, in: J. Garcia-Alfaro, P. Lafourcade (Eds.), Foun-
dations and Practice of Security, Vol. 6888 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2012, pp. 242–251.

[15] Y. Chevalier, L. Compagna, J. Cuellar, P. Drielsma, J. Mantovani,
S. Moedersheim, L. Vigneron, A high level protocol specification lan-
guage for industrial security-sensitive protocols, in: Proceedings of Work-
shop on Specification and Automated Processing of Security Require-
ments, Vol. 180 of (SAPS’04), 2004.

[16] L. Lamport, The temporal logic of actions, ACM Transactions on Pro-
gramming Languages and Systems–TOPLAS’94 16 (1994) 872–923.

[17] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuél-
lar, P. Drielsma, P. Heám, O. Kouchnarenko, J. Mantovani, et al., The
AVISPA tool for the automated validation of internet security protocols
and applications, in: Proceedings of the 17th International Conference on
Computer Aided Verification, (CAV’05), Springer, 2005, pp. 135–165.

[18] S. Weis, S. Sarma, R. Rivest, D. Engels, Security and Privacy Aspects
of Low-Cost Radio Frequency Identification Systems, in: International
Conference on Security in Pervasive Computing, SPC’03, 2003.

[19] D. Henrici, P. Müller, Hash-based enhancement of location privacy for
radio-frequency identification devices using varying identifiers, in: Pro-
ceedings of the Second IEEE Annual Conference on Pervasive Comput-
ing and Communications Workshops, IEEE, 2004, pp. 149–153.

[20] M. Ohkubo, K. Suzuki, S. Kinoshita, Efficient Hash-Chain Based RFID
Privacy Protection Scheme, in: International Conference on Ubiquitous
Computing – Ubicomp, Workshop Privacy: Current Status and Future
Directions, 2004.

[21] G. Avoine, P. Oechslin, A Scalable and Provably Secure Hash Based
RFID Protocol, in: International Workshop on Pervasive Computing and
Communication Security, PerSec’05, IEEE, 2005.

[22] D. Henrici, P. Müller, Providing Security and Privacy in RFID Sys-
tems Using Triggered Hash Chains, in: Sixth Annual IEEE International
Conference on Pervasive Computing and Communications, PerCom’08,
2008.

[23] G. Tsudik, YA-TRAP: Yet another trivial RFID authentication protocol,
in: 4th IEEE Conference on Pervasive Computing and Communications
Workshops (PerCom 2006 Workshops), IEEE, 2006, pp. 640–643.

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

[24] M. Feldhofer, C. Rechberger, A Case Against Currently Used Hash Func-
tions in RFID Protocols, in: On the Move to Meaningful Internet Systems,
OTM’06, 2006.

[25] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. Robshaw,
Y. Seurin, Hash Functions and RFID Tags : Mind The Gap, in: 10th In-
ternational Workshop Cryptographic Hardware and Embedded Systems,
CHES’08, 2008.

[26] S. Kardas, S. Celik, M. Yildiz, A. Levi, PUF-enhanced offline RFID se-
curity and privacy, J. Network and Computer Applications 35 (6) (2012)
2059–2067.

[27] R. Pappu, Physical One-Way Functions, Ph.D. thesis, MIT (2001).
[28] S. Lim, I. Yie, Probabilistic privacy leakage from challenge-response

RFID authentication protocols, in: Proceedings of the 7th Conference on
7th WSEAS International Conference on Applied Informatics and Com-
munications (AIC’07), Vol. 7, Stevens Point, Wisconsin, USA, 2007, pp.
285–288.

[29] R. D. Pietro, R. Molva, An optimal probabilistic solution for informa-
tion confinement, privacy, and security in RFID systems, J. Network and
Computer Applications 34 (3) (2011) 853–863.

[30] L. Bolotnyy, G. Robins, Physically unclonable function-based security
and privacy in RFID systems, in: International Conference on Pervasive
Computing and Communications (PerCom 2007), IEEE Press, 2007, pp.
211–220.

[31] G. P. Hancke, Design of a secure distance-bounding channel for RFID, J.
Network and Computer Applications 34 (3) (2011) 877–887.

[32] A. Mitrokotsa, C. Onete, S. Vaudenay, Mafia Fraud Attack against the
RČ Distance-Bounding Protocol, in: IEEE International Conference on
RFID-Technology and Applications (RFID TA 2012), IEEE Press, IEEE,
Nice, France, 2012.

[33] A. Juels, S. Weis, Authenticating pervasive devices with human proto-
cols, in: 25th Annual International Cryptology Conference, CRYPTO’05,
2005.

[34] N. Hopper, M. Blum, Secure human identification protocols, in: Proceed-
ings of the 7th International Conference on the Theory and Application
of Cryptology and Information Security: Advances in Cryptology, ASI-
ACRYPT ’01, Springer, 2001, pp. 52–66.

[35] H. Gilbert, M. Robshaw, H. Sibert, Active attack against HB+: a provably
secure lightweight authentication protocol, Electronics Letters 41 (2005)
1169–1170.

[36] J. Munilla, A. Peinado, HB-MP: A further step in the HB-family of
lightweight authentication protocols, Computer Networks 51 (2007)
2262–2267.

[37] H. Gilbert, M. Robshaw, Y. Seurin, HB#: Increasing the Security and Effi-
ciency of HB+, in: Proceedings of the 27th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, EU-
ROCRYPT’08, Springer-Verlag, 2008, pp. 361–378.

[38] J. Bringer, H. Chabanne, Trusted-HB: A Low-Cost Version of HB+ Se-
cure Against Man-in-the-Middle Attacks, IEEE Transactions on Informa-
tion Theory 54 (2008) 4339–4342.

[39] M. Safkhani, N. Bagheri, M. Naderi, S. Sanadhya, Security analysis of
LMAP++, an RFID authentication protocol, International Conference for
Internet Technology and Secured Transactions–ICITST’11 2011 (2011)
689–694.

[40] X. Leng, K. Mayes, K. Markantonakis, HB-MP+ protocol: An improve-
ment on the HB-MP protocol, in: IEEE International Conference on
RFID, IEEE, 2008, pp. 118–124.

[41] G. Hammouri, B. Sunar, PUF-HB: A Tamper-Resilient HB Based Au-
thentication Protocol, in: ACNS, 2008.

[42] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, A. Rib-
agorda, LMAP: A Real Lightweight Mutual Authentication Protocol for
Low-cost RFID tags, in: Workshop on RFID Security, RFIDSec’06,
2006.

[43] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, A. Rib-
agorda, M2AP: A Minimalist Mutual-Authentication Protocol for Low-
cost RFID Tags, in: International Conference on Ubiquitous Intelligence
and Computing, UIC’06, 2006.

[44] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, A. Rib-
agorda, EMAP: An Efficient Mutual Authentication Protocol for Low-
Cost RFID Tags, in: OTM Federated Conferences and Workshop: IS
Workshop, IS’06, 2006.

[45] T. Li, G. Wang, Security Analysis of Two Ultra-Lightweight RFID Au-

thentication Protocols, in: 22nd International Information Security Con-
ference, IFIP SEC’07, 2007.

[46] M. Bárász, B. Boros, P. Ligeti, K. Lója, D. Nagy, Breaking LMAP, in:
Conference on RFID Security, 2007.

[47] M. Bárász, B. Boros, P. Ligeti, K. Lója, D. Nagy, Passive Attack Against
the M2AP Mutual Authentication Protocol for RFID Tags, in: First Inter-
national EURASIP Workshop on RFID Technology, 2007.

[48] M. Bárász, B. Boros, P. Ligeti, K. Lója, D. Nagy, Breaking EMAP, in:
Conference on Security and Privacy for Communication Networks – Se-
cureComm 2007, 2007.

[49] H.-Y. Chien, SASI: A New Ultralightweight RFID Authentication Proto-
col Providing Strong Authentication and Strong Integrity, IEEE Transac-
tions on Dependable and Secure Computing 4 (2007) 337–340.

[50] T. Van Le, M. Burmester, B. De Medeiros, Universally composable and
forward-secure RFID authentication and authenticated key exchange, in:
Proceedings of the 2nd ACM symposium on Information, computer and
communications security, ACM, 2007, pp. 242–252.

[51] M. Burmester, J. Munilla, Lightweight RFID authentication with forward
and backward security, ACM Transactions on Information and System
Security (TISSEC) 2011 14.

[52] Y. Hanatani, M. Ohkubo, S. Matsuo, K. Sakiyama, K. Ohta, A Study on
Computational Formal Verification for Practical Cryptographic Protocol:
The Case of Synchronous RFID Authentication, in: Financial Cryptogra-
phy Workshops, 2011, pp. 70–87.

[53] M. Brusò, K. Chatzikokolakis, J. den Hartog, Formal Verification of Pri-
vacy for RFID Systems, in: CSF, IEEE, 2010, pp. 75–88.

[54] H. S. Kim, J.-H. Oh, J.-B. Kim, Y.-O. Jeong, J.-Y. Choi, Formal Verifi-
cation of Cryptographic Protocol for Secure RFID System, in: NCM (2),
IEEE, 2008, pp. 470–477.

[55] M. Asadpour, M. T. Dashti, A Privacy-friendly RFID Protocol using
Reusable Anonymous Tickets, in: 10th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications, Trust-
Com’11, IEEE, 2011, pp. 206–213.

[56] J. Garcia-Alfaro, J. Herrera-Joancomartí, J. Melià-Seguí, Practical Eaves-
dropping of Control Data from EPC Gen2 Queries with a Programmable
RFID Toolkit, Hakin9[Online].

[57] B. Barak, S. Halevi, A model and architecture for pseudo-random gener-
ation with applications to/dev/random, in: Proceedings of the 12th ACM
conference on Computer and communications security, CCS ’05, ACM,
2005, pp. 203–212.

[58] M. Bellare, B. Yee, Forward-security in private-key cryptography, Topics
in Cryptology–CT-RSA’03 2612 (2003) 1–18.

[59] A. Desai, A. Hevia, Y. Yin, A practice-oriented treatment of pseudoran-
dom number generators, in: Advances in Cryptology, EUROCRYPT’02,
Springer, 2002, pp. 368–383.

[60] M. Feldhofer, J. Wolkerstorfer, V. Rijmen, AES Implementation on a
Grain of Sand, IEE Proceedings – Information Security 152 (1) (2005)
13–20.

[61] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang,
J. Lee, K. Jeong, H. Kim, J. Kim, S. Chee, HIGHT: A New Block Ci-
pher Suitable for Low-Resource Device, in: L. Goubin, M. Matsui (Eds.),
Cryptographic Hardware and Embedded Systems – CHES 2006, Vol.
4249 of Lecture Notes in Computer Science, Springer, Yokohama, Japan,
2006, pp. 46–59.

[62] C. De Canniere, B. Preneel, Trivium Specifications, Tech.
rep., Ecrypt 2008, [Online, last access Apr. 2012] Available at
http://www.ecrypt.eu.org/stream/triviumpf.html.

[63] M. Hell, T. Johansson, W. Meier, Grain: a stream cipher for constrained
environments, International Journal of Wireless and Mobile Computing,
2 (1) (2007) 86–93.

[64] P. Peris-Lopez, J. Hernandez-Castro, J. Estevez-Tapiador, A. Ribagorda,
LAMED a PRNG for EPC Class-1 Generation-2 RFID specification,
Computer Standards & Interfaces (2007) 88–97.

[65] J. Melia-Segui, J. Garcia-Alfaro, J. Herrera-Joancomarti, Multiple-
polynomial LFSR based pseudorandom number generator for EPC Gen2
RFID tags, in: 37th Annual Conference on IEEE Industrial Electronics
Society (IECON 2011), IEEE, 2011, pp. 3820–3825.

[66] A. Menezes, P. Van Oorschot, S. Vanstone, Handbook of applied cryptog-
raphy, CRC Press Inc., 1997.

[67] M. Bellare, A. Desai, E. Jokipii, P. Rogaway, A concrete security treat-
ment of symmetric encryption: Analysis of the DES modes of operation,

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

in: Proceedings of 38th Annual Symposium on Foundations of Computer
Science, FOCS’97, 1997, pp. 394–403.

[68] M. Abdalla, M. Bellare, Increasing the lifetime of a key: a comparative
analysis of the security of re-keying techniques, Advances in Cryptology–
ASIACRYPT’00 1976 (2000) 546–559.

[69] R. Küsters, T. Truderung, Reducing Protocol Analysis with XOR to the
XOR-Free Case in the Horn Theory Based Approach, J. Autom. Reason-
ing 46 (3-4) (2011) 325–352.

[70] S. Escobar, C. Meadows, J. Meseguer, Maude-NPA: Cryptographic Proto-
col Analysis Modulo Equational Properties, in: FOSAD, 2007, pp. 1–50.

[71] D. Basin, S. Mödersheim, L. Vigano, OFMC: A symbolic model checker
for security protocols, International Journal of Information Security 4
(2005) 181–208.

[72] C. Arora, M. Turuani, Validating Integrity for the Ephemerizer’s Protocol
with CL-Atse, in: Formal to Practical Security, 2009.

[73] C. J. F. Cremers, P. Lafourcade, P. Nadeau, Comparing State Spaces in
Automatic Security Protocol Analysis, in: Formal to Practical Security,
2009, pp. 70–94.

[74] S. Kremer, Modelling and analyzing security protocols in cryptographic
process calculi, Ph.D. thesis, École normale supérieure de Cachan-ENS
Cachan (2011).

[75] A. Armando, W. Arsac, T. Avanesov, M. Barletta, A. Calvi, A. Cap-
pai, R. Carbone, Y. Chevalier, L. Compagna, J. Cuéllar, et al., The
AVANTSSAR platform for the automated validation of trust and security
of service-oriented architectures, in: Proceedings of the 18th international
conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’12, Springer, 2012, pp. 267–282.

[76] Y. Chevalier, L. Vigneron, Rule-based Programs Describing Internet Se-
curity Protocols, Electronic Notes in Theoretical Computer Science 124
(2005) 113–132.

[77] A. Armando, L. Compagna, Satmc: A sat-based model checker for secu-
rity protocols, Logics in Artificial Intelligence (2004) 730–733.

[78] O. K. Y. Boichut, P.-C. Heam, Automatic Verification of Security Proto-
cols Using Approximations, Tech. rep., INRIA Research Report (2005).

[79] B. Song, C. J. Mitchell, RFID authentication protocol for low-cost tags,
in: Proceedings of the first ACM conference on Wireless network secu-
rity, WiSec’08, 2008.

[80] C. H. Lim, T. Kwon, Strong and robust RFID authentication enabling
perfect ownership transfer, in: Conference on Information and Commu-
nications Security, ICICS’06, 2006.

[81] M. O. Koutarou, K. Suzuki, S. Kinoshita, Cryptographic Approach to
"Privacy-Friendly" Tags, in: In RFID Privacy Workshop, 2003.

[82] M. Bellare, T. Krovetz, P. Rogaway, Luby-Rackoff backwards: In-
creasing security by making block ciphers non-invertible, Advances in
Cryptology–EUROCRYPT’98 1403 (1998) 266–280.

Appendix A. Security of block ciphers

A block cipher is a function E : {0, 1}k × {0, 1}n → {0, 1}n
which transforms an n-bit message block x into an n-bit string
y under the control of k-bit key k : y = E(k, x). The function is

invertible in the sense that for each key the map Ek
de f
= E(k, .)

is a permutation of {0, 1}n, and the knowledge of k permits the
computation of Ek

−1. In typical usage, a random key k is chosen
and kept secret between a pair of users. The function Ek is then
used by the two parties to process data in some way before they
send it to each other.

The security provided by a block cipher depends on the se-
curity against key recovery and the security of the pseudoran-
dom permutation E. It should be hard to distinguish the in-
put/output behaviour of EK from a random function without
knowing the key K. We fix a block cipher E : {0, 1}k×{0, 1}n →
{0, 1}n with key-size k and block size n.

Appendix A.1. Security against key recovery

Classically, the security of block ciphers has been related to
key recovery. That is, the analysis of a block cipher E is done
by considering some number q of inputs and outputs examples
(M1,C1), . . . , (Mq,Cq), and trying to find K. K is a random,
unknown master key and Ci = EK(Mi) for i = 1, . . . , q and
M1, . . . ,Mq are all distinct n-bit strings. The question is how
hard is it for an attacker to find a master key K? Some typical at-
tack strategies are considered in this scheme are named Known-
Plaintext Attack KPA and Chosen-Plaintext Attack CPA. In the
first attack, M1, . . . ,Mq are distinct, arbitrary and are not con-
trolled by the adversary algorithm. However by analysing a
given block of plaintext and corresponding ciphertext, the at-
tacker tries to extract useful information for the recovery of
plaintext encrypted in different ciphertexts or secret keys. In
the second, M1, . . . ,Mq are adaptively picked by the adversary
algorithm. Given its ability to choose plaintexts and generating
corresponding ciphertexts, the adversary algorithm accesses an
oracle of the function EK and feeds the oracle M1, then gets
back C1 = EK(M1). The latter value lets the adversary adap-
tively decide on the value M2. Thus, it feeds the oracle to get
back C2, and so on. Even if CPA gives the adversary more
power, these latter are not always realistic in practise. The
generic and most used attack strategy that works against any
block cipher is named exhaustive key search EKS or a brute-
force attack. This attack always returns the corresponding key
with the above sample of input-output. In the worst case, an
adversary uses 2k computations of the block cipher to obtain
the key. We can conclude that there is no block cipher which
is perfectly secure. It is viewed as secure if the best key re-
covery attack is computationally infeasible, which means that
it requires a value of queries q or a running time too large to
make the attack practical. Thus, to make key recovery by EKS
computationally infeasible, one must enlarge the key length k
of the block cipher.

Exhaustive key search attack (EKS)
The adversary algorithm tries all possible keys K′ ∈ {0, 1}k

until it finds the one that explains the input-output pairs. Let

K1, . . . ,Kk
2 be a list of all K-bits keys. Let K

$→ {0, 1}k be the
searched key and let (M1,C1) an example that satisfies EK(M1) =

C1.

Exhaustive Key search based on one sample
algorithm EKS E(M1,C1)
for i = 1, ...2k do
if E(Ki,M1) = C1 then return Ki

The likelihood of the attack returning the searched key can
be increased by testing more samples of input-output. More-
over, the computations can be performed in parallel.

Security against key-recovery is necessary but it has been
proved that it is not sufficient for block ciphers as it can still be
possible for an attacker to find a relation between the input and
the output after some time of executions without knowing K.

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

Appendix A.2. Security of the pseudorandom permutation

The security of a block cipher is defined by the advantage an
adversary has in distinguishing a real function Ek from a ran-
dom permutation (cf. Appendix C). Using even a very good
block cipher, the encryption (e.g., under the common mode
of operation CBC (Cipher Block Chaining)) becomes insecure
once 2n/2 blocks are encrypted under the same master key [82].
At this point, partial information about the message begins to
leak. This leads to what is named birthday attacks [67]. For ex-
ample direct use of 64-bit block cipher usually enables to safely
encrypt no more than 232 blocks. The cost of such an attack de-
pends only on the block length. As a solution, we can enlarge
the block length n, so that the 2n/2 time is unpractical. How-
ever, this is not a practical solution for environment supporting
devices with limited memory capacities.

Appendix B. Relevant improvement schemes

To overcome the limitation of birthday attacks and securely
encrypt more than 2n/2 messages in block ciphers, two major
improvements are shown in the literature: the master-key re-
keying and the data-dependent re-keying.

The master-key re-keying. Authors in [68] propose a scheme
that protects against birthday attacks by changing the master
key before the threshold number of encryptions permitting the
attack is reached. The results show that re-keying the mas-
ter key every 2n/3 encryptions, increases the threshold to 22n/3

encryptions. This means that with the re-keying scheme, one
can safely encrypt more data. This re-keying scheme also min-
imises the amount of damage that might be caused by key ex-
posure. The exposure of the current key could determine all
future keys (if the adversary has followed all the transactions),
but if well used, the system cannot reveal past master keys that
have to remain computationally infeasible to predict for the ad-
versary even given the current master key and state.

The data-dependent re-keying. To minimise the advantage of
an adversary to recognise encrypted data with some generated
keys particularly when q > 2n/2, [82] show that E must not be
a family of permutation. The idea is to turn a pseudo random
permutation (e.g., a block cipher) to a pseudorandom function
which has not to be invertible. The basic case of the proposition
apply when the key k and the input x of the block cipher have
the same length k = n. The changed function F is then defined
as F(k, x) = E(E(k, x), x), where E is the permutation function.
Thus, Fk(x) = Ek′ , where k′ = Ek(x). This change is called
data-dependent re-keying. F is twice the cost of computing E
since there are two applications of E for each application of F.
Protocols that are not worried about computing cost can use this
scheme. A general construction of the solution is found in [82].

Appendix C. Quality of block ciphers

The quality of a given block cipher is captured by a function
S ecE(q, t) which returns the maximum advantage that an adver-
sary A can obtain in distinguishing a real function Real Ek from

a random function Rand if A has seen q input/output examples
and is allowed computational resources bounded by t (i.e., in
the complexity-theoretic model, t will bound computing time).
For more details see [82]. The advantage is a number between
0 and 1 given as the difference of two probabilities: the proba-
bility that the adversary outputs 1 given a Real random function
Ek from a family of block-ciphers E, and the probability that
the adversary outputs 1 given a random permutation Rand (cf.
reference [82]).

We denote by: Pr[RandA
Range(E) ⇒ r], the probability that A

outputs r. Then,
AdvE(A) = Pr[RealA

E ⇒ 1] − Pr[RandA
Range(E) ⇒ 1] and

S ecE(q, t) = maxAAdvE(A).
The second term is the maximum advantage over all adversaries
A having time-complexity at most t and making at most q oracle
queries. The time complexity is per convention, the total worst-
case execution time of the experiment underlying the first term
AdvE(A), plus the size of the code of A.

Thus the adversary advantage depends on its strategy and
the resources he has, namely the running time t and the number
q of oracle queries. The result of the first term is a number
between -1 and 1. An advantage which is close to 1 means
that A is a good algorithm or/and E is not secure whereas an
advantage that is close to 0 means that A is a poor algorithm
or/and E resists the attacks mounted by A. Therefore, E is a
secure pseudorandom permutation function if AdvE(A) is small
for all A that uses reasonable amounts of resources.

Paper accepted in Elsevier - Journal of Network and Computer Applications (2013)

