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Bang-bang property for time optimal control
of semilinear heat equation

Kim Dang Phung∗ , Lijuan Wang† and Can Zhang‡

Abstract

This paper studies the bang-bang property for time optimal controls governed
by semilinear heat equation in a bounded domain with control acting locally in a
subset. Also, we present the null controllability cost for semilinear heat equation
and an observability estimate from a positive measurable set in time for the linear
heat equation with potential.
Keywords. semilinear heat equation; time optimal control; bang-bang property;
observability estimate from measurable sets.

1 Introduction and main result

This paper continues the investigations carried out in [14]. Our main result deals
with the bang-bang property for time optimal controls governed by semilinear heat
equations with control acting locally. We complete the result in [14] in two directions:
the nonlinearity of the equation; the geometry on which the equation takes place.

Let Ω be a bounded connected open set of Rn, n ≥ 1, with boundary ∂Ω of class
C2. Let ω be an open and non-empty subset of Ω and denote 1|· for the characteristic
function of a set in the place where · stays. Let y0 ∈ L2 (Ω) and v ∈ L∞ (0,+∞;L2 (Ω)).
Consider the following semilinear heat equation with initial data y0 and external force
v: 

∂ty −∆y + f (y) = 1|ω v in Ω× (0,+∞) ,
y = 0 on ∂Ω× (0,+∞) ,
y (·, 0) = y0 in Ω .
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Existence and uniqueness of the solution y is ensured with the following assumptions:
f : R → R is globally Lipschitz and satisfies the “good-sign” condition f (s) s ≥ 0 for
all s ∈ R (and consequently, f (0) = 0). In such case, for any T > 0, the solution
y is in C ([0, T ] ;L2 (Ω)) and the above equation holds in the sense of distributions in
Ω× (0, T ).

Our motivation is a null control problem for semilinear heat equations which means
that our goal consists to find v ∈ L∞ (0,+∞;L2 (Ω)) such that y (·, T ) = 0 in Ω.

The first natural null control problem solved in the literature is the following.

Question 1 : what are the assumptions on f in order that the property{
∀y0 ∈ L2 (Ω) , ∀T > 0, ∃M > 0, ∃v ∈ L∞ (0,+∞;L2 (Ω)) ,

such that y (·, T ) = 0 in Ω and ‖v‖L∞(0,+∞;L2(Ω)) ≤M

holds. Notice that the existence of a null control v gives the one of the bound M .
This property is intensively studied in the literature (see e.g. [2],[8],[7]) and is called
null controllability for semilinear heat equation. It holds for any nonlinear terms which
are locally Lipschitz and slightly superlinear. Precisely, it is enough for f to satisfy
f (0) = 0 and

lim
|s|→∞

|f (s)|
|s| ln3/2 (1 + |s|)

= 0 .

In particular, if we assume that f is globally Lipschitz with f (0) = 0, then null con-
trollability for the corresponding semilinear heat equation holds.

However, we can formulate another type of null control problem as follows.

Question 2 : what are the assumptions on f in order that the property{
∀y0 ∈ L2 (Ω) , ∀M > 0, ∃T > 0, ∃v ∈ L∞ (0,+∞;L2 (Ω)) ,

such that y (·, T ) = 0 in Ω and ‖v‖L∞(0,+∞;L2(Ω)) ≤M

holds. In this article, we will prove the existence of T and v under the assumption
that f is globally Lipschitz and satisfies the “good-sign” condition. Once existence
of a couple (y, v) is established for y0 ∈ L2 (Ω) \{0} and M > 0 given, via suitable
assumption on f , we introduce the following admissible set of controls

VM =
{
v ∈ L∞ (0,+∞;L2 (Ω)) ; ‖v‖L∞(0,+∞;L2(Ω)) ≤M and the solution y

corresponding to v satisfies y (·, T ) = 0 in Ω for some T > 0} .

Among all the control functions v ∈ VM , we select the infimum of all such time:

T ∗ = inf {T ; v ∈ VM} ,

i.e., the minimal time needed to drive the system to rest with control functions in VM .
A control v∗ such that the corresponding solution y satisfies y (·, T ∗) = 0 in Ω is

called time optimal control. In this article, we shall prove the existence of a time
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optimal control v∗ under the assumption that f is globally Lipschitz and satisfies the
“good-sign” condition.

Now, we are able to state our main result.

Theorem 1 .- Let f : R → R be a globally Lipschitz function satisfying f (s) s ≥ 0
for all s ∈ R. Then for any y0 ∈ L2 (Ω) \{0} and any M > 0, any time optimal control
v∗ satisfies the bang-bang property: ‖v∗(·, t)‖L2(Ω) = M for a.e. t ∈ (0, T ∗).

Clearly, bang-bang property is of high importance in optimal control theory as
mentioned in [6] and [11]. In particular, the bang-bang property for certain time optimal
controls governed by parabolic equations can be provided by making use of Pontryagin’s
maximum principle (see [9],[10],[17]). Another approach to get bang-bang property
for linear heat equation consists to follow a strategy based on null controllability with
control functions acting on measurable set in time variable as in [12] and [16]. Recently,
the authors in [1] established an observability inequality for the linear heat equation,
where the observation is a subset of positive measure in space and time. And from which
they obtained another kind of bang-bang property of time optimal problem for the
linear heat equation with bounded controls in space and time. Naturally, the extension
of this strategy for nonlinear parabolic equations requires a fixed point argument and an
observability inequality for heat equations with space and time-dependent potentials.

This paper is organized as follows. Section 2 is devoted to the null controllability
for semilinear heat equation with control functions acting on ω×E where |E| > 0. We
present (see Theorem 2) and prove an estimate of the cost of the control functions when
f is globally Lipschitz. Before giving the proof of Theorem 2, we recall the linear case
and the observability estimate needed (see Theorem 4). In section 3, applying Theorem
2 in a very special case, we prove the existence for admissible control (see Theorem 5)
when f is globally Lipschitz and satisfies the “good-sign” condition. Next we deduce
the existence of time optimal (see Theorem 6). The proof of our main result, Theorem
1, concerning the bang-bang property for time optimal controls governed by semilinear
heat equation with local control is given in section 4. Finally, in section 5, we prove
the observability estimate of Theorem 4.

2 Null controllability for semilinear heat equation

The goal of this section is to present the null controllability for semilinear heat equation
with control functions acting on ω × E where |E| > 0. A particular attention is given
on the cost estimate.

Theorem 2 .- Let f : R→ R be a globally Lipschitz function. Let 0 ≤ T0 < T1 < T2

and E ⊂ (T1, T2) with |E| > 0. Then for any φ ∈ C ([T0, T2] , L2 (Ω)) and any w0 ∈
L2 (Ω), there are a constant κ > 0 and a function v1 ∈ L∞ (0,+∞;L2 (Ω)) such that

‖v1‖L∞(0,+∞;L2(Ω)) ≤ κ ‖w0‖L2(Ω)
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and the solution w = w (x, t) of
∂tw −∆w + f (φ+ w)− f (φ) = 1|ω×E v1 in Ω× (T0, T2) ,
w = 0 on ∂Ω× (T0, T2) ,
w (·, T0) = w0 in Ω ,

satisfies w (·, T2) = 0 in L2 (Ω). Further,

κ = eK̃ec(T1−T0)eK(1+c+c(T2−T1)) .

Here, c = c (f), K = K (Ω, ω) > 1 and K̃ = K̃ (Ω, ω, E) are positive constants which
do not depend on T0.

Remark 1 .- When E = (T1, T2), then κ = ec(T1−T0)e
K
(

1+ 1
T2−T1

+c+c(T2−T1)
)
.

2.1 Linear case

In this section, we treat the case f (φ+ w) = aw+f (φ) that is the linear heat equation
with potential.

Theorem 3 .- Let 0 ≤ T0 < T1 < T2 and E ⊂ (T1, T2) with |E| > 0. Let a ∈
L∞ (Ω× (T0, T2)). Then for any z0 ∈ L2 (Ω), there is a function v0 ∈ L∞ (Ω× (0,+∞))
such that the solution z = z (x, t) of

∂tz −∆z + az = 1|ω×E v0 in Ω× (T0, T2) ,
z = 0 on ∂Ω× (T0, T2) ,
z (·, T0) = z0 in Ω ,

satisfies z (·, T2) = 0 in L2 (Ω). Further,

‖v0‖L∞(Ω×(0,+∞)) ≤ eK̃e(T1−T0)‖a‖L∞(Ω×(T0,T1))

×eK
(

1+(T2−T1)‖a‖L∞(Ω×(T1,T2))+‖a‖
2/3
L∞(Ω×(T1,T2))

)
‖z0‖L2(Ω) .

Here, K = K (Ω, ω) > 1 and K̃ = K̃ (Ω, ω, E) are positive constants which do not
depend on T0.

Remark 2 .- When E = (T1, T2), then K̃ = K 1
T2−T1

.

Proof .- We divide its proof into three steps. In the first step, we start to solve
∂tz −∆z + az = 0 in Ω× (T0, T1) ,
z = 0 on ∂Ω× (T0, T1) ,
z (·, T0) = z0 in Ω .

Therefore, z (·, T1) ∈ L2 (Ω) and it is well-known that

‖z (·, T1)‖L2(Ω) ≤ e(T1−T0)‖a‖L∞(Ω×(T0,T1)) ‖z0‖L2(Ω) .
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The second step consists on establishing the existence of a function v ∈ L∞ (Ω× (0,+∞))
such that the solution z̃ = z̃ (x, t) of

∂tz̃ −∆z̃ + az̃ = 1|ω×E v in Ω× (T1, T2) ,
z̃ = 0 on ∂Ω× (T1, T2) ,
z̃ (·, T1) = z (·, T1) in Ω ,

satisfies z̃ (·, T2) = 0 in L2 (Ω). Further,

‖v‖L∞(Ω×(T1,T2)) ≤ eK̃e
K
(

1+(T2−T1)‖a‖L∞(Ω×(T1,T2))+‖a‖
2/3
L∞(Ω×(T1,T2))

)
‖z (·, T1)‖L2(Ω) .

Here, K = K (Ω, ω) > 1 and K̃ = K̃ (Ω, ω, E) are positive constants which do not
depend on T0. Finally, in the last step, we choose

v0(·, t) =

{
0 if t ∈ (0, T1) ∪ [T2,+∞) ,
v(·, t) if t ∈ [T1, T2) .

Since
‖v0‖L∞(Ω×(0,+∞)) = ‖v‖L∞(Ω×(T1,T2)) ,

the desired result holds. It is standard to get the existence of the above function v from
an observability estimate. More precisely, we apply the following result. Its proof is
provided in Section 5.

Theorem 4 .- Observability estimate .- Let ω be an open and non-empty subset of
Ω. Let T > 0 and E be a subset of positive measure in (0, T ). Then there are two

constants K = K (Ω, ω) and K̃ = K̃ (Ω, ω, E) > 0 such that for any a = a (x, t) ∈
L∞ (Ω× (0, T )) and any ϕ0 ∈ L2 (Ω), the solution ϕ = ϕ (x, t) of

∂tϕ−∆ϕ+ aϕ = 0 in Ω× (0, T ) ,
ϕ = 0 on ∂Ω× (0, T ) ,
ϕ (·, 0) = ϕ0 in Ω ,

satisfies

‖ϕ (·, T )‖L2(Ω) ≤ eK̃e
K
(

1+T‖a‖L∞(Ω×(0,T ))+‖a‖
2/3
L∞(Ω×(0,T ))

) ∫
ω×E
|ϕ (x, t)| dxdt .

Remark 3 .- This is a refined observability estimate. When E = (0, T ), then the
observability constant becomes

e
K
(

1+ 1
T

+T‖a‖L∞(Ω×(0,T ))+‖a‖
2/3
L∞(Ω×(0,T ))

)
.

This is in accordance with the work of [4]. When E is a positive measurable set with 0
its Lebesgue point, then the observability constant becomes, for some `1 ∈ E ∩ (0, T ),

e
K
(

1+ 1
`1

+`1‖a‖L∞(Ω×(0,T ))+‖a‖
2/3
L∞(Ω×(0,T ))

)
.
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2.2 Nonlinear case with Kakutani’s fixed point

In this section, we prove Theorem 2. Let 0 ≤ T0 < T1 < T2 and E ⊂ (T1, T2) with
|E| > 0. Let φ ∈ C ([T0, T2] , L2 (Ω)) and w0 ∈ L2 (Ω).

By a classical density argument, we may assume that f ∈ C1. We shall use the
Kakutani’s fixed point theorem to prove the result. First, define for any (x, t) ∈ Ω ×
(T0, T2),

a(x, t, r) =

{
f(φ(x,t)+r)−f(φ(x,t))

r
if r 6= 0 ,

f ′(φ (x, t)) if r = 0 .

And consider

K = {ξ ∈ L2(Ω× (T0, T2)); ‖ξ‖L2(T0,T2;H1
0 (Ω))∩H1(T0,T2;H−1(Ω)) ≤ κ̂}

where κ̂ > 0 will be determined later. Since f : R→ R is a globally Lipschitz function,
we have that for a.e. (x, t) ∈ Ω× (T0, T2) and any r ∈ R

|a(x, t, r)| ≤ L(f)

where L(f) > 0 is the Lipschitz constant of the function f .

Next, using the fact L∞ (Ω× (0,+∞)) ⊂ L∞ (0,+∞;L2 (Ω)), we know by Theorem
3 that for any ξ ∈ L2(Ω× (T0, T2)), there are a function v0 ∈ L∞ (0,+∞;L2 (Ω)) and a
corresponding solution z = z (x, t) of

∂tz −∆z + a (·, ·, ξ (·, ·)) z = 1|ω×E v0 in Ω× (T0, T2) ,
z = 0 on ∂Ω× (T0, T2) ,
z (·, T0) = w0 in Ω ,

(2.2.1)

such that
z (·, T2) = 0 in L2 (Ω) (2.2.2)

and
‖v0‖L∞(0,+∞;L2(Ω)) ≤ K̂ ‖w0‖L2(Ω) . (2.2.3)

Here and throughout the proof of Theorem 2,

K̂ = eK̃e(T1−T0)L(f)eK(1+(T2−T1)L(f)+L(f)2/3)

where K = K (Ω, ω) > 1 and K̃ = K̃ (Ω, ω, E) are positive constants which do not
depend on T0. Therefore, we can define the map

Λ : K → L2(Ω× (T0, T2))
ξ 7→ z

where (2.2.1)-(2.2.2)-(2.2.3) holds.

Now, we check that Kakutani’s fixed point theorem is applicable. For convenience,
let us state this result (see e.g. [3]).
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Theorem (Kakutani’s fixed point) .- Let Z be a Banach space and Π be a nonempty
convex compact subset of Z. Let Λ : Π → Z be a set-valued mapping satisfying the
following assumptions:

i) Λ(ξ) is a nonempty convex set of Z for every ξ ∈ Π.
ii) Λ(Π) ⊂ Π.
iii) Λ : Π→ Z is upper semicontinuous in Z.

Then Λ possesses a fixed point in the set Π.

Here Z = L2(Ω × (T0, T2)) and Π = K with an adequate choice of κ̂ given below.
Clearly, K is a nonempty convex compact set in L2(Ω × (T0, T2)). Further, from the
above arguments, Λ (ξ) is a nonempty convex set in L2(Ω× (T0, T2)). Thus i) holds.

Let us prove that ii) holds with an adequate choice of κ̂. By a standard energy
method, using the fact that |a| ≤ L (f) and (2.2.1)-(2.2.2)-(2.2.3), there exists C > 0
such that

‖z‖2
C([T0,T2];L2(Ω)) +

∫ T2

T0

‖z (·, t)‖2
H1

0 (Ω) dt ≤ C ‖w0‖2
L2(Ω) .

Combining the latter with the fact that |a| ≤ L(f), we deduce that the solution z
satisfies

‖z‖L2(T0,T2;H1
0 (Ω))∩H1(T0,T2;H−1(Ω)) ≤ C ‖w0‖L2(Ω) ,

for some C = C (Ω, ω, E, T2, L(f)) which is a positive constant which does not depend
on T0. Hence, if we take κ̂ as follows

κ̂ = C ‖w0‖L2(Ω)

then Λ(K) ⊂ K.
Let us finally prove the upper semicontinuity of Λ : K → L2(Ω × (T0, T2)). We

need to prove that if ξm ∈ K → ξ strongly in L2(Ω× (T0, T2)) and if pm ∈ Λ (ξm)→ p
strongly in L2(Ω × (T0, T2)), then p ∈ Λ (ξ). To this end, firstly, we claim that there
exists a subsequence of (m)m≥1, still denoted in the same manner, such that

a(·, ·, ξm(·, ·))pm → a(·, ·, ξ(·, ·))p strongly in L2(Ω× (T0, T2)) . (2.2.4)

Indeed, since ξm → ξ strongly in L2(Ω × (T0, T2)), we have that there exists a subse-
quence of (m)m≥1, still denoted by itself, such that

ξm(x, t)→ ξ(x, t) for a.e. (x, t) ∈ Ω× (T0, T2) .

On one hand, for (x, t) with ξ(x, t) 6= 0, by the above, there exists a positive integer m0

depending on (x, t) such that

ξm(x, t) 6= 0 ∀m ≥ m0 ,

which implies by the definition of a,

a(x, t, ξm(x, t))→ a(x, t, ξ(x, t)) as m→ +∞ . (2.2.5)
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On the other hand, for any (x, t) such that ξ(x, t) = 0, by the definition of a, we have
that a(x, t, ξ(x, t)) = f ′(φ (x, t)). Since

a(x, t, ξm(x, t)) =

{
f(φ(x,t)+ξm(x,t))−f(φ(x,t))

ξm(x,t)
if ξm(x, t) 6= 0 ,

f ′(φ (x, t)) if ξm(x, t) = 0 ,

it gives
a(x, t, ξm(x, t))→ a(x, t, ξ(x, t)) as m→ +∞ .

This, combined with (2.2.5), implies

a(x, t, ξm(x, t))→ a(x, t, ξ(x, t)) for a.e. (x, t) ∈ Ω× (T0, T2) .

From the latter, the fact that |a| ≤ L(f) and the Lebesgue’s dominated convergence
theorem it follows that

‖a(·, ·, ξm(·, ·))pm − a(·, ·, ξ(·, ·))p‖2
L2(Ω×(T0,T2))

≤ 2‖a(·, ·, ξm(·, ·))(pm − p)‖2
L2(Ω×(T0,T2)) + 2‖(a(·, ·, ξm(·, ·))− a(·, ·, ξ(·, ·)))p‖2

L2(Ω×(T0,T2))

≤ 2L(f)2‖pm − p‖2
L2(Ω×(T0,T2)) + 2‖(a(·, ·, ξm(·, ·))− a(·, ·, ξ(·, ·)))p‖2

L2(Ω×(T0,T2))

→ 0 .

This completes the proof of (2.2.4). Secondly, since pm ∈ Λ(ξm), there exists (vm)m≥1

satisfying
(pm)t −∆pm + a(·, ·, ξm(·, ·))pm = 1|ω×E vm in Ω× (T0, T2) ,
pm = 0 on ∂Ω× (T0, T2) ,
pm(·, T0) = w0 in Ω ,
pm(·, T2) = 0 in Ω ,

(2.2.6)

‖pm‖L2(T0,T2;H1
0 (Ω))∩H1(T0,T2;H−1(Ω))

+ ‖pm‖L2(T1,T2;H2(Ω)∩H1
0 (Ω))∩H1(T1,T2;L2(Ω)) ≤ C ,

where C > 0 is a constant independent on m, and

‖vm‖L∞(0,+∞;L2(Ω)) ≤ K̂ ‖w0‖L2(Ω) . (2.2.7)

Thus, we deduce the existence of v and subsequences (vm′)m′≥1 and (pm′)m′≥1 such that

vm′ → v weakly star in L∞
(
0,+∞;L2 (Ω)

)
, (2.2.8)

pm′ → p weakly in L2
(
T0, T2;H1

0 (Ω)
)
∩H1

(
T0, T2;H−1 (Ω)

)
, (2.2.9)

pm′ (·, T2)→ p (·, T2) strongly in L2 (Ω) . (2.2.10)

Finally, passing to the limit for m′ → +∞ in (2.2.6) and (2.2.7), by (2.2.4) and (2.2.8)-
(2.2.9)-(2.2.10), we obtain that p ∈ Λ (ξ).

By the Kakutani’s fixed point theorem, we conclude that there exists w ∈ K with an
adequate choice of κ̂ such that w ∈ Λ (w), i.e., there is a control v1 ∈ L∞ (0,+∞;L2 (Ω))
satisfying

‖v1‖L∞(0,+∞;L2(Ω)) ≤ K̂ ‖w0‖L2(Ω) ,
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with the same K̂ given at (2.2.3), and the corresponding solution w = w (x, t) solves
∂tw −∆w + a (·, ·, w (·, ·))w = 1|ω×E v1 in Ω× (T0, T2) ,
w = 0 on ∂Ω× (T0, T2) ,
w (·, T0) = w0 in Ω ,
w (·, T2) = 0 in Ω .

Since for any (x, t) ∈ Ω× (T0, T2),

a(x, t, w(x, t))w(x, t) = f(φ (x, t) + w(x, t))− f(φ (x, t)) ,

we finally get
∂tw −∆w + f(φ+ w)− f(φ) = 1|ω×E v1 in Ω× (T0, T2) ,
w = 0 on ∂Ω× (T0, T2) ,
w (·, T0) = w0 in Ω ,
w (·, T2) = 0 in Ω .

This completes the proof of Theorem 2.

3 Existence of time optimal control

In this section, we start to prove the existence of admissible controls (see e.g. [15]). In
other words we prove that

Theorem 5 .- Let f : R → R be a globally Lipschitz function satisfying f (s) s ≥ 0
for all s ∈ R. Then for any y0 ∈ L2 (Ω) \{0} and any M > 0, there are a time T > 0
and an admissible control v ∈ L∞ (0,+∞;L2 (Ω)) such that ‖v‖L∞(0,+∞;L2(Ω)) ≤M and
the solution y corresponding to v satisfies y (·, T ) = 0 in Ω.

Proof .- We divide its proof into many steps.

Step 1 .- We consider the following equation
∂ty −∆y + f (y) = 0 in Ω× (0, T0) ,
y = 0 on ∂Ω× (0, T0) ,
y (·, 0) = y0 in Ω ,

where T0 > 0 will be determined later. By a standard energy method, using the fact
that f (s) s ≥ 0, we have

‖y(·, T0)‖L2(Ω) ≤ e−λ1T0 ‖y0‖L2(Ω) ,

where λ1 > 0 is the first eigenvalue of −∆ with Dirichlet boundary condition.
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Step 2 .- We apply Theorem 2 with T1 = T0 + 1, T2 = T0 + 2, E = (T1, T2),
φ = 0 and w0 = y(·, T0) in order that there are a constant κ > 0 and a function
ṽ ∈ L∞ (0,+∞;L2 (Ω)) such that the solution w = w (x, t) of

∂tw −∆w + f (w) = 1|ω×E ṽ in Ω× (T0, T0 + 2) ,
w = 0 on ∂Ω× (T0, T0 + 2) ,
w (·, T0) = y(·, T0) in Ω ,

satisfies w (·, T0 + 2) = 0 in L2 (Ω). Further,

‖ṽ‖L∞(0,+∞;L2(Ω)) ≤ κ ‖y(·, T0)‖L2(Ω) ,

and κ does not depend on T0.

Step 3 .- We can easily check that the function

v(·, t) =

{
0 if t ∈ (0, T0 + 1] ∪ [T0 + 2,+∞) ,
ṽ(·, t) if t ∈ (T0 + 1, T0 + 2) ,

is an admissible control with T = T0 + 2 when T0 > 0 is taken such that

T0 =
1

λ1

ln

(
1 +

κ ‖y0‖L2(Ω)

M

)

in order that

‖v‖L∞(0,+∞;L2(Ω)) = ‖ṽ‖L∞(T0+1,T0+2;L2(Ω)) ≤ κe−λ1T0 ‖y0‖L2(Ω) ≤M .

This completes the proof of Theorem 5.

Now, we establish the existence of time optimal controls (see e.g. [15]). In other
words, we shall prove that

Theorem 6 .- Let f : R → R be a globally Lipschitz function satisfying f (s) s ≥ 0
for all s ∈ R. Then for any y0 ∈ L2 (Ω) \{0} and any M > 0, there is a time optimal
control v∗ ∈ L∞ (0,+∞;L2 (Ω)) such that ‖v∗‖L∞(0,+∞;L2(Ω)) ≤ M and the solution y
corresponding to v∗ satisfies y (·, T ∗) = 0 in Ω where T ∗ =inf{T ; v ∈ VM}.

Proof .- By Theorem 5 and the definition of T ∗, 0 ≤ T ∗ < T for some T > 0. There-
fore, there exist sequences (Tm)m≥1 of positive real number and (vm)m≥1 of function in
L∞ (0,+∞;L2 (Ω)) such that T ∗ = lim

m→∞
Tm, ‖vm‖L∞(0,+∞;L2(Ω)) ≤ M and the solution

ym = ym (x, t) corresponding to vm satisfies
∂tym −∆ym + f (ym) = 1|ω vm in Ω× (0, T ) ,
ym = 0 on ∂Ω× (0, T ) ,
ym (·, 0) = y0 in Ω ,
ym (·, Tm) = 0 in Ω .
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We have by a standard energy method, using the bound M on vm and the “good-sign”
condition on f ,

‖ym‖2
C([0,T ];L2(Ω)) +

∫ T

0

‖ym (·, t)‖2
H1

0 (Ω) dt ≤ C .

Here and throughout the proof, C denotes a generic constant independent of m. Since
f is globally Lipschitz and f (0) = 0, the above inequality implies

‖f (ym)‖L2(Ω×(0,T )) = ‖f (ym)− f (0)‖L2(Ω×(0,T )) ≤ C .

Therefore, from the boundeness of −f (ym) + 1|ω vm, the sequence (ym)m≥1 is bounded

in H1
(
0, T ;H−1 (Ω)

)
.

Now, we deduce the existence of v∗ ∈ L∞ (0,+∞;L2 (Ω)) and subsequences (vm′)m′≥1

and (ym′)m′≥1 such that

vm′ → v∗ weakly star in L∞
(
0,+∞;L2 (Ω)

)
with ‖v∗‖L∞(0,+∞;L2(Ω)) ≤M ,

ym′ → y∗ weakly in L2
(
0, T ;H1

0 (Ω)
)
∩H1

(
0, T ;H−1 (Ω)

)
,

strongly in C
([

0, T
]

;L2 (Ω)
)

.

Further, 
∂ty
∗ −∆y∗ + f (y∗) = 1|ω v

∗ in Ω× (0, T ) ,
y∗ = 0 on ∂Ω× (0, T ) ,
y∗ (·, 0) = y0 in Ω ,

and

‖y∗ (·, T ∗)‖L2(Ω) ≤ ‖y∗ (·, T ∗)− y∗ (·, Tm′)‖L2(Ω) + ‖y∗ (·, Tm′)− ym′ (·, Tm′)‖L2(Ω)

→ 0 when m′ →∞ .

This gives y∗ (·, T ∗) = 0 in Ω and consequently, v∗ is a time optimal control. This
completes the proof.

4 Bang-bang property for time optimal control (proof

of Theorem 1)

We want to prove that if v∗ is a time optimal control corresponding to the optimal time
T ∗ =inf{T ; v ∈ VM}, then ‖v∗(·, t)‖L2(Ω) = M for a.e. t ∈ (0, T ∗). To prove this, we
work by contradiction. Suppose that there are ε ∈ (0,M) and a positive measurable
subset E∗ ⊂ (0, T ∗) such that

‖v∗(·, t)‖L2(Ω) ≤M − ε ∀t ∈ E∗

and the solution y∗ = y∗ (x, t) corresponding to v∗ satisfies
∂ty
∗ −∆y∗ + f (y∗) = 1|ω v

∗ in Ω× (0, T ∗) ,
y∗ = 0 on ∂Ω× (0, T ∗) ,
y∗ (·, 0) = y0 in Ω ,
y∗ (·, T ∗) = 0 in Ω .
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We claim that there exist a real number δ ∈ (0, T ∗) and a couple (y, v) such that
∂ty −∆y + f (y) = 1|ω v in Ω× (0, T ∗ − δ) ,
y = 0 on ∂Ω× (0, T ∗ − δ) ,
y (·, 0) = y0 in Ω ,
y (·, T ∗ − δ) = 0 in Ω ,

and v ∈ L∞ (0,+∞;L2 (Ω)) with ‖v‖L∞(0,+∞;L2(Ω)) ≤M . This is clearly a contradiction
with the time optimal assumption T ∗ =inf{T ; v ∈ VM}.

Now, we prove our claim. We divide its proof into many steps.

Step 1 .- T ∗ > 0 and 0 < |E∗| ≤ T ∗ being given, let δ0 = |E∗| /2 and denote

E = E∗ ∩ (δ0, T
∗) .

Then
|E| > 0 .

Indeed, |E∗ ∩ (δ0, T
∗)| ≥ |E∗| − δ0 ≥ |E∗| /2.

Step 2 .- We apply Theorem 2 with 0 < T0 < T1 < T2, E ⊂ (T1, T2) with |E| > 0 and
φ = y∗, in order that there are a constant κ > 0 and a function v1 ∈ L∞ (0,+∞;L2 (Ω))
such that 

∂tw −∆w + f (y∗ + w)− f (y∗) = 1|ω×E v1 in Ω× (T0, T2) ,
w = 0 on ∂Ω× (T0, T2) ,
w (·, T0) = w0 in Ω ,
w (·, T2) = 0 in Ω ,
‖v1‖L∞(0,+∞;L2(Ω)) ≤ κ ‖w0‖L2(Ω) ,

and further κ does not depend on T0.

Step 3 . We apply step 2 with T0 = δ, T1 = δ0, T2 = T ∗, w0 = y0− y∗ (·, δ), in order
that z = y∗ + w solves

∂tz −∆z + f (z) = 1|ω
(
v∗ + 1|E v1

)
in Ω× (δ, T ∗) ,

z = 0 on ∂Ω× (δ, T ∗) ,
z (·, δ) = y0 in Ω ,
z (·, T ∗) = 0 in Ω .

Denote v2 = v∗ + 1|E v1. On one hand, if t ∈ (0,+∞) \E , then ‖v2 (·, t)‖L2(Ω) =
‖v∗ (·, t)‖L2(Ω) ≤M . On the other hand, if t ∈ E, then

‖v2 (·, t)‖L2(Ω) ≤ ‖v∗ (·, t)‖L2(Ω) + ‖v1 (·, t)‖L2(Ω)

≤M − ε+ κ ‖y∗ (·, 0)− y∗ (·, δ)‖L2(Ω) .

Now, we choose δ sufficiently closed to 0 in order that

‖y∗ (·, 0)− y∗ (·, δ)‖L2(Ω) ≤ ε/κ .
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This is possible because y∗ ∈ C ([0, T ∗] , L2 (Ω)). Consequently, ‖v2 (·, t)‖L2(Ω) ≤ M for
a.e. t ∈ (0,+∞).

Step 4 .- Let v (·, t) = v2 (·, t+ δ). Then v ∈ L∞ (0,+∞;L2 (Ω)) and further we can
check that ‖v (·, t)‖L2(Ω) ≤ M for a.e. t ∈ (0,+∞) . Let y (x, t) = z (x, t+ δ). Then it
solves 

∂ty −∆y + f (y) = 1|ω v in Ω× (0, T ∗ − δ) ,
y = 0 on ∂Ω× (0, T ∗ − δ) ,
y (·, 0) = y0 in Ω ,
y (·, T ∗ − δ) = 0 in Ω .

This is the desired claim.

5 The heat equation with potential (proof of Theo-

rem 4)

The proof of Theorem 4 is based on many lemmas. From now, ϕ denotes the solution
of 

∂tϕ−∆ϕ+ aϕ = 0 in Ω× (0, T ) ,
ϕ = 0 on ∂Ω× (0, T ) ,
ϕ (·, 0) = ϕ0 in Ω ,

where a = a (x, t) ∈ L∞ (Ω× (0, T )). We also denote ‖a‖∞ = ‖a‖L∞(Ω×(0,T )).

Lemma 1 .- For any ϕ0 ∈ L2 (Ω), the solution ϕ satisfies the two following estimates
for any t ∈ (0, T ],∫

Ω

|ϕ (x, t)|2 dx ≤ e2t‖a‖∞

∫
Ω

|ϕ0 (x)|2 dx and

∫
Ω

|∇ϕ (x, t)|2 dx ≤ e3t‖a‖∞

t

∫
Ω

|ϕ0 (x)|2 dx .

This result is deduced by energy estimate and is standard. Its proof is omitted here.

Let x0 ∈ Ω. Denote BR = B (x0, R) the ball of center x0 and radius R.

Lemma 2 .- Let R0 > 0 and λ > 0. Introduce for t ∈ [0, T ] and x0 ∈ Ω,

Gλ (x, t) =
1

(T − t+ λ)n/2
e−

|x−x0|
2

4(T−t+λ) .

Define for u ∈ H1 (0, T ;L2 (Ω ∩BR0)) ∩ L2 (0, T ;H2 ∩H1
0 (Ω ∩BR0)) and t ∈ (0, T ],

Nλ (t) =

∫
Ω∩BR0

|∇u (x, t)|2Gλ (x, t) dx∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx
, whenever

∫
Ω∩BR0

|u (x, t)|2 dx 6= 0 .

The following two properties hold.
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i)

1
2
d
dt

∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx+

∫
Ω∩BR0

|∇u (x, t)|2Gλ (x, t) dx

=

∫
Ω∩BR0

u (x, t) (∂t −∆)u (x, t)Gλ (x, t) dx .
(5.1)

ii) When Ω ∩BR0 is star-shaped with respect to x0,

d

dt
Nλ (t) ≤ 1

T − t+ λ
Nλ (t) +

∫
Ω∩BR0

|(∂t −∆)u (x, t)|2Gλ (x, t) dx∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx
. (5.2)

Proof. The identity follows from some direct computations. The proof of the second
one is the same as that in [13, pp. 1240-1245] or [5, Lemma 2].

Lemma 3 .- Let R > 0 and δ ∈ (0, 1]. Then there are two constants C1, C2 > 0,
only dependent on (R, δ) such that for any ϕ0 ∈ L2 (Ω) with ϕ0 6= 0, the quantity

h0 =
C1

ln

(1 + C2)
(
e1+

2C1
T

+3T‖a‖∞+‖a‖2/3∞
) ∫

Ω

|ϕ0 (x)|2 dx∫
Ω∩BR

|ϕ (x, T )|2 dx


(5.3)

has the following two properties.

i)

0 <

(
1 +

2C1

T
+ T ‖a‖∞ + ‖a‖2/3

∞

)
h0 < C1 . (5.4)

ii) For any t ∈ [T − h0, T ], it holds

e3T‖a‖∞

∫
Ω

|ϕ0 (x)|2 dx ≤ e
1+C3

1
h0

∫
Ω∩B(1+δ)R

|ϕ (x, t)|2 dx (5.5)

for some C3 > C1 only dependent on (R, δ).

Remark 4 .- By the strong unique continuation property for parabolic equations
with zero Dirichlet boundary condition, it is impossible to have

∫
Ω∩BR

|ϕ (x, T )|2 dx = 0

if ϕ0 ∈ L2 (Ω) with ϕ0 6= 0.

Remark 5 .- From (5.4), we have h0 < T/2 and therefore T/2 < T − h0 < T . Here,
(5.5) says that for any t sufficiently closed to T , the following Hölder interpolation
estimate holds.∫

Ω∩BR
|ϕ (x, T )|2 dx ≤

(
(1 + C2) e1+

2C1
T

+‖a‖2/3∞
)(

e3T‖a‖∞

∫
Ω

|ϕ0 (x)|2 dx
)C3−C1

C3

×

(
e

∫
Ω∩B(1+δ)R

|ϕ (x, t)|2 dx

)C1
C3

.
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This can be compared with [5, Lemma 1].

Proof .- The property (5.4) is clearly true because the following inequality∫
Ω∩BR

|ϕ (·, T )|2 dx ≤ e2T‖a‖∞

∫
Ω

|ϕ0|2 dx

holds by Lemma 1. We prove (5.5) as follows. Let h > 0, ρ (x) = |x− x0|2, χ ∈
C∞0 (B (x0, (1 + δ)R)) be such that 0 ≤ χ ≤ 1, χ = 1 on {x; |x− x0| ≤ (1 + 3δ/4)R}.
We multiply the equation ∂tϕ−∆ϕ+aϕ = 0 by e−ρ/hχ2ϕ and integrate over Ω∩B(1+δ)R.
We get

1
2
d
dt

∫
Ω∩B(1+δ)R

e−ρ/h |χϕ|2 dx+

∫
Ω∩B(1+δ)R

∇ϕ∇
(
e−ρ/hχ2ϕ

)
dx

= −
∫

Ω∩B(1+δ)R

ae−ρ/h |χϕ|2 dx .

But, ∇
(
e−ρ/hχ2ϕ

)
= −1

h
∇ρe−ρ/hχ2ϕ+ 2e−ρ/hχ∇χϕ+ e−ρ/hχ2∇ϕ. Therefore,

1
2
d
dt

∫
Ω∩B(1+δ)R

e−ρ/h |χϕ|2 dx+

∫
Ω∩B(1+δ)R

e−ρ/h |χ∇ϕ|2 dx

≤
∫

Ω∩B(1+δ)R

(
e−ρ/(2h) |χ∇ϕ|

)(2

h
|x− x0| e−ρ/(2h)χ |ϕ|+ 2 |∇χ| e−ρ/(2h) |ϕ|

)
dx

+ ‖a‖∞
∫

Ω∩B(1+δ)R

e−ρ/h |χϕ|2 dx

which gives by Cauchy-Schwarz inequality

d
dt

∫
Ω∩B(1+δ)R

e−ρ/h |χϕ|2 dx

≤
(

4((1+δ)R)2

h2 + 2 ‖a‖∞
)∫

Ω∩B(1+δ)R

e−ρ/h |χϕ|2 dx

+4

∫
Ω∩
{
x;(1+3δ/4)R≤

√
ρ(x)≤(1+δ)R

} |∇χ|2 e−ρ/h |ϕ|2 dx .

Thus,

d
dt

(
e
−
(

4((1+δ)R)2

h2 +2‖a‖∞

)
t
∫

Ω∩B(1+δ)R

e−ρ/h |χϕ|2 dx

)

≤ 4 ‖∇χ‖2
L∞ e

−
(

4((1+δ)R)2

h2 +2‖a‖∞

)
t
e−

((1+3δ/4)R)2

h e2t‖a‖∞

∫
Ω

|ϕ0|2 dx

which gives by integration between t and T ,∫
Ω∩B(1+δ)R

e−ρ/h |χϕ (·, T )|2 dx

≤ e

(
4((1+δ)R)2

h2 +2‖a‖∞

)
(T−t)

∫
Ω∩B(1+δ)R

e−ρ/h |χϕ (·, t)|2 dx

+e

(
4((1+δ)R)2

h2 +2‖a‖∞

)
T
∫ T

t

e−
4((1+δ)R)2

h2 sds4 ‖∇χ‖2
L∞ e

− ((1+3δ/4)R)2

h

∫
Ω

|ϕ0|2 dx .
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Therefore, ∫
Ω∩B(1+δ)R

e−ρ/h |χϕ (·, T )|2 dx

≤ e
c1R

2

h2 (T−t)e2T‖a‖∞

∫
Ω∩B(1+δ)R

e−ρ/h |χϕ (·, t)|2 dx

+e
c1R

2

h2 (T−t) (T − t) 4 ‖∇χ‖2
L∞ e

2T‖a‖∞e−
c2R

2

h

∫
Ω

|ϕ0|2 dx ,

with c1 = 4 (1 + δ)2 and c2 = (1 + 3δ/4)2. Set c3 = (1 + δ/2)2. In particular, 1 < c3 <
c2. Recall that t ≤ T . Now suppose that the positive real number h is such that

0 < T − c2 − c3

c1

h ≤ t ,

then c1
h2 (T − t) ≤ c2−c3

h
and∫

Ω∩B(1+δ)R

e−ρ/h |χϕ (·, T )|2 dx ≤ e
(c2−c3)R2

h e2T‖a‖∞

∫
Ω∩B(1+δ)R

e−ρ/h |χϕ (·, t)|2 dx

+4 ‖∇χ‖2
L∞ e

2T‖a‖∞ c2−c3
c1

he−
c3R

2

h

∫
Ω

|ϕ0|2 dx .

Since χ = 1 on {x; |x− x0| ≤ R}, the above estimate yields∫
Ω∩BR

|ϕ (x, T )|2 dx ≤ e
(c2−c3+1)R2

h e2T‖a‖∞

∫
Ω∩B(1+δ)R

|ϕ (x, t)|2 dx

+4e2T‖a‖∞ ‖∇χ‖2
L∞

c2−c3
c1

he−
(c3−1)R2

h

∫
Ω

|ϕ0 (x)|2 dx ,
(5.6)

whenever 0 < T − c2−c3
c1

h ≤ t and t ≤ T . Recall that h0 < T from (5.4). Now, choose

h ∈
(

0, c1
c2−c3T

)
as follows.

h =
c1

c2 − c3

h0 =
c1

c2 − c3

C1

ln

(e1+
2C1
T

) (1+C2)e3T‖a‖∞+‖a‖2/3∞

∫
Ω

|ϕ0 (x)|2 dx∫
Ω∩BR

|ϕ (x, T )|2 dx


with C1 = (c2−c3)(c3−1)R2

c1
and C2 = 4 ‖∇χ‖2

L∞ C1, in order that for any T − c2−c3
c1

h ≤ t ≤
T ,

4e2T‖a‖∞ ‖∇χ‖2
L∞

c2−c3
c1

he−
(c3−1)R2

h

∫
Ω

|ϕ0 (x)|2 dx

= e2T‖a‖∞C2
h0

C1
e−

(c3−1)R2

h

∫
Ω

|ϕ0 (x)|2 dx

≤ h0

C1
e−

(c3−1)R2

h (1 + C2) e3T‖a‖∞+‖a‖2/3∞

∫
Ω

|ϕ0|2 dx

≤ e−
(c3−1)R2

h
1

e1+
2C1
T

e
(c3−1)R2

h

∫
Ω∩BR

|ϕ (x, T )|2 dx

≤ 1
e

∫
Ω∩BR

|ϕ (x, T )|2 dx

(5.7)
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where we have used in the third line the fact that h0 ≤ C1 from (5.4). The definition of
h along with (5.3) was applied in the fourth line. Since t ∈ [T − h0, T ), it yields that
0 < T − c2−c3

c1
h ≤ t ≤ T and further, combining (5.6) and (5.7) we have∫

Ω∩BR
|ϕ (x, T )|2 dx ≤ e

(c2−c3+1)R2

h e2T‖a‖∞

∫
Ω∩B(1+δ)R

|ϕ (x, t)|2 dx+
1

e

∫
Ω∩BR

|ϕ (x, T )|2 dx

which gives(
1− 1

e

)∫
Ω∩BR

|ϕ (x, T )|2 dx ≤ e
(c2−c3+1)(c2−c3)R2

c1

1
h0 e2T‖a‖∞

∫
Ω∩B(1+δ)R

|ϕ (x, t)|2 dx .

On the other hand, by the definition of h0 and the fact that T ‖a‖∞ h0 ≤ C1 from (5.4),

e3T‖a‖∞

∫
Ω

|ϕ0 (x)|2 dx ≤ e3T‖a‖∞e
C1

1
h0

∫
Ω∩BR

|ϕ (x, T )|2 dx .

≤ e
4C1

1
h0

∫
Ω∩BR

|ϕ (x, T )|2 dx .

We conclude that(
1− 1

e

)
e3T‖a‖∞

∫
Ω

|ϕ0 (x)|2 dx ≤ e
C3

1
h0

∫
Ω∩B(1+δ)R

|ϕ (x, t)|2 dx

with C3 = (c2−c3+1)(c2−c3)R2

c1
+ 6C1. This completes the proof.

Lemma 4 .- Let 0 < r < R. Suppose that Br ⊂ Ω and Ω ∩ B(1+2δ)R is star-shaped
with respect to x0 for some δ ∈ (0, 1]. Then there are C1, C2 > 0 and β ∈ (0, 1) such
that for any T > 0 and ϕ0 ∈ L2 (Ω),∫

Ω∩BR
|ϕ (x, T )|2 dx

≤
(

(1 + C2) e1+
2C1
T

+3T‖a‖∞+‖a‖2/3∞

∫
Ω

|ϕ0 (x)|2 dx
)β (

2

∫
Br

|ϕ (x, T )|2 dx
)1−β

.

Here C1, C2 > 0 are only dependent on (R, δ). β only depends on (n, r, R, δ).

Proof .- There is no loss of generality in assuming that ϕ0 6= 0. Let 0 < r < R and
R0 = (1 + 2δ)R. Let χ ∈ C∞0 (BR0), 0 ≤ χ ≤ 1, χ = 1 on {x; |x− x0| ≤ (1 + 3δ/2)R}.
We will apply Lemma 2 with u = χϕ. First, (∂t −∆)u = −au−2∇χ∇ϕ−∆χϕ. Next,
define g = −2∇χ∇ϕ−∆χϕ.

Step 1.- Notice that g is supported on {x; (1 + 3δ/2)R ≤ |x− x0| ≤ R0}. Recall the
fact that χ = 1 on {x; |x− x0| ≤ (1 + δ)R}. Then there is C = C (R, δ) > 0 such that
we have∫

Ω∩BR0

u (x, t) g (x, t)Gλ (x, t) dx∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx
≤
C
(
1 + t−1/2

)
e3t‖a‖∞

∫
Ω

|ϕ0 (x)|2 dx∫
Ω∩B(1+δ)R

|ϕ (x, t)|2 dx
e−

C4
T−t+λ
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and

∫ T

t

∫
Ω∩BR0

|g (x, s)|2Gλ (x, s) dx∫
Ω∩BR0

|u (x, s)|2Gλ (x, s) dx
ds ≤

∫ T

t

C (1 + s−1) e3s‖a‖∞

∫
Ω

|ϕ0 (x)|2 dx∫
Ω∩B(1+δ)R

|ϕ (x, s)|2 dx
e−

C4
T−s+λds

with C4 = − ((1+δ)R)2

4
+ ((1+3δ/2)R)2

4
> 0. Then we have the existence of c = c (R, δ) > 0

such that for any t ∈ [T − h0, T ),∫
Ω∩BR0

u (x, t) g (x, t)Gλ (x, t) dx∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx
≤ c

(
1 +

1√
T

)
e
C3

1
h0 e−

C4
T−t+λ

and ∫ T

t

∫
Ω∩BR0

|g (x, s)|2Gλ (x, s) dx∫
Ω∩BR0

|u (x, s)|2Gλ (x, s) dx
ds ≤ ce

C3
1
h0 e−

C4
T−t+λ

by using (5.4) that gives the two inequalities h0 < C1, T/2 < T − h0 ≤ t < T and
Lemma 3 saying that

e3T‖a‖∞

∫
Ω

|ϕ0 (x)|2 dx∫
Ω∩B(1+δ)R

|ϕ (x, t)|2 dx
≤ e

1+C3
1
h0 if T − h0 ≤ t < T .

Step 2.- Now, our plan is to bound λNλ (T ). We apply Lemma 2 as follows. First
of all, by (5.2)

d

dt
Nλ (t) ≤ 1

T − t+ λ
Nλ (t) +

∫
Ω∩BR0

|(−au+ g) (x, t)|2Gλ (x, t) dx∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx

becomes

d

dt
[(T − t+ λ)Nλ (t)] ≤ (T − t+ λ)

∫
Ω∩BR0

|(−au+ g) (x, t)|2Gλ (x, t) dx∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx
.

Thus, it holds

d

dt
[(T − t+ λ)Nλ (t)] ≤ 2 (T − t+ λ)

‖a‖2
∞ +

∫
Ω∩BR0

|g (x, t)|2Gλ (x, t) dx∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx
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which gives

λNλ (T ) ≤ (T − t+ λ)Nλ (t) + 2 ‖a‖2
∞

∫ T

t

(T − s+ λ) ds

+2
∫ T
t

(T − s+ λ)

∫
Ω∩BR0

|g (x, s)|2Gλ (x, s) dx∫
Ω∩BR0

|u (x, s)|2Gλ (x, s) dx
ds .

Therefore, for any 0 < T − ε ≤ t < T (where ε ∈ (0, h0] will be determined later)

1

ε+ λ
λNλ (T ) ≤ Nλ (t) + 2ε ‖a‖2

∞ + 2

∫ T

t

∫
Ω∩BR0

|g (x, s)|2Gλ (x, s) dx∫
Ω∩BR0

|u (x, s)|2Gλ (x, s) dx
ds . (5.8)

Secondly, by (5.1),

1
2
d
dt

∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx+

∫
Ω∩BR0

|∇u (x, t)|2Gλ (x, t) dx

=

∫
Ω∩BR0

u (x, t) (−au+ g) (x, t)Gλ (x, t) dx

becomes

1
2
d
dt

∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx+Nλ (t)

∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx

= −
∫

Ω∩BR0

a (x, t) |u (x, t)|2Gλ (x, t) dx

+

∫
Ω∩BR0

u (x, t) g (x, t)Gλ (x, t) dx∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx

∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx .

(5.9)

Therefore, combining (5.8) and (5.9), we obtain that for any 0 < T − ε ≤ t < T

1
2
d
dt

∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx+
1

ε+ λ
λNλ (T )

∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx

≤
(
‖a‖∞ + 2ε ‖a‖2

∞
) ∫

Ω∩BR0

|u (x, t)|2Gλ (x, t) dx+

∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx

×


∫

Ω∩BR0

u (x, t) g (x, t)Gλ (x, t) dx∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx
+ 2

∫ T

t

∫
Ω∩BR0

|g (x, s)|2Gλ (x, s) dx∫
Ω∩BR0

|u (x, s)|2Gλ (x, s) dx
ds

 .

Now, define, for any ε ∈ (0, h0],

Qh0,ε,λ = c

(
3 +

1√
T

)
e

(C3+C4) 1
h0 e−

C4
ε+λ (5.10)
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given from the fact that using step 1,∫
Ω∩BR0

u (x, t) g (x, t)Gλ (x, t) dx∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx
+ 2

∫ T

t

∫
Ω∩BR0

|g (x, s)|2Gλ (x, s) dx∫
Ω∩BR0

|u (x, s)|2Gλ (x, s) dx
ds

≤ Qh0,ε,λ for any 0 < T − ε ≤ t < T with ε ∈ (0, h0] .

Then, it holds

1
2
d
dt

∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx

≤ −
(

1
ε+λ

λNλ (T )− ‖a‖∞ − 2ε ‖a‖2
∞ −Qh0,ε,λ

) ∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx

which implies

d

dt

(
e2( 1

ε+λ
λNλ(T )−‖a‖∞−2ε‖a‖2∞−Qh0,ε,λ)t

∫
Ω∩BR0

|u (x, t)|2Gλ (x, t) dx

)
≤ 0

for 0 < T − ε ≤ t. Integrating over (T − ε, T − ε/2), we get

e
ε

ε+λ
λNλ(T )

∫
Ω∩BR0

|u (x, T − ε/2)|2Gλ (x, T − ε/2) dx

≤ eε‖a‖∞+2ε2‖a‖2∞eεQh0,ε,λ

∫
Ω∩BR0

|u (x, T − ε)|2Gλ (x, T − ε) dx

that is

e
ε

ε+λ
λNλ(T )

∫
Ω∩BR0

|u (x, T − ε/2)|2 1

(ε/2 + λ)n/2
e−

|x−x0|
2

4(ε/2+λ)dx

≤ eε‖a‖∞+2ε2‖a‖2∞eεQh0,ε,λ

∫
Ω∩BR0

|u (x, T − ε)|2 1

(ε+ λ)n/2
e−
|x−x0|

2

4(ε+λ) dx .

Thus,

e
ε

ε+λ
λNλ(T ) ≤ eε‖a‖∞+2ε2‖a‖2∞eεQh0,ε,λ

∫
Ω∩BR0

|u (x, T − ε)|2 e−
|x−x0|

2

4(ε+λ) dx∫
Ω∩BR0

|u (x, T − ε/2)|2 e−
|x−x0|

2

4(ε/2+λ)dx

.

Now, since ε
2
∈ (0, h0],∫

Ω∩BR0

|u (x, T − ε)|2 e−
|x−x0|

2

4(ε+λ) dx∫
Ω∩BR0

|u (x, T − ε/2)|2 e−
|x−x0|

2

4(ε/2+λ)dx
≤

e
((1+δ)R)2

2ε e3T‖a‖∞

∫
Ω

|ϕ0 (x)|2 dx∫
Ω∩B(1+δ)R

|ϕ (x, T − ε/2)|2 dx

≤ e
((1+δ)R)2

2ε e
1+C3

1
h0 .
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Indeed, by Lemma 3, we know that
e3T‖a‖∞

∫
Ω|ϕ0(x)|2dx∫

Ω∩B(1+δ)R
|ϕ(x,t)|2dx ≤ e

1+C3
1
h0 if T − h0 ≤ t < T .

Therefore, for any ε ∈ (0, h0],

λNλ (T ) ≤ ε+λ
ε

ln
(
eε‖a‖∞+2ε2‖a‖2∞eεQh0,ε,λe

((1+δ)R)2

2ε e
1+C3

1
h0

)
≤ ε+λ

ε

(
((1+δ)R)2

2ε
+ ε ‖a‖∞ + 2ε2 ‖a‖2

∞ + εQh0,ε,λ + 1 + C3
1
h0

)
.

(5.11)

Step 3 .- Now, we choose λ = µε with µ ∈ (0, 1) which will be determined later and

ε =
C4

2 (C3 + C4)
h0

in order that Qh0,ε,λ given by (5.10) satisfies the following bound

Qh0,ε,λ ≤ c

(
3 +

1√
T

)
e
C3+C4
h0

(1− 2
1+µ) = c

(
3 +

1√
T

)
e
C3+C4
h0

(µ−1
1+µ) ≤ c

(
3 +

1√
T

)
and further, using the fact that ε ≤ h0, (5.11) becomes

λNλ (T )

≤ 2
(

1 + h0 ‖a‖∞ + 2h2
0 ‖a‖

2
∞ + (C3 + C4)

(
1 + (1+δ)2R2

C4

)
1
h0

+ c
(

3 + 1√
T

)
h0

)
.

Next, we deduce that

ελNλ (T )

≤ 2
(
ε+ εh0 ‖a‖∞ + 2εh2

0 ‖a‖
2
∞ + ε (C3 + C4)

(
1 + (1+δ)2R2

C4

)
1
h0

+ εc
(

3 + 1√
T

)
h0

)
≤ 2

(
h0 + h0T ‖a‖∞ + 2h3

0 ‖a‖
2
∞ + 1

2

(
C4 + (1 + δ)2R2

)
+ c
(

3h2
0 +

√
h0

T
h

3/2
0

))
≤ 2

(
2C1 + 2C3

1 + 1
2

(
C4 + (1 + δ)2R2

)
+ c
(

3C2
1 + C

3/2
1

))
where in the last line, we used the following four inequalities h0 < C1, h0 < T ,
h0T ‖a‖∞ < C1 and h3

0 ‖a‖
2
∞ < C3

1 obtained in (5.4) of Lemma 3. Therefore, we
conclude from the above bound of ελNλ (T ) that

16λ
r2

(
n
4

+ λNλ (T )
)
≤ 16

r2µ
(
n
4
C1 + ελNλ (T )

)
≤ µ (1 + C0)

(5.12)

for some C0 > 0 only depending on (n, r, R, δ).

Step 4 .- Now, we are able to bound
∫

Ω∩BR0
|u (x, T )|2 e−

|x−x0|
2

4λ dx as follows. Since

Ω ∩BR0 is star-shaped with respect to x0, we have (see, for example, [13, pp. 1238] or
[14, Lemma 2.5]- [5, Lemma 3]),

1
16λ

∫
Ω∩BR0

|x− x0|2 |u (x, T )|2 e−
|x−x0|

2

4λ dx

≤ n
4

∫
Ω∩BR0

|u (x, T )|2 e−
|x−x0|

2

4λ dx+ λ

∫
Ω∩BR0

|∇u (x, T )|2 e−
|x−x0|

2

4λ dx
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which implies∫
Ω∩BR0

|u (x, T )|2 e−
|x−x0|

2

4λ dx

≤
∫
Br

|u (x, T )|2 e−
|x−x0|

2

4λ dx+

∫
(Ω∩BR0)\Br

|x− x0|2

r2
|u (x, T )|2 e−

|x−x0|
2

4λ dx

≤
∫
Br

|u (x, T )|2 e−
|x−x0|

2

4λ dx

+ 1
r2

[
4λn

∫
Ω∩BR0

|u (x, T )|2 e−
|x−x0|

2

4λ dx+

∫
Ω∩BR0

16λ2 |∇u (x, T )|2 e−
|x−x0|

2

4λ dx

]
≤
∫
Br

|ϕ (x, T )|2 e−
|x−x0|

2

4λ dx+
16λ

r2

[n
4

+ λNλ (T )
] ∫

Ω∩BR0

|u (x, T )|2 e−
|x−x0|

2

4λ dx ,

where in the last line we used the definition of Nλ (T ) and the fact that u = ϕ in Br.
Combining the above inequality and (5.12), we deduce that∫

Ω∩BR0

|u (x, T )|2 e−
|x−x0|

2

4λ dx ≤
∫
Br

|ϕ (x, T )|2 e−
|x−x0|

2

4λ dx

+µ (1 + C0)

∫
Ω∩BR0

|u (x, T )|2 e−
|x−x0|

2

4λ dx .
(5.13)

Step 5 .- Now, we choose µ ∈ (0, 1) as follows.

µ =
1

2

1

(1 + C0)
.

Then, λ = µε = µ C4

2(C3+C4)
h0 = 1

4
C4

(1+C0)(C3+C4)
h0 and by using the definition of h0, we

have ∫
Ω∩BR

|ϕ (x, T )|2 dx

≤ e
R2

4λ

∫
Ω∩BR0

|u (x, T )|2 e−
|x−x0|

2

4λ dx

≤ 2e
R2

4λ

∫
Br

|ϕ (x, T )|2 e−
|x−x0|

2

4λ dx by (5.13),

≤ 2e
(1+C0)(C3+C4)R2

C4

1
h0

∫
Br

|ϕ (x, T )|2 dx

≤ 2

(1 + C2)
e1+

2C1
T

+e3T‖a‖∞+‖a‖2/3∞

∫
Ω

|ϕ0 (x)|2 dx∫
Ω∩BR

|ϕ (x, T )|2 dx


(1+C0)(C3+C4)R2

C1C4 ∫
Br

|ϕ (x, T )|2 dx .

We conclude that the desired estimate of Lemma 4 holds with β = (1+C0)(C3+C4)R2

C1C4+(1+C0)(C3+C4)R2 ∈
(0, 1). This completes the proof of Lemma 4.
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Lemma 5 .- Let ω̃ be a non-empty open set of Ω. Then there are C = C (ω̃,Ω) > 0

and β̃ = β̃ (ω̃,Ω) ∈ (0, 1) such that for any T > 0 and ϕ0 ∈ L2 (Ω),∫
Ω

|ϕ (x, T )|2 dx ≤ eC(1+ 1
T

+T‖a‖∞+‖a‖2/3∞ )
(∫

Ω

|ϕ0 (x)|2 dx
)β̃ (∫

ω̃

|ϕ (x, T )|2 dx
)1−β̃

.

Proof .- Firstly, by Lemma 4 and constructing a sequence of balls chained along a
curve, we claim that, for any compact sets Θ1 and Θ2 with non-empty interior in Ω,
there are constants C = C (Θ1,Θ2,Ω) > 0 and α1 = α1 (Θ1,Θ2,Ω) ∈ (0, 1) such that∫

Θ1

|ϕ (x, T )|2 dx ≤ eC(1+ 1
T

+T‖a‖∞+‖a‖2/3∞ )
(∫

Ω

|ϕ0 (x)|2 dx
)α1

(∫
Θ2

|ϕ (x, T )|2 dx
)1−α1

.

(5.14)
Indeed, since Θ1 is a compact set in Ω, there are R > 0 and finitely many points
x1, · · ·, xM such that Θ1 ⊂

⋃
i=1,···,M

B (xi, R) and B (xi, 3R) ⊂ Ω. Next, for each i ∈

{1, · · ·,M}, we choose ρ ∈ (0, R) and finitely many points q0, · · ·, qm with the following
properties: 

xi = qm
Θ2 ⊃ B (q0, ρ)
B (qj+1, ρ/2) ⊂ B (qj, ρ) ∀j = 0, · · ·,m− 1
B (qj, 3ρ) ⊂ Ω ∀j = 0, · · ·,m .

Thanks to Lemma 4, there exist σ, σ1, α1 ∈ (0, 1), such that∫
B(xi,R)

|ϕ (x, T )|2 dx

≤ eC(1+ 1
T

+T‖a‖∞+‖a‖2/3∞ )
(∫

Ω

|ϕ0 (x)|2 dx
)σ (∫

B(xi,ρ/2)

|ϕ (x, T )|2 dx
)1−σ

= eC(1+ 1
T

+T‖a‖∞+‖a‖2/3∞ )
(∫

Ω

|ϕ0 (x)|2 dx
)σ (∫

B(qm,ρ/2)

|ϕ (x, T )|2 dx
)1−σ

≤ eC(1+ 1
T

+T‖a‖∞+‖a‖2/3∞ )
(∫

Ω

|ϕ0 (x)|2 dx
)σ (∫

B(qm−1,ρ)

|ϕ (x, T )|2 dx
)1−σ

≤ eC(1+ 1
T

+T‖a‖∞+‖a‖2/3∞ )
(∫

Ω

|ϕ0 (x)|2 dx
)σ

×

(
eC(1+ 1

T
+T‖a‖∞+‖a‖2/3∞ )

(∫
Ω

|ϕ0 (x)|2 dx
)σ1

(∫
B(qm−1,ρ/2)

|ϕ (x, T )|2 dx
)1−σ1

)1−σ

≤ · · ·

≤ eC(1+ 1
T

+T‖a‖∞+‖a‖2/3∞ )
(∫

Ω

|ϕ0 (x)|2 dx
)α1

(∫
B(q0,ρ)

|ϕ (x, T )|2 dx
)1−α1

,

where C > 0 may change value from line to line. This implies the desired inequality
(5.14).

Secondly, since Ω is bounded with a C2 boundary, there is a finite set of triplet
(qj, Rj, δj) ∈ Ω× R∗+ × (0, 1], j = 1, · · ·,m, such that

∂Ω ⊂
⋃

j=1,··· ,m

B (qj, (1 + 2δj)Rj)
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and Ω ∩ B (qj, (1 + 2δj)Rj) is star-shaped with center qj for some δj. Then we apply
Lemma 4 with Ω∩B (qj, (1 + 2δj)Rj) for j = 1, ···,m, and the same arguments as above
to get that, when ϑ is a neighborhood of ∂Ω and Θ3 is a compact set with non-empty
interior in Ω, there are constants C = C (ϑ,Θ3,Ω) > 0 and α2 = α2 (ϑ,Θ3,Ω) ∈ (0, 1)
such that∫

ϑ

|ϕ (x, T )|2 dx ≤ eC(1+ 1
T

+T‖a‖∞+‖a‖2/3∞ )
(∫

Ω

|ϕ0|2 dx
)α2

(∫
Θ3

|ϕ (x, T )|2 dx
)1−α2

.

Finally, we derive the desired estimate from the previous two statements with Ω ⊂
(ϑ ∪Θ1) and (Θ2 ∪Θ3) ⊂ ω̃. This completes the proof.

Now, we are able to present the proof of the observability estimate of Theorem 4.

Proof of Theorem 4 .- We start with the following interpolation estimate deduced
by Lemma 5 and the Young inequality. For any 0 ≤ t1 < t2 ≤ T ,

‖ϕ (·, t2)‖L2(Ω) ≤
K1

εα
e

K2
t2−t1 ‖ϕ (·, t2)‖L2(ω̃) + ε ‖ϕ (·, t1)‖L2(Ω) ∀ε > 0 .

Here, ω̃ b ω ⊂ Ω, K1 = e
C

2(1−β̃)(1+T‖a‖∞+‖a‖2/3∞ )
and K2 = C

2(1−β̃)
in Lemma 5, α = β̃

1−β̃
in Lemma 5. By Nash inequality and Poincaré inequality,

‖ϕ (·, t2)‖L2(ω̃) ≤
K3

δn/2
‖ϕ (·, t2)‖L1(ω) + δ ‖∇ϕ (·, t2)‖L2(Ω) ∀δ > 0 .

Here K3 > 0 only depends on (ω̃, ω,Ω). By Lemma 1, we know that

‖∇ϕ (·, t2)‖L2(Ω) ≤
K4

(t2 − t1)1/2
‖ϕ (·, t1)‖L2(Ω)

with K4 = e2T‖a‖∞ . Therefore, from the above three estimate with K1

εα
e

K2
t2−t1 δ K4

(t2−t1)1/2 =

ε, we get

‖ϕ (·, t2)‖L2(Ω) ≤
K1

εα
e

K2
t2−t1

(
K3

δn/2
‖ϕ (·, t2)‖L1(ω) + δ K4

(t2−t1)1/2 ‖ϕ (·, t1)‖L2(Ω)

)
+ε ‖ϕ (·, t1)‖L2(Ω)

≤ K1K3

εα
e

K2
t2−t1

(
1

εα+1 e
K2
t2−t1 K1K4

(t2−t1)1/2

)n/2
‖ϕ (·, t2)‖L1(ω) + 2ε ‖ϕ (·, t1)‖L2(Ω)

≤ K1K3

εα+(α+1)n/2 e
( 3n

4
+1) K2

t2−t1

(
K1K4√
K2

)n/2
‖ϕ (·, t2)‖L1(ω) + 2ε ‖ϕ (·, t1)‖L2(Ω)

≤ K5

(2ε)γ
e

K6
t2−t1 ‖ϕ (·, t2)‖L1(ω) + 2ε ‖ϕ (·, t1)‖L2(Ω) ∀ε > 0 ,

denoting γ = α
(
1 + n

2

)
+ n

2
, K5 = 2α+(α+1)n/2K1K3

(
K1K4√
K2

)n/2
and K6 =

(
3n
4

+ 1
)
K2.

On another hand, let E be a subset of positive measure in (0, T ). Let ` be a
density point of E. Using [14, Proposition 2.1], for each τ > 1, there exists `1 ∈ (`, T ),
depending on τ and E, such that the sequence {`m}m≥1, given by

`m+1 = `+
1

τm
(`1 − `) ,
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satisfies
`m − `m+1 ≤ 3 |E ∩ (`m+1, `m)| .

Next, let 0 < `m+2 < `m+1 ≤ t < `m < `1 < T . We apply the above interpolation
inequality to get

‖ϕ (·, t)‖L2(Ω) ≤
K5

εγ
e

K6
t−`m+2 ‖ϕ (·, t)‖L1(ω) + ε ‖ϕ (·, `m+2)‖L2(Ω) ∀ε > 0 .

Recall that by Lemma 1

‖ϕ (·, `m)‖L2(Ω) ≤ K4 ‖ϕ (·, t)‖L2(Ω) .

Therefore,

‖ϕ (·, `m)‖L2(Ω) ≤ K4

(
K5

εγ
e

K6
t−`m+2 ‖ϕ (·, t)‖L1(ω) + ε ‖ϕ (·, `m+2)‖L2(Ω)

)
∀ε > 0 .

Finally, with K7 = (K4)1+γK5,

‖ϕ (·, `m)‖L2(Ω) ≤
K7

εγ
e

K6
t−`m+2 ‖ϕ (·, t)‖L1(ω) + ε ‖ϕ (·, `m+2)‖L2(Ω) ∀ε > 0 .

Integrating it over t ∈ E ∩ (`m+1, `m), it yields that

|E ∩ (`m+1, `m)| ‖ϕ (·, `m)‖L2(Ω) ≤
K7

εγ
e

K6
`m+1−`m+2

∫ `m

`m+1

1E ‖ϕ (·, t)‖L1(ω) dt

+ε |E ∩ (`m+1, `m)| ‖ϕ (·, `m+2)‖L2(Ω) ∀ε > 0 .

That is, using the fact that `m − `m+1 = 1
τm

(τ − 1) (`1 − `),

‖ϕ (·, `m)‖L2(Ω) ≤
1

|E∩(`m+1,`m)|
K7

εγ
e
K6

[
1

`1−`
τm+1

τ−1

] ∫ `m

`m+1

1E ‖ϕ (·, t)‖L1(ω) dt

+ε ‖ϕ (·, `m+2)‖L2(Ω)

≤ 3
[

1
`1−`

τm

τ−1

]
K7

εγ
e
K6

[
1

`1−`
τm+1

τ−1

] ∫ `m

`m+1

1E ‖ϕ (·, t)‖L1(ω) dt

+ε ‖ϕ (·, `m+2)‖L2(Ω) ∀ε > 0 .

Therefore,

‖ϕ (·, `m)‖L2(Ω) ≤
1
εγ

3
τ
K7

K6
e

2K6

[
1

`1−`
τm+1

τ−1

] ∫ `m

`m+1

1E ‖ϕ (·, t)‖L1(ω) dt

+ε ‖ϕ (·, `m+2)‖L2(Ω) ∀ε > 0 .

Take d = 2K6

[
1

`1−`
1

τ(τ−1)

]
. It guarantees that

εγe−dτ
m+2 ‖ϕ (·, `m)‖L2(Ω) − ε1+γe−dτ

m+2 ‖ϕ (·, `m+2)‖L2(Ω)

≤ 3
τ
K7

K6

∫ `m

`m+1

1E ‖ϕ (·, t)‖L1(ω) dt ∀ε > 0 .
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Take ε = e−dτ
m+2

, then

e−(γ+1)dτm+2 ‖ϕ (·, `m)‖L2(Ω) − e−(2+γ)dτm+2 ‖ϕ (·, `m+2)‖L2(Ω)

≤ 3
τ
K7

K6

∫ `m

`m+1

1E ‖ϕ (·, t)‖L1(ω) dt .

Take τ =
√

γ+2
γ+1

, then

e−(2+γ)dτm ‖ϕ (·, `m)‖L2(Ω) − e−(2+γ)dτm+2 ‖ϕ (·, `m+2)‖L2(Ω)

≤ 3
τ
K7

K6

∫ `m

`m+1

1E ‖ϕ (·, t)‖L1(ω) dt .

Change m to 2m′ and sum the above from m′ = 1 to infinity give the desired result.
Indeed,

1
K4
e−(2+γ)dτ2 ‖ϕ (·, T )‖L2(Ω)

≤ e−(2+γ)dτ2 ‖ϕ (·, `2)‖L2(Ω)

≤
+∞∑
m′=1

(
e−(2+γ)dτ2m′ ‖ϕ (·, `2m′)‖L2(Ω) − e−(2+γ)dτ2m′+2 ‖ϕ (·, `2m′+2)‖L2(Ω)

)
≤ 3

τ
K7

K6

+∞∑
m′=1

∫ `2m′

`2m′+1

1E ‖ϕ (·, t)‖L1(ω) dt

≤ 3
τ
K7

K6

∫ T

0

1E ‖ϕ (·, t)‖L1(ω) dt .

This concludes the proof of Theorem 4.

Remark 6 .- When E = (0, T ), then we can take the sequence {`m}m≥1, as follows

`m+1 =
T

τm
,

so that the observability constant becomes

eK(1+ 1
T

+T‖a‖∞+‖a‖2/3∞ ) .

When E is a positive measurable set with 0 its Lebesgue point, then we can take the
sequence {`m}m≥1, as follows

`m+1 =
`1

τm
,

where the existence of `1 comes from [14, Proposition 2.1], so that the observability
constant becomes

e
K
(

1+ 1
`1

+`1‖a‖∞+‖a‖2/3∞
)

.
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