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A stabilized Lagrange multiplier method for the

enriched finite-element approximation of Tresca

contact problems of cracked elastic bodies

S. Amdouni 1, M. Moakher 2, Y. Renard 3

Abstract

In this paper we propose a local projection stabilized Lagrange multiplier method in
order to approximate the two-dimensional linear elastostatics unilateral contact problem
with Tresca friction in the framework of the eXtended Finite Element Method X-FEM. This
last method allows to perform finite-element computations on cracked domains by using
meshes of the non-cracked domain. The advantage of the used stabilization technique is to
affect only the equation on multipliers and thus to be equation independent. We study the
existence, uniqueness and a priori error estimate of three hybrid discrete formulations.

1 Introduction

The use of Lagrange multiplier methods to formulate contact problems is a well-known and
powerful technique. One difficulty, especialy for fictitious domain like method, is due to the fact
that a discrete compatibility condition between the finite-element space for the displacement and
the one for the multiplier is required, namely the uniform discrete L.B.B. or inf-sup condition.
To circumvent this difficulty some stabilization techniques have been developed. One of the
most used technique is the Barbosa-Hughes stabilization [7, 8] where the stability is provided
by adding a supplementary term involving an approximation of the normal derivative of the
primal variable on ΓC (see [20] and [3]). This method of stabilization depends on the problem
to be solved which makes its implementation a difficult task. In this study we will focus on local
projection stabilization techniques where the difference of the multiplier with its projection on
some inf-sup stable spaces is penalized to ensure the stability of the approximation problem.
This stabilized technique is asymptotically consistent and affects only the multiplier equations
in a manner that is independent of the problem to be solved. To the best of our knowledge, this
technique was used for the first time by Silvester [29] in the context of incompressible flow. A
theoretical framework was developed in Brezzi et al. [11] for mixed finite-element methods and
by Burman [13] for Lagrange multiplier method to prescribe some constraints on the interface.
Recently, this technique was proposed and analyzed in the framework of finite-element method
with a fictitious domain approach in [5, 9].
The purpose of this contribution is to adapt the local projection stabilization technique to the
enriched finite-element approximation of contact problems with Tresca friction of cracked elastic
bodies and to provide a priori error estimates of the stabilized formulation. Let us remark
that a priori error estimates we propose are not optimal. However, the existing analysis of
the approximation of Tresca contact problem even for standard approximations and especially
for Lagrange multiplier methods are also suboptimal. Let us recall the main existing result
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for standard approximations. An order of h3/4 is proved using continuous piecewise linear
normal multiplier and weakly continuous piecewise linear tangent multiplier [6] and an order
of h 4

√
| log(h) | is proved with the additional assumptions that we have a finite number of

transitions between contact and non-contact zones, the jump of the displacement on ΓC is in
W 1,∞, the tangent stress λt ∈ L∞(ΓC) and the given slip s ∈ L∞(ΓC). In the same context of
[6] an order of h1/2 is proved using piecewise constant shape functions (see [28] and [21]). This
estimate can be improved (a convergence rate of order h3/4) under the additional assumption
that the slip bound s is a positive constant on ΓC (see [28] and [21]).
The paper is organized as follows. In Section 2, we introduce the formulation of the unilateral
contact problem with Tresca friction on a crack of an elastic structure. In Section 3, we present
the elasticity problem approximated by both the enrichment strategy introduced in [14] and
the local projection stabilized Lagrange multiplier method [5]. We show the existence and
uniqueness of the solution of the stabilized formulation. Also we prove a priori error estimates
following three different discrete contact conditions (the study is restricted to piecewise affine and
constant finite element methods). Finally, in Section 4, we present some numerical experiments
on a very simple situation. We compare the stabilized and the non-stabilized cases for different
finite-element approximations. The influence of the stabilization parameters is also investigated.

2 Formulation of the continuous problem

We start by introducing some useful notations and several functional spaces. In what follows,
bold lowercase letters like u,v, indicate vector-valued quantities, while the bold capital ones
(e.g., V,K, . . .) represent functional sets involving vector fields. As usual, we denote by (L2(.))d

and by (Hs(.))d, s ≥ 0, d = 1, 2 the classical Lebesgue and Hilbert spaces in d-dimensional space
(see [1]). The usual norm of (Hs(D))d is denoted by ‖ · ‖s,D and we keep the same notation
when d = 1 or d = 2. For shortness, the (L2(D))d-norm will be denoted by ‖ · ‖0,D when d = 1
or d = 2. In the sequel the symbol | · | will denote either the Euclidean norm in R

2, the length
of a line segment, or the area of a planar domain.

Let us consider the deformation of a cracked elastic body occupying, in the initial configura-
tion, a domain Ω in R

2 where plane small strains are assumed. The boundary ∂Ω of the domain
Ω is assumed to be polygonal (for simplicity) and consists of three non-overlapping parts ΓD,
ΓN and ΓC with meas(ΓD) > 0 and meas(ΓC) > 0. The body is clamped on ΓD. It is subjected
to volume forces f = (f1, f2) ∈ (L2(Ω))2 and to surface loads g = (g1, g2) ∈ (L2(ΓN ))2. The
boundary part ΓC (or the crack location) is supposed to be a straight line segment. We denote
by ΓC+ and ΓC− each of the two sides of the crack (see Fig. 1). We suppose that we have a
frictional contact condition between ΓC+ and ΓC−. Of course, in the initial configuration, both
ΓC+ and ΓC− coincide. Let n = n+ = −n− = (n1, n2) denote the outward normal unit vector
on ΓC+ and t = t+ = −t− = (−n2, n1) an associated unit tangent vector.
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Figure 1: A cracked domain.

Under plane small strain assumptions, the problem of homogeneous isotropic linear elasticity
consists in finding the displacement field u : Ω → R

2 satisfying

div σ(u) + f = 0 in Ω,(1)

σ(u) = λ
L
tr ε(u) I + 2µ

L
ε(u), in Ω,(2)

u = 0 on ΓD,(3)

σ(u)n = g on ΓN ,(4)

where σ = (σij), 1 ≤ i, j ≤ 2, stands for the stress tensor field, ε(v) = (∇v+∇v
T
)/2 represents

the linearized plane strain tensor field, λ
L
≥ 0, µ

L
> 0 are the Lamé coefficients, and I denotes

the identity tensor. For a displacement field v and a density of surface forces σ(v)n defined on
∂Ω, we adopt the following notations:

v+ = v+n n
+ + v+t t

+, v− = v−n n
− + v−t t

− and σ(v)n = σn(v)n+ σt(v)t,

where v+ (resp. v−) is the trace of displacement on ΓC on the Γ+
C side (resp. on the Γ−

C side).
The conditions describing the unilateral contact on ΓC are:

JunK = u+n + u−n ≤ 0, σn(u) ≤ 0, σn(u) · JunK = 0,(5)

where JunK is the jump of the normal displacement across the crack ΓC . Let us denote by s ≥ 0
the given friction threshold on ΓC (which is assumed to be constant for the sake simplicity).
The static Tresca friction condition reads as follows:

(6)





|σt(u)| ≤ s, a.e. on ΓC ,

if |σt(u)| < s, then JutK = 0,

if |σt(u)| = s, then there exists ν ≥ 0 such that JutK = −νσt(u),

with JutK = u+t + u−t . In the classical weak formulation of Problem (1)−(6), we need to use the
following Hilbert spaces:

V =
{
v ∈

(
H1(Ω))

)2
: v = 0 on ΓD

}
, W =WN ×WT ,

WN =
{
fn ∈ L2(ΓC) : ∃v ∈ V such that fn = JvnK

}
,

WT =
{
ft ∈ L2(ΓC) : ∃v ∈ V such that ft = JvtK

}
,
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and their topological dual spaces V′, W ′
N and W ′

T , endowed with the following norms:

‖v‖ = (a(v,v))1/2, ‖f‖W = (‖fn‖2WN
+ ‖ft‖2WT

)1/2,

‖fn‖WN
= inf

v∈V;fn=JvnK
‖v‖, ‖ft‖WT

= inf
v∈V;ft=JvtK

‖v‖,

‖µn‖W ′

N
= sup

v∈V

〈
µn, JvnK

〉
W ′

N
,WN

‖v‖ , ‖µt‖W ′

T
= sup

v∈V

〈
µt, JvtK

〉
W ′

T
,WT

‖v‖ .

With the following norms we prove easily that:

‖vn‖WN
≤ ‖v‖V, ∀v ∈ V,

‖vt‖WT
≤ ‖v‖V, ∀v ∈ V,

c1‖µn‖W ′

N
≤ ‖µn‖0,ΓC

∀µn ∈W ′
N ,

c1‖µt‖W ′

T
≤ ‖µt‖0,ΓC

∀µt ∈W ′
N ,

where c1 > 0 is the inverse of the trace constant. Next we define the convex set of admissible
Lagrange multipliers denoted:

M(s) =MN ×MT (s),

MN =
{
µn ∈W ′

N :
〈
µn, fn

〉
W ′

N
,WN

≥ 0 for all fn ∈WN , fn ≤ 0 a.e. on ΓC

}
,

MT (s) =
{
µt ∈W ′

T :
〈
µt, ft

〉
W ′

T
,WT

+
〈
s, |ft|

〉
W ′

T
,WT

≥ 0 for all ft ∈WT

}
,

where the notation 〈·, ·〉W ′

N
,WN

(resp. 〈·, ·〉W ′

T
,WT

) stands for the duality pairing between W ′
N

and WN (resp. between W ′
T and WT ). The mixed formulation of the Tresca contact problem

(1)−(6) consists then in finding u ∈ V and λ ∈ M(s) such that

(7)




a(u,v)− b(λ,v) = L(v), ∀v ∈ V,

b(µ− λ,u) ≥ 0, ∀µ ∈ M(s),

where

a(u,v) =

∫

Ω
σ(u) : ε(v) dΩ, b(µ,v) =

〈
µn, JvnK

〉
W ′

N
,WN

+
〈
µt, JvtK

〉
W ′

T
,WT

L(v) =

∫

Ω
f · v dΩ+

∫

ΓN

g · v dΓ.

An equivalent formulation of (7) consists in finding (u,λ) ∈ V ×M(s) satisfying

L (u,µ) ≤ L (u,λ) ≤ L (v,λ), ∀v ∈ V, ∀µ ∈ M(s),

where L (·, ·) is the Lagrangian of the system defined as

(8) L (v,µ) =
1

2
a(v,v)− L(v)− b(µ,v).

Another classical weak formulation of problem (1)−(6) is given by the following variational
inequality [18]: find u ∈ K such that

(9) a(u,v − u) + j(s,v)− j(s,u) ≥ L(v − u), ∀v ∈ K,
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where j(s,v) =
〈
s, |JvtK|

〉
W ′

T
,WT

and K denotes the closed convex cone of admissible displace-

ment fields satisfying the non-interpenetration condition

K =
{
v ∈ V : JvnK ≤ 0 on ΓC

}
.

Moreover, the first argument u solution to (7) is also the unique solution to problem (9) and
one has λn = σn(u) in W

′
N and λt = σt(u) in W

′
T .

3 Discretization with the stabilized Lagrange multiplier method

3.1 The discrete problem

We shall now describe the enriched finite elements used in the approximation of the mixed
problem (7). For any given discretization parameter h > 0, let T h, be a partition of the
uncracked domain Ω with a maximal size h, Ω =

⋃
T∈T h T . Moreover, T h is assumed to be

regular, i.e., there exists β > 0 such that ∀T ∈ T h, hT /ρT ≤ β where ρT denotes the radius of
the inscribed circle in T (see [15]). We consider the variant, called the cut-off XFEM, introduced
in [14] in which the whole area around the crack tip is enriched by using a cut-off function denoted
by χ(·). In this variant, the enriched finite-element space Vh is defined as

Vh =
{
vh ∈ (C (Ω̄))2 : vh =

∑

i∈Nh

aiϕi +
∑

i∈NH
h

biHϕi + χ
4∑

j=1

cjFj , ai,bi, cj ∈ R
2
}
⊂ V.

Here (C (Ω̄))2 is the space of continuous vector fields over Ω̄, H(·) is the Heaviside-like function
used to represent the discontinuity across the straight crack and defined by

H(x) =

{
+1 if (x− x∗) · n+ ≥ 0,

−1 otherwise,

where x∗ denotes the position of the crack tip. The notation ϕi represents the scalar-valued
shape function associated with the classical degree one finite-element method at the node of
index i, Nh denotes the set of all node indices, and NH

h denotes the set of node indices enriched
by the function H(·), i.e., node indices for which the support of the corresponding shape function
is completely cut by the crack (see Fig. 2). The cut-off function is a C 1 piecewise third order
polynomial on [r0, r1] such that:





χ(r) = 1 if r < r0,
χ(r) ∈ (0, 1) if r0 < r < r1,
χ(r) = 0 if r > r1.

In our case we take χ(r) =
2r3 − 3(r0 + r1)r

2 + 6r1r0r + (r0 − 3r1)r
2
0

(r0 − r1)3
if r0 ≤ r ≤ r1 with

r0 = 0.01 and r1 = 0.49. The functions {Fj(x)}1≤j≤4 are defined in polar coordinates located
at the crack tip by

(10) {Fj(x), 1 ≤ j ≤ 4} =

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}
.

These functions allow to generate the asymptotic non-smooth displacement at the crack tip (see
[25]).
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Figure 2: A cracked domain.

An important point of the approximation is whether the normal and tangent contact pressure
(σn and σt) are regular or not at the crack lips. If it were singular, it should be taken into account
by the discretization of the multiplier. If we assume that there is a finite number of transition
points between contact and non contact zones and slip and non slip zones on the crack lips, we
are able to prove (similarly to the case of frictionless contact presented in [3]) that the normal
and tangent contact stress σn and σt are in H1/2(ΓC) (see Lemma B.7 in Appendix B).
Now, concerning the discretization of the multiplier, let x0, ...,xN be given distinct points lying
in ΓC and coming from the intersection between T h and ΓC . These nodes form a one-dimensional
family of meshes of ΓC denoted by Sh. The mesh Sh allows us to define a finite-dimensional
space W h approximating (WN )′ or (WT )

′ and a nonempty closed convex set Mh
N ⊂ W h (resp.

Mh
T (s) ⊂ W h) approximating MN (resp MT (s)). We consider two possible elementary choices

of W h:
W h

0 =
{
µh ∈ L2(ΓC) : µ

h
|(xi,xi+1)

∈ P0(xi,xi+1), ∀ 0 ≤ i ≤ N − 1
}
,

W h
1 =

{
µh ∈ C (ΓC) : µ

h
|(xi,xi+1)

∈ P1(xi,xi+1), ∀ 0 ≤ i ≤ N − 1
}
,

where Pk(E) denotes the space of polynomials of degree less or equal to k on E. This allows to
provide the following three elementary definitions of Mh

N and Mh
T (s):

Mh
N0 =

{
µh ∈W h

0 : µh ≤ 0 on ΓC

}
,(11)

Mh
T0(s) =

{
µh ∈W h

0 : |µh| ≤ s on ΓC

}
,(12)

Mh
N1 =

{
µh ∈W h

1 : µh ≤ 0 on ΓC

}
,(13)

Mh
T1(s) =

{
µh ∈W h

1 : |µh| ≤ s on ΓC

}
,(14)

Mh
N1,∗ =

{
µh ∈W h

1 :

∫

ΓC

µhψhdΓ ≥ 0, ∀ ψh ∈Mh
N1

}
.(15)
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MH
T1,∗(s) =

{
µh ∈W h

1 :

∫

ΓC

µhψhdΓ + s

∫

ΓC

|ψh|dΓ ≥ 0, ∀ ψH ∈W h
1

}
.(16)

Let Wh = W h ×W h. In the forthcoming convergence analysis, we will need more information
on the compatibility between the spaces Vh and Wh. To overcome this difficulty, we use the
local projection stabilization technique introduced in [5]. This technique consists in adding a
supplementary term, involving the local orthogonal L2 projection of the multiplier on a patch
decomposition of the mesh, to the discrete mixed formulation. The set of patches is build from
Sh. Indeed we aggregate the possibly very small elements of Sh in order to obtain a set of
patches having a minimal and a maximal size (for instance between 3h and 6h). In practice,
this operation can be done rather easily (even for three-dimensional problems). A practical way
to obtain such a patch decomposition will be described in the next section. An example of patch
aggregation is presented in Fig. 3. Let H be the maximum length of these patches and denote
by SH the corresponding subdivision of ΓC . Let

WH =
{
µH ∈ L2(ΓC) : µ

H
|S ∈ P0(S), ∀S ∈ SH

}
,

be the space of piecewise constants on this mesh and let WH = WH ×WH . Similarly to the
classical result presented in [16], we prove that an inf-sup condition is satisfied between Vh and
WH for minimal size of 3h for the patches (see Appendix A for the proof on a scalar field, which
can be straightforwardly generalized to vector field). This implies in particular that an optimal
convergence can be reached if the multiplier is taken in WH . However, this suppose a relatively
coarse approximation of the multiplier. Our approach is to use this result in order to stabilize
the approximation obtained with the multiplier defined on the finer discretization Wh. Let us
first recall the result in Lemma A.1 Appendix A. Under a condition for the patches S ∈ SH to
be approximated by a fixed set of line segments having approximatively the same length with
a length greater or equal to 3h, the following inf-sup (or LBB) condition holds for a constant
β∗ > 0, independent of h and H:

(17) ∀µH ∈ WH , sup
vh∈Vh

b(µH ,vh)

‖vh‖ ≥ β∗‖µH‖W′ .

In the following, we will assume that the conditions guaranteeing this inf-sup condition are
satisfied.
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Figure 3: Example of a patch aggregation (in red and green) of size approximatively h of the
intersection between the crack and the mesh.

Let PWHbe the local orthogonal projection operator from L2(ΓC) onto W
H which is defined

by

∀µ ∈ L2(ΓC), ∀S ∈ SH PWH (µ) |S =
1

mes(S)

∫

S
µdΓ,

and PWHbe the local vector orthogonal projection operator from L2(ΓC) × L2(ΓC) onto WH

which is defined by PWH (µ) = (PWH (µn), PWH (µt)), ∀µ = (µn, µt) ∈ L2(ΓC) × L2(ΓC). The
stabilized formulation consists in replacing the Lagrangian (8) by the following one:

Lh(v
h, µh) =

1

2
a(vh,vh)−L(vh)−b(µh,vh)−γ

2

∫

Γc

(µhn−PWH (µhn))
2dΓ−γ

2

∫

Γc

(µht−PWH (µht ))
2dΓ,

where, γ is a constant independent of the mesh size. Let Mh(s) = Mh
N × Mh

T (s) then the
corresponding optimality system reads as follows:
(18)



Find uh ∈ V h and λh = (λhn, λ
h
t ) ∈Mh(s) such that:

a(uh,vh)− b(λh,vh) = L(vh), ∀vh ∈ Vh,

b(µh − λh,uh) + γ

∫

Γc

(λhn − PWH (λhn))((µ
h
n − λhn)− (PWH (µhn)− PWH (λhn)))dΓ

+γ

∫

Γc

(λht − PWH (λht ))((µ
h
t − λht )− (PWH (µht )− PWH (λht )))dΓ ≥ 0, ∀µh = (µhn, µ

h
t ) ∈ Mh(s).

3.2 Existence and uniqueness of the solution to the stabilized problem

Lemma 3.1. Assume that (17) holds then for any γ > 0 there exists a unique solution of the
stabilized problem (18).

Proof. Let µh = (µhn, µ
h
t ) ∈ Mh(s) and uh be the solution of the following problem:

a(uh,vh)− L(vh) = b(µh,vh) =
〈
µhn, Jv

h
nK
〉
Wh′ ,Wh +

〈
µht , Jv

h
t K
〉
Wh′ ,Wh ∀vh ∈ Vh,

8



then using the fact that the inf-sup condition is satisfied in the orthogonal of the kernel of b(., .)
(which contains Wh) we prove that there exists a constant C such that:

(19) C‖uh‖+ ‖L‖V ′ ≥ ‖PWH (µh)‖W′ .

We have

Lh(u
h,µh) =

1

2
a(uh,uh)− L(uh)− b(µh,uh)− γ

2

∫

ΓC

(µhn − PWH (µhn))
2dΓ

−γ
2

∫

ΓC

(µht − PWH (µht ))
2dΓ,

= −1

2
a(uh,uh)− γ

2

∫

ΓC

(µhn − PWH (µhn))
2dΓ− γ

2

∫

ΓC

(µht − PWH (µht ))
2dΓ,

= −1

2
‖uh‖2 − γ

2
‖µhn − PWH (µhn)‖20,ΓC

− γ

2
‖µht − PWH (µht )‖20,ΓC

.

When ‖µh‖W′ → ∞ we have ‖PWH (µh)‖W′ → ∞ (using inequality (19) we have ‖uh‖ → ∞)
or/and ‖µh − PWH (µh)‖W′ → ∞, which implies that

lim
µh∈Mh(s),‖µh‖

W′→∞
Lγ(u

h,µh) = −∞.

Now the existence of a solution to Problem (18) follows from the fact that Vh and Mh(s)
are two nonempty closed convex sets, Lγ(·, ·) is continuous on Vh × Wh, Lγ(v

h, .) (resp.
Lγ(·,µh)) is concave (resp. strictly convex) for any vh ∈ Vh (resp. for any µh ∈ Mh) and
limvh∈Vh,‖vh‖→∞ Lγ(v

h, 0) = +∞ (resp. lim
µh∈Mh(s),‖µh‖

W′→∞ Lγ(u
h,µh) = −∞ ), see [19,

pp. 338–339]. The strict convexity of a(., .) implies the uniqueness of the first argument uh.
Now let λh

1 and λh
2 two solutions of (18) then we have:

b(λh
2 − λh

1 ,u
h) + γ

∫

Γc

(λh1n − PWH (λh1n))((λ
h
2n − λh1n)− (PWH (λh1n)− PWH (λh2n)))dΓ

+γ

∫

Γc

(λh1t − PWH (λh1t))((λ
h
2t − λh1t)− (PWH (λh1t)− PWH (λh2t)))dΓ ≥ 0,

b(λh
1 − λh

2 ,u
h) + γ

∫

Γc

(λh2n − PWH (λh2n))((λ
h
1n − λh2n)− (PWH (λh2n)− PWH (λh1n)))

+γ

∫

Γc

(λh2t − PWH (λh2t))((λ
h
1t − λh2t)− (PWH (λh2t)− PWH (λh1t)))dΓ ≥ 0,

and by summation of the last two inequalities we have:

‖(λh1n − λh2n)− (PWH (λh1n)−PWH (λh2n))‖20,ΓC
+ ‖(λh1t − λh2t)− (PWH (λh1t)−PWH (λh2t))‖20,ΓC

≤ 0,

therefore λh1n − λh2n = PWH (λh2n) − PWH (λh1n) and λh1t − λh2t = PWH (λh2t) − PWH (λh1t) (i.e.

λh1n − λh2n ∈WH and λh1t − λh2t ∈WH). Let λ̄
h
= (λh1n − λh2n, λ

h
1t − λh2t) and λ̄

H
= (PWH (λh1n)−

PWH (λh2n), PWH (λh1t)− PWH (λh2t)). From inequality (17) there exists vh ∈ Vh such that

(20) b(λ̄
H
,vh) ≥ β∗‖λ̄H‖W′‖vh‖,

and thus

β∗‖λ̄H‖W′ ≤ 1

‖vh‖b(λ̄
H
,vh) =

1

‖vh‖b(λ̄
h
,vh) =

1

‖vh‖a(ū
h,vh) = 0.

This implies the uniqueness of the second argument λh, therefore (18) has a unique solution.

9



3.3 Convergence analysis

In order to perform the error analysis, we recall the definition of the XFEM interpolation
operator Πh introduced in [26].

Figure 4: Decomposition of Ω into Ω1 and Ω2.

We assume that the displacement has the regularity (H2(Ω))2 except in the vicinity of the
crack-tip where the singular part of the displacement is a linear combination of the functions
{Fj(x)}1≤j≤4 given by (10) (see [17] for a justification). Let us denote by us the singular part
of u, ur = u− χus the regular part of u, and uk

r the restriction of ur to Ωk, k ∈ {1, 2}. Then,
for k ∈ {1, 2}, there exists an extension ũk

r ∈ (H2(Ω))2 of uk
r to Ω such that (see [1])

‖ũ1
r‖2,Ω . ‖u1

r‖2,Ω1 ,

‖ũ2
r‖2,Ω . ‖u2

r‖2,Ω2 .

Here and throughout the paper, we use the notation a . b to signify that there exists a constant
C > 0, independent of the mesh parameter h, the solution and the position of the crack-tip,
such that a ≤ Cb.

Definition 3.2 ([26]). Given a displacement field u satisfying u− us ∈ H2(Ω), and two exten-
sions ũ1

r and ũ2
r in H2(Ω) of u1

r and u2
r, respectively, we define Πhu as the element of Vh such

that
Πhu =

∑

i∈Nh

aiϕi +
∑

i∈NH
h

biHϕi + χus,

where ai, bi are given as follows for yi the finite-element node associated to ϕi:

if i ∈ {Nh \ NH
h } then ai = ur(yi),

if i ∈ NH
h and yi ∈ Ωk for k ∈ {1, 2} then for l = 3− k :





ai =
1

2

(
uk
r (yi) + ũl

r(yi)
)
,

bi =
(−1)k

2

(
uk
r (yi)− ũl

r(yi)
)
.

This XFEM interpolation operator satisfies the following interpolation error estimate [26]:

(21) ‖u−Πhu‖ . h‖u− χus‖2,Ω.
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Lemma 3.3. Let (u,λ) ∈ V ×M(s) be the solution of (7) and (uh,λh) ∈ Vh ×Mh(s) be the
solution of (18). Then we have:

α‖uh − u‖2 ≤ M‖uh − u‖‖vh − u‖+ ‖λhn − λn‖W′‖u− vh‖+ ‖λht − λt‖W′‖u− vh‖
+b(µh − λ,uh − u) + b(λh − µh,uh) + b(µh − λ,u)

+b(λ− λh,u), ∀vh ∈ Vh,µh ∈ Wh,(22)

β∗2‖λH − λ‖2
W′ ≤ 8M2‖u− uh‖2 + 8β∗2‖λ− µ̄H‖2

W′ + 8‖λ− µ̄h‖2
W′

+8‖µ̄H − µ̄h‖2
W′ + 8‖λH − λh‖2

W′ ∀µ̄h = (µ̄hn, µ̄
h
t ) ∈ Wh,(23)

with λH = PWH (λh), µ̄H = PWH (µ̄h).

Proof. For all vh ∈ Vh, µh ∈ Wh one has

a(uh − u,uh − u) = a(uh − u,vh − u) + a(uh − u,uh − vh),

= a(uh − u,vh − u) + b(λh − λ,uh − vh),

= a(uh − u,vh − u) + b(λh − λ,u− vh) + b(λh − λ,uh − u),

= a(uh − u,vh − u) + b(λh − λ,u− vh) + b(µh − λ,uh − u)

+b(λh − µh,uh) + b(µh − λ,u) + b(λ− λh,u).

From the V-ellipticity and the continuity of the bilinear form a(., .) we prove the first inequality
of Lemma 3.3. Now we shall give an estimate of the second inequality of Lemma 3.3. By noticing
that ∫

ΓC

(λ− λh) · JvhKdΓ = a(uh − u,vh) ∀vh ∈ Vh,

one obtains
∫

ΓC

(µ̄h − λh) · JvhKdΓ = a(uh − u,vh)

+

∫

ΓC

(µ̄h − λ) · JvhKdΓ, ∀(vh, µ̄h) ∈ Vh ×Wh.(24)

Now, for µH = λH − µ̄H ∈ WH with µ̄H ∈ WH the inf-sup condition (17) ensures the existence
of vh ∈ Vh such that together with (24) we get

β∗‖λH − µ̄H‖W′ ≤ 1

‖vh‖

∫

ΓC

(µ̄H − λH) · JvhK dΓ,

=
1

‖vh‖

∫

ΓC

(µ̄h − λh) · JvhK dΓ +
1

‖vh‖

∫

ΓC

(µ̄H − λH − (µ̄h − λh)) · JvhK dΓ,

≤ M‖uh − u‖+ ‖µ̄hn − λn‖W ′

N
+ ‖µ̄Hn − λHn − (µ̄hn − λhn)‖W ′

N

+‖µ̄th − λt‖W ′

T
+ ‖µ̄Ht − λHt − (µ̄ht − λht )‖W ′

T
.

As a consequence, one has

β∗‖λH − λ‖W′ ≤ β∗‖λ− µ̄H‖W′ +M‖uh − u‖+ ‖µ̄hn − λn‖W ′

N
+ ‖µ̄ht − λt‖W ′

T

+‖µ̄Hn − µ̄hn‖W ′

N
+ ‖λHn − λhn‖W ′

N
+ ‖µ̄Ht − µ̄ht ‖W ′

T
+ ‖λHt − λht ‖W ′

T
,

and

β∗2‖λH − λ‖2
W′ ≤ 8M2‖u− uh‖2 + 8β∗2‖λ− µ̄H‖2

W′ + 8‖λ− µ̄h‖2
W′

+8‖µ̄H − µ̄h‖2
W′ + 8‖λH − λh‖2

W′ ∀µ̄h ∈ Wh, ∀µ̄H ∈ WH .(25)
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In order to estimate these terms, we need to distinguish the different contact conditions (i.e., we
must specify the definition of Mh(s)). We consider hereafter three different standard discrete
contact conditions.

3.3.1 Conforming piecewise discontinuous discretization for multiplier Mh
N = Mh

N0

and Mh
T (s) =Mh

T0(s)

We first consider the case of non-positive discontinuous piecewise constant multipliers whereMh
N

is defined by (11) and Mh
T (s) is defined by (12). It is a conforming discretization on multiplier

as Mh
N0 ⊂MN and Mh

T0(s) ⊂MT (s).

Theorem 3.4. Let (u,λ) be the solution to Problem (7). Assume that ur ∈ (H2(Ω))2 and
λ ∈ (H1/2(ΓC))

2. Let (uh,λH) be the solution to the discrete problem (18) where Mh
N = Mh

N0

and Mh
T (s) =Mh

T0(s). Then, for any η > 0 we have

‖u− uh‖+ ‖λ− λh‖W′ . h‖u− χus‖2,Ω +H
3
4
− η

2
(
‖u‖3/2−η,Ω + ‖λ‖1/2,ΓC

)
.

Proof. In (22) we choose µh = PWH (λ) = (PWH (λn), PWH (λt)). We recall that the operator
PWH is defined for any v ∈ L2(ΓC) by

PWH (v) ∈WH ,

∫

ΓC

(v − PWH (v))µH dΓ = 0, ∀µH ∈WH ,

and satisfies the following error estimates for any 0 ≤ r ≤ 1 (see [10])

H−1/2‖v − PWH (v)‖−1/2,ΓC
+ ‖v − PWH (v)‖0,ΓC

. Hr‖v‖r,ΓC
.(26)

Clearly, µh ∈Mh(s) and using the inequality coming from (18) we have

b(λh − µh,uh) ≤ −γ‖λh − λH‖20,ΓC
,(27)

with λH = PWH (λh) = (PWH (λhn), PWH (λht )). Moreover

b(µh − λ,uh − u) = b(PWH (λ)− λ,uh − u) ≤ ‖PWH (λn)− λn‖W ′

N
‖uh − u‖

+‖PWH (λt)− λt‖W ′

T
‖uh − u‖,(28)

and

b(µh − λ,u) =

∫

ΓC

(PWH (λn)− λn)JunKdΓ +

∫

ΓC

(PWH (λt)− λt)JutKdΓ,

=

∫

ΓC

(PWH (λn)− λn)(JunK − PWH (JunK))dΓ

+

∫

ΓC

(PWH (λt)− λt)(JutK − PWH (JutK))dΓ,

≤ ‖PWH (λn)− λn‖0,ΓC
‖JunK − PWH (JunK)‖0,ΓC

+‖PWH (λt)− λt‖0,ΓC
‖JutK − PWH (JutK)‖0,ΓC

.(29)

Noting that Mh
N0 ⊂MN and Mh

T0 ⊂MT which implies

b(λ− λh,u) ≤ 0.(30)
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Using inequalities (22), (27), (28), (29) and (30) we have

α‖uh − u‖2 + γ‖λh − λH‖20,ΓC
≤ M‖uh − u‖‖vh − u‖+ ‖λhn − λn‖W′

N
‖u− vh‖

+‖λht − λt‖W′

T
‖u− vh‖

+‖PWH (λn)− λn‖W ′

N
‖uh − u‖

+‖PWH (λt)− λt‖W ′

T
‖uh − u‖

+‖PWH (λn)− λn‖0,ΓC
‖JunK − PWH (JunK)‖0,ΓC

+‖PWH (λt)− λt‖0,ΓC
‖JutK − PWH (JutK)‖0,ΓC

.(31)

By combining inequalities (23) and (31) one obtains for all µ̄h ∈ Wh, , µ̄H ∈ WH and vh ∈ Vh

(α− 8M2δ)‖u− uh‖2 + δβ∗2‖λ− λH‖2
W′ + (γc1 − 8δ)‖λh − λH‖2

W′

≤ M‖uh − u‖‖vh − u‖+ ‖PWH (λn)− λn‖W ′

N
‖uh − u‖+ ‖PWH (λt)− λt‖W ′

T
‖uh − u‖

+‖λhn − λn‖W ′

N
‖u− vh‖+ ‖λht − λt‖W ′

T
‖u− vh‖+ ‖PWH (λn)− λn‖0,ΓC

‖JunK − PWH (JunK)‖0,ΓC

+‖PWH (λt)− λt‖0,ΓC
‖JutK − PWH (JutK)‖0,ΓC

+ 8δβ∗2‖λ− µ̄H‖2
W′

+8δ‖λ− µ̄h‖2
W′ + 8δ‖µ̄h − µ̄H‖2

W′ ,

≤ δ

2
M2‖u− uh‖2 + 1

2δ
‖u− vh‖2 + δ

2
‖u− uh‖2 + 1

δ
‖λ− PWH (λ)‖2W′

+
ξ

2
‖λ− λh‖2

W′ +
1

ξ
‖u− vh‖2 + ‖PWH (λn)− λn‖0,ΓC

‖JunK − PWH (JunK)‖0,ΓC

+‖PWH (λt)− λt‖0,ΓC
‖JutK − PWH (JutK)‖0,ΓC

+8δβ∗2‖λ− µ̄H‖2
W′ + 8δ‖λ− µ̄h‖2

W′ + 8δ‖µ̄h − µ̄H‖2
W′ .

Then, for all µ̄h ∈ Wh, µ̄H ∈ WH and vh ∈ Vh, we deduce

(α− δ
17M2 + 1

2
)‖u− uh‖2 + (γc1 − 8δ − ξ

2
)‖λh − λH‖2

W′ + (δβ∗2 − ξ

2
)‖λ− λH‖2

W′

≤ (
1

2δ
+

1

ξ
)‖u− vh‖2 + 1

δ
‖PWH (λ)− λ‖2

W′ + 8δβ∗2‖λ− µ̄H‖2
W′

+
√
2‖PWH (λ)− λ‖0,ΓC

‖JuK − PWH (JuK)‖0,ΓC
+ 8δ‖λ− µ̄h‖2

W′ + 8δ‖µ̄h − µ̄H‖2
W′ .

We recall the following standard finite-element estimates:

‖u−Πhu‖ ≤ Ch‖ur‖2,Ω,
‖u− PWH (u)‖0,ΓC

≤ CH1−η‖u‖1−η,ΓC
,

‖λ− PWh(λ)‖W′ ≤ Ch‖λ‖1/2,ΓC
,

‖λ− PWH (λ)‖W′ ≤ CH‖λ‖1/2,ΓC
.

Finally, the theorem is established by taking δ < min
( 2α

17M2 + 1
;
γc1
8

)
, ξ < min

(
2δβ∗2; 2(γc1−

8δ)
)
, vh = Πhu and µ̄h = PWh(λ). �

3.3.2 Conforming piecewise continuous discretization for multiplier Mh
N =Mh

N1 and

Mh
T (s) =Mh

T1(s)

Now, we focus on the case of non-positive continuous piecewise affine multipliers where Mh
N is

given by (13) and Mh
T (s) is given by (14)
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Theorem 3.5. Let (u,λ) be the solution to Problem (7). Assume that ur ∈ (H2(Ω))2 and
λ ∈ (H1/2(ΓC))

2. Let (uh,λh) be the solution to the discrete problem (18) where Mh
N = Mh

N1

and Mh
T =Mh

T1. Then, for any η > 0 we have

‖u− uh‖+ ‖λ− λh‖W′ . h‖u− χus‖2,Ω +H
1
4
(
‖u‖3/2−η,Ω + ‖λ‖1/2,ΓC

)
.

Proof. We choose µh = rh(λ) = (rhλn, r
hλt) in (22) where rh : L1(ΓC) 7→ W h

1 is a quasi-
interpolation operator which preserves the non-positivity defined for any function v in L1(ΓC)
by

rhv =
∑

x∈Nh

αx(v)ψx,

where Nh represents the set of nodes x0, ...,xN in ΓC , ψx is the scalar basis function of W h
1

(defined on ΓC) at node x satisfying ψx(x
′) = δx,x′ for all x′ ∈ Nh and

αx(v) =

( ∫

ΓC

vψx dΓ

)( ∫

ΓC

ψx dΓ

)−1

.

The approximation properties of rh are proved in [22]. We simply recall hereafter the two
main results. The first result is concerned with L2-stability property of rh.

Lemma 3.6. For any v ∈ L2(ΓC) and any E ∈ T h we have

‖rhv‖0,E . ‖v‖0,γE ,
if |v| ≤ s then |rhv| ≤ s on ΓC ,

where γE = ∪{F∈Th: F̄∩Ē 6=∅}F̄ .

Proof. Let E ∈ TH and ψ1, ψ2 be the classical scalar basic functions related to E. Using the
definition of αx(v) and the Cauchy-Schwartz inequality we get:

‖rhv‖0,E ≤ α1‖ψ1‖0,ΓC
+ α2‖ψ2‖0,ΓC

≤ ‖v‖0,γE
‖ψ1‖20,ΓC∫
ΓC
ψ1 dΓ

+ ‖v‖0,γE
‖ψ2‖20,ΓC∫
ΓC
ψ2 dΓ

. ‖v‖0,γE .

Using the definition of αx(v) and the partition of unity we have the second inequality:

|rhv| =
∣∣∣∣
∑

x∈Nh

αx(v)ψx

∣∣∣∣ ≤
∑

x∈Nh

|αx(v)|ψx ≤ s.

�

Note that the proof of the first inequality of this lemma is also given in [22] using the additional
assumption that the mesh T h is quasi-uniform. The second result is concerned with the L2-
approximation properties of rh.

Lemma 3.7. For any v ∈ Hη(ΓC), 0 ≤ η ≤ 1, and any E ∈ T h we have

‖v − rhv‖0,E . hη‖v‖η,γE ,(32)

where γE = ∪{F∈EH
C
: F̄∩Ē 6=∅}F̄ .
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Noting that λn ≤ 0 on ΓC (resp. |λt| ≤ s on ΓC) then r
hλn ≤ 0 on ΓC (resp. |rhλt| ≤ s on

ΓC) which implies rhλn ∈ Mh
N1 (resp. rhλt ∈ Mh

T1(s)). Using the inequality coming from (18)
we have

b(λh − µh,uh) ≤ γ

∫

Γc

(λh − λH)((µh − λh)− (µH − λH))dΓ,

= −γ‖λh − λH‖20,ΓC
+ γ

∫

Γc

(λh − λH)(µh − µH)dΓ,

≤ −γ
2
‖λh − λH‖20,ΓC

+
γ

2
‖µh − µH‖20,ΓC

.(33)

Moreover

b(µh − λ,uh − u) = b(rh(λ)− λ,uh − u)

≤ ‖rh(λn)− λn‖0,ΓC
‖uh − u‖+ ‖rh(λt)− λt‖0,ΓC

‖uh − u‖.(34)

Then we have

b(µh − λ,u) =

∫

ΓC

(rh(λn)− λn)JunKdΓ +

∫

ΓC

(rh(λt)− λt)JutKdΓ,

≤ ‖rh(λn)− λn‖0,ΓC
‖JunK‖0,ΓC

+ ‖rh(λt)− λt‖0,ΓC
‖JutK‖0,ΓC

dΓ

≤
√
2‖rh(λ)− λ‖0,ΓC

‖JuK‖0,ΓC
.(35)

We have Mh
N1 ⊂MN and Mh

T1 ⊂MT then

b(λ− λh,u) ≤ 0.(36)

Using inequalities (22), (33), (34), (35) and (36) we have

α‖uh − u‖2 + γ

2
‖λh − λH‖20,ΓC

≤ M‖uh − u‖‖vh − u‖+ ‖λhn − λn‖W ′

N
‖u− vh‖

+‖λht − λt‖W ′

T
‖u− vh‖+ ‖rh(λn)− λn‖0,ΓC

‖uh − u‖
+‖rh(λt)− λt‖0,ΓC

‖uh − u‖+
√
2‖rh(λ)− λ‖0,ΓC

‖JuK‖0,ΓC

+
γ

2
‖µh − µH‖20,ΓC

.(37)

By combining inequalities (23) and (37) one obtains for all µ̄h ∈ Wh and vh ∈ Vh

(α− 8M2δ)‖u− uh‖2 + δβ∗2‖λ− λH‖2
W′ + (

γc1
2

− 8δ)‖λh − λH‖2
W′

≤ M‖uh − u‖‖vh − u‖+ ‖λhn − λn‖W ′

N
‖u− vh‖+ ‖λht − λt‖W ′

T
‖u− vh‖

+‖rh(λn)− λn‖0,ΓC
‖uh − u‖+ ‖rh(λt)− λt‖0,ΓC

‖uh − u‖
+
√
2‖rh(λ)− λ‖0,ΓC

‖JuK‖0,ΓC
+ 8δβ∗2‖λ− µ̄H‖2

W′ + 8δ‖λ− µ̄h‖2
W′

+8δ‖µ̄h − µ̄H‖2
W′ +

γ

2
‖µh − µH‖20,ΓC

,

≤ δ

2
M2‖u− uh‖2 + 1

2δ
‖u− vh‖2 + δ

2
‖u− uh‖2 + 1

δ
‖rh(λ)− λ‖20,ΓC

+
ξ

2
‖λ− λh‖2

W′

+
1

ξ
‖u− vh‖2 +

√
2‖rh(λ)− λ‖0,ΓC

‖JuK‖0,ΓC
+
γ

2
‖µh − µH‖20,ΓC

+8δβ∗2‖λ− µ̄H‖2
W′ + 8δ‖λ− µ̄h‖2

W′ + 8δ‖µ̄h − µ̄H‖2
W′ .
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Then, for all µ̄h ∈ Wh and vh ∈ Vh, we deduce

(α− δ
17M2 + 1

2
)‖u− uh‖2 + (

γc1
2

− 8δ − ξ

2
)‖λh − λH‖2

W′ + (δβ∗2 − ξ

2
)‖λ− λH‖2

W′

≤ (
1

2δ
+

1

ξ
)‖u− vh‖2 + 1

δ
‖rh(λ)− λ‖0,ΓC

+
√
2‖rh(λ)− λ‖0,ΓC

‖JuK‖0,ΓC
+
γ

2
‖µh − µH‖20,ΓC

+8δβ∗2‖λ− µ̄H‖2
W′ + 8δ‖λ− µ̄h‖2

W′ + 8δ‖µ̄h − µ̄H‖2
W′ .

Finally, the theorem is established by taking δ < min
( 2α

17M2 + 1
;
γc1
16

)
, ξ < min

(
2δβ∗2; γc1 −

16δ
)
, vh = Πhu and µ̄h = PWh(λ). �

3.3.3 Nonconforming piecewise continuous discretization for multiplierMh
N =Mh

N1,∗

and Mh
T =Mh

T1,∗(s)

This choice corresponds to “weakly non-positive” continuous piecewise affine multipliers where
Mh

N =Mh
N1,∗ is given by (15) and Mh

T =Mh
T1,∗(s) is given by (16).

Theorem 3.8. Let (u,λ) be the solution to Problem (7). Assume that ur ∈ (H2(Ω))2 and
λ ∈ (H1/2(ΓC))

2. Let (uh,λH) be the solution to the discrete problem (18) where Mh
N =Mh

N1,∗

and Mh
T =Mh

T1,∗(s). Then, for any η > 0 we have

‖u− uh‖+ ‖λ− λh‖W′ . h‖u− χus‖2,Ω +H
1
2
− η

2
(
‖u‖3/2−η,Ω + ‖λ‖1/2,ΓC

)
.

Proof. In (22) we choose µh = PWh(λ) = (PWh(λn), PWh(λt)) where PWh denotes the L2(ΓC)-
projection onto WH

1 . We recall that the operator PWh is defined for any v ∈ L2(ΓC) by

PWh(v) ∈W h
1 ,

∫

ΓC

(v − PWh(v))µdΓ = 0, ∀µ ∈W h
1 ,

and satisfies the following error estimates for any 0 ≤ r ≤ 2 (see [10])

H−1/2‖v − PWh(v)‖−1/2,ΓC
+ ‖v − PWh(v)‖0,ΓC

≤ Chr‖v‖r,ΓC
.(38)

Clearly, PWh(λ) ∈ Mh(s) and using the inequality coming from (18) we have

b(λh − µh,uh) ≤ γ

∫

Γc

(λh − λH)((µh − λh)− (µH − λH))dΓ,

= −γ‖λh − λH‖20,ΓC
+ γ

∫

Γc

(λh − λH)(µh − µH)dΓ,

≤ −γ
2
‖λh − λH‖20,ΓC

+
γ

2
‖µh − µH‖20,ΓC

.(39)

Moreover

b(µh − λ,uh − u) = b(PWh(λ)− λ,uh − u)

≤ ‖PWh(λn)− λn‖W ′

N
‖uh − u‖+ ‖PWh(λt)− λt‖W ′

T
‖uh − u‖.(40)
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and

b(µh − λ,u) =

∫

ΓC

(PWhλn − λn)JunKdΓ +

∫

ΓC

(PWhλt − λt)JutKdΓ,

=

∫

ΓC

(PWhλn − λn)(JunK − PWhJunK)dΓ

+

∫

ΓC

(PWhλt − λt)(JutK − PWhJutK)dΓ,

≤ ‖PWhλn − λn‖0,ΓC
‖JunK − PWhJunK‖0,ΓC

+‖PWhλt − λt‖0,ΓC
‖JutK − PWhJutK‖0,ΓC

,

≤
√
2‖PWh(λ)− λ‖0,ΓC

‖JuK − PWh(JuK)‖0,ΓC
.(41)

We have

b(λ− λh,u) =

∫

ΓC

(λn − λhn)JunKdΓ +

∫

ΓC

(λt − λht )JutKdΓ.(42)

∫

ΓC

(λn − λhn)JunKdΓ = −
∫

ΓC

λhnJunKdΓ,

≤
∫

ΓC

λhn(I
h(JunK)− JunK)dΓ,

≤
∫

ΓC

(λhn − λ)(Ih(JunK)− JunK)dΓ +

∫

ΓC

λ(Ih(JunK)− JunK)dΓ,

≤ ‖λhn − λn‖W ′

N
‖Ih(JunK)− JunK‖WN

+‖λn‖0,ΓC
‖Ih(JunK)− JunK‖0,ΓC

.(43)

∫

ΓC

(λt − λht )JutKdΓ =

∫

ΓC

(λt − λht )(JutK − IhJutK)dΓ +

∫

ΓC

(λt − λht )I
hJutKdΓ

−
∫

ΓC

λtJutKdΓ− s

∫

ΓC

|JutK|dΓ,

≤
∫

ΓC

(λt − λht )(JutK − Ih(JutK))dΓ +

∫

ΓC

λt(I
h(JutK)− JutK)dΓ

+s

∫

ΓC

(|Ih(JutK)| − |JutK|)dΓ,

≤
∫

ΓC

(λt − λht )(JutK − Ih(JutK))dΓ +

∫

ΓC

λt(I
h(JutK)− JutK)dΓ

+s

∫

ΓC

|Ih(JutK)− JutK|dΓ,

≤ ‖λt − λht ‖W ′

T
‖JutK − Ih(JutK)‖WT

+‖λt‖0,ΓC
‖JutK − Ih(JutK)‖0,ΓC

+ s‖JutK − Ih(JutK)‖0,ΓC
.(44)

Using (43) and (44) we have

b(λ− λh,u) ≤ ‖λn − λhn‖W ′

N
‖JuK − IhJuK‖W + ‖λt − λht ‖W ′

T
‖JuK − IhJuK‖W

+
√
2‖λ‖0,ΓC

‖JuK − Ih(JuK)‖0,ΓC

+s‖JutK − Ih(JutK)‖0,ΓC
.(45)
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Using inequalities (39), (40), (41) and (45) we have

α‖uh − u‖2 + γ‖λh − λH‖20,ΓC
≤ M‖uh − u‖‖vh − u‖+ ‖λhn − λn‖W ′

N
‖u− vh‖

+‖λht − λt‖W ′

T
‖u− vh‖+ ‖PWh(λn)− λn‖W ′

N
‖uh − u‖

+‖PWh(λt)− λt‖W ′

T
‖uh − u‖

+
√
2‖PWh(λ)− λ‖0,ΓC

‖JuK − PWh(JuK)‖0,ΓC

+‖λn − λhn‖W ′

N
‖JunK − Ih(JunK)‖WN

+‖λt − λht ‖W ′

T
‖JutK − Ih(JutK)‖WT

+
√
2‖λ‖0,ΓC

‖JuK − Ih(JuK)‖0,ΓC

+s‖JutK − Ih(JutK)‖0,ΓC
+
γ

2
‖µh − µH‖20,ΓC

.(46)

By combining inequalities (23) and (46) one obtains for all µ̄h ∈ Wh and vh ∈ Vh

(α− 8M2δ)‖u− uh‖2 + δβ∗2‖λ− λH‖2
W′ + (γc1 − 8δ)‖λh − λH‖2

W′

≤ M‖uh − u‖‖vh − u‖+ ‖λhn − λn‖W ′

N
‖u− vh‖+ ‖λht − λt‖W ′

T
‖u− vh‖

+‖PWh(λn)− λn‖W ′

N
‖uh − u‖+ ‖PWh(λt)− λt‖W ′

T
‖uh − u‖

+
√
2‖PWh(λ)− λ‖0,ΓC

‖JuK − PWh(JuK)‖0,ΓC
+ 8δβ∗2‖λ− µ̄H‖2

W′

+‖λn − λhn‖W ′

N
‖JunK − Ih(JunK)‖WN

+ ‖λt − λht ‖W ′

T
‖JutK − Ih(JutK)‖WT

+
√
2‖λ‖0,ΓC

‖JuK − Ih(JuK)‖0,ΓC
+ s‖JutK − Ih(JutK)‖0,ΓC

+
γ

2
‖µh − µH‖20,ΓC

+ 8δ‖λ− µ̄h‖2
W′ + 8δ‖µ̄h − µ̄H‖2

W′ ,

≤ δ

2
M2‖u− uh‖2 + 1

2δ
‖u− vh‖2 + δ

2
‖u− uh‖2 + 1

δ
‖λ− PWh(λ)‖2W′

+
1

ξ
‖u− vh‖2 +

√
2‖PWh(λ)− λ‖0,ΓC

‖JuK − PWH JuK‖0,ΓC
+
ξ

2
‖λ− λh‖2

W′

+8δβ∗2‖λ− µ̄H‖2
W′ + 8δ‖λ− µ̄h‖2

W′ + 8δ‖µ̄h − µ̄H‖2
W′

+
ξ

2
‖λ− λh‖2

W′ +
1

ξ
‖JuK − Ih(JuK)‖2W +

√
2‖λ‖0,ΓC

‖JuK − Ih(JuK)‖0,ΓC

+s‖JutK − Ih(JutK)‖0,ΓC
+
γ

2
‖µh − µH‖20,ΓC

.

Then, for all µ̄h ∈ Wh and vh ∈ Vh, we deduce

(α− δ
17M2 + 1

2
)‖u− uh‖2 + (

γc1
2

− 8δ − ξ)‖λh − λH‖2
W′ + (δβ∗2 − ξ)‖λ− λH‖2

W′

≤ (
1

2δ
+

1

ξ
)‖u− vh‖2 + 1

δ
‖PWh(λ)− λ‖0,ΓC

+
√
2‖PWh(λ)− λ‖0,ΓC

‖JuK − PWH JuK‖0,ΓC

+
γ

2
‖µh − µH‖20,ΓC

+ 8δβ∗2‖λ− µ̄H‖2
W′ + 8δ‖λ− µ̄h‖2

W′ + 8δ‖µ̄h − µ̄H‖2
W′

+
1

ξ
‖JuK − Ih(JuK)‖2W +

√
2‖λ‖0,ΓC

‖JuK − Ih(JuK)‖0,ΓC
+ s‖JutK − Ih(JutK)‖0,ΓC

.

Finally, the theorem is established by taking δ < min
( 2α

17M2 + 1
;
γc1
16

)
, ξ < min

(
δβ∗2;

γc1
2

−8δ
)
,

vh = Πhu and µ̄h = PWh(λ). �

Remark: Let us note that if we assume that u ∈ (H2(Ω))2 in Theorem 3.8, the proved rate of
convergence becomes h3/4.
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4 Numerical experiments

The numerical tests were performed on the uncracked square defined by

Ω̄ = [0, 1] × [−0.5, 0.5],

and the considered crack is the line segment ΓC = ]0, 0.5[ × {0} (see Fig. 5). Three degrees of

Figure 5: Cracked specimen.

freedom are blocked in order to eliminate rigid body motions (Fig. 5). In order to have both
contact and non contact, slip and non slip zones between the crack lips, we impose the following
body force vector field

f(x, y) =

(
0

3.5x(1− x)y cos(2πx)

)
.

Neumann boundary conditions are prescribed as follows:

g(0, y) = g(1, y) =

(
0

0.4 sin(2πy)

)
−0.5 ≤ y ≤ 0.5,

g(x,−0.5) = g(x, 0.5) =

(
0
0

)
0 ≤ x ≤ 1.

We assume that the slip bound is constant (s = 0.09). An example of a unstructured mesh
used is presented in Fig. 6. The numerical tests are performed with GETFEM++, the C++
finite-element library developed by Y. Renard’s team (see [27]).

4.1 Numerical solution

The algebraic formulation of Problem (18) is given as follows

(47)





Find U ∈ R
N , LN ∈M

h
N and LT ∈M

h
T (s) such that

KU −B
T

NLN −B
T

TLT = F,

(LN − LN )T (BNU +DNγLN ) ≥ 0, ∀LN ∈M
h
N ,

(LT − LT )
T (BTU +DTγLT ) ≥ 0, ∀LT ∈M

h
T (s),

where U is the vector of degrees of freedom (d.o.f.) for uh, LN (resp. LT ) is the vector of d.o.f.

for the normal multiplier λhn (resp. for the tangent multiplier λht ), M
h
N (resp. M

h
T (s)) is the set

of vectors LN (resp. LT ) such that the corresponding multiplier lies in Mh
N (resp. in Mh

T (s)),
K is the classical stiffness matrix coming from the term a(uh,vh), F is the right-hand side
corresponding to the Neumann boundary condition and the volume forces, and BN , BT , DNγ ,
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Figure 6: Unstructured mesh.

DTγ are the matrices corresponding to the terms b(λhn,v
h), b(λht ,v

h), γ
∫
Γc
(λhn−PWH (λhn))(µ

h
n−

λhn)dΓ and γ
∫
Γc
(λht − PWH (λht ))(µ

h
t − λht )dΓ, respectively.

The inequalities in (47) can be expressed as an equivalent projection

(48) LN = P
M

h
N

(LN − r(BNU +DNγLN )),

(49) LT = P
M

h
T (s)

(LT − r(BTU +DTγLT )),

where r is a positive augmentation parameter. This last step transforms the contact conditions
into nonlinear equations and we have to solve the following system:

(50)





Find U ∈ R
N , LN ∈M

h
N and LT ∈M

h
T such that

KU −B
T

NLN −B
T

TLT − F = 0,

−1

r

[
LN − P

M
h
N

(LN − r(BNU +DNγLN ))

]
= 0,

−1

r

[
LT − P

M
h
T (s)

(LT − r(BTU +DTγLT ))

]
= 0.

This allows us to use the semi-smooth Newton method (introduced for contact and friction
problems in [2]) to solve Problem (50). The term ‘semi-smooth’ comes from the fact that
projections are only piecewise differentiable. Practically, it is one of the most robust algorithms
to solve contact problems with or without friction. In order to write a Newton step, one has to
compute the derivative of the projection (48) and (49). An analytical expression can only be
obtained when the projection itself is simple to express. This is the case for instance when the
set Mh(s) is chosen such that the contact condition is satisfied on each finite-element node of
the contact boundary (such as Mh

0(s) or M
h
1(s)). In this case, the projection can be expressed

component-wise (see [24]).
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In order to keep the independence between the mesh and the crack, the approximation space
W h for the multiplier is chosen to be the trace on ΓC of a Lagrange finite-element method
defined on the same mesh as Vh and its degree will be specified in the following. Let us denote
Xh the space corresponding to the Lagrange finite-element method. The choice of a basis of
the trace space W h = Xh|ΓC

is not completely straightforward. Indeed, the traces on ΓC of

the shape functions of Xh may be linearly dependent. A way to overcome this difficulty is to
eliminate the redundant functions. Our approach in the presented numerical experiments is as
follows. In a first time, we eliminate locally dependent columns of the mass matrix

∫
ΓC
ψiψjdΓ,

where ψi is the finite-element shape function of Xh, with a block-wise Gram-Schmidt algorithm.
In a second time, we detect the potential remaining kernel of the mass matrix with a Lanczos
algorithm.

The decomposition into patches is made using a graph partitioner algorithm. In the presented
numerical tests, we use the free software METIS [23]. The nodes of the graph consist in the
elements having an intersection with ΓC and the edges connect adjacent elements. Additionally,
a load corresponding to the size of the intersection is considered on each elements. The partition
is a very fast operation.

4.2 Numerical tests

In this section, we present numerical tests of the stabilized and non stabilized unilateral contact
problems for the following, differently enriched, finite-element methods: P2/P1, P2/P0, P1+/P1,
P1/P1, P1/P0. The notation Pi/Pj (resp. P1+/P1) means that the displacement is approximated
with a Pi extended finite-element method (resp. a P1 extended finite-element method with an
additional cubic bubble function) and the multiplier with a continuous Pj finite-element method
for j > 0 (resp. continuous P1 finite-element method).

The numerical tests were performed on non-structured meshes with h = 0.108, 0.057, 0.03, 0.016,
0.008, respectively. The reference solution is obtained with a structured P2/P1 method and
h = 0.0021. The von Mises stress of the reference solution is presented in Fig. 7(c). Its distribu-
tion shows that the von Mises stress is not singular at the crack lips. The normal and tangent
contact stress of the reference solution are presented in Fig. 7(a) and Fig. 7(b), respectively.
The normal and tangent contact stresses are not singular at the crack lips which confirms the
theoretical result.

Without stabilization: The curves in the non-stabilized case are given in Fig. 8(a) for the
error in the L2(Ω)-norm on the displacement, in Fig. 8(b) for the error in the H1(Ω)-norm on
the displacement and in Fig. 8(c) for the error in the L2(ΓC)-norm on the contact stress. The
P1/P1 and P1/P0 versions generally work without stabilization even though a uniform inf-sup
condition cannot be proven. Fig. 8(a) shows that the rate of convergence in the error L2(Ω)-norm
is approximatively of order 2.2 for the P2/Pj methods and of order 1.6 for the P1/Pj methods.
Note that the singularity due to the transition between contact and non contact is expected to
be in H5/2−η(Ω) for any η > 0. Theoretically, this limits the convergence rate to 3/2− η in the
H1(Ω)-norm.

Fig. 8(b) shows that the rate of convergence in energy norm is approximatively of order 2
for the P2/Pj methods and of order 1.2 for the P1/Pj methods. Fig. 8(c) shows that, the rate
of convergence in the error L2(ΓC)-norm is optimal for the P2/Pj methods (of order 1) and not
optimal for the remaining couple of elements (approximatively of order 0.3 for the P1/P1 and
P1/P0 methods and approximatively of order 0.7 for the P1 + /P1 method). It seems that the
presence of some spurious modes affects these rates of convergence.
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(a) Normal contact stress for the reference solution (b) Tangent contact stress for the reference solution

(c) Von Mises stress for the reference solution

Figure 7: Von Mises stress and contact stress for the reference solution (Note that the presence
of friction in the non-contact zone (i.e. λn 6= 0) is due to the use of Tresca model).

Stabilized method: The curves in the stabilized case are given in Fig. 9(a) for the error
in the L2(Ω)-norm on the displacement, in Fig. 9(b) for the error in the H1(Ω)-norm on the
displacement and in Fig. 9(c) for the error in the L2(ΓC)-norm of the contact stress. Similarly
to the non stabilized method, Fig. 9(b) shows that we have an optimal rate of convergence, with
a slight difference, for the error in the L2(Ω)-norm and the H1(Ω)-norm on the displacement.
For the error in the L2(ΓC)-norm of the contact stress, Fig. 9(c) shows that the local projection
stabilization eliminates the spurious modes for the P1/P1, P1/P0 and P1 + /P1 methods.
Concerning the error in L2(ΓC)-norm the value of the stabilization parameter can also be divided
into two zones (see Fig. 10(a), and Fig. 10(b)). The first zone is where the error remains almost
constant when the stabilization parameter γ increases. The second zone is where the error
decreases when the stabilization parameter γ increases. Note that for a relatively large mesh
size, the local projection stabilization has no influence. Now, concerning the minimal patch
size, the inf-sup condition is proven to be satisfied in [16] for a size greater or equal to 3h.
Numerically, the inf-sup condition seems to be satisfied for smaller values of the minimal patch
size. In our numerical experiments, we found an optimal value between h and 2h. For this
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(a) Error in L2(Ω)-norm of the displacement (b) Error in H1(Ω)-norm of the displacement

(c) Error in L2(ΓC)-norm of the contact stress

Figure 8: Convergence curves in the non stabilized case
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(a) Error in L2(Ω)-norm of the displacement (b) Error in H1(Ω)-norm of the displacement

(c) Error in L2(ΓC)-norm of the contact stress

Figure 9: Convergence curves in the stabilized case

interval of values we have the same result, with a slight difference, as presented in Fig. 10(a)
and Fig. 10(b).

5 Conclusion

We adapted the local projection stabilization technique to the nonlinear small strain elastostatics
problem with Tresca frictional contact. A main advantage compared to some other stabilization
techniques, like Barbosa-Hughes one, is that it only affects the multiplier equation in a manner
that is independent of the problem to be solved.
We obtained an existence and uniqueness results for the approximated Tresca frictional contact
problem in elasticity. Concerning the three contact conditions we considered theoretically, the
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(a) P1/P0-elements (b) P1/P1-elements

Figure 10: Influence of the stabilization parameter in L2(ΓC)-norm of the contact stress

given a priori error estimates are obviously sub-optimal. This is probably due to technical
reasons.
In the numerical tests we considered, the stabilized methods have indeed an optimal rate of
convergence. Similarly to [3], the unstabilized methods have also an optimal rate of convergence
concerning the displacement. This may lead to the conclusion that no locking phenomenon was
present in the numerical situation we studied despite the non-satisfaction of the discrete inf-sup
condition. The fact that such a locking situation may exist or not in the studied framework
(contact problem on crack lips for a linear elastic body) is an open question.

Acknowledgments. The first author acknowledges French manufacture of tires Michelin

for their support.

Appendix A : Proof of the Inf-sup condition

Lemma A.1. Assume that the length of each segment S of the subdivision SH of ΓC is more
than 3h and less than Lh with L > 0 a given constant. Then, there exists a constant β∗ > 0,
independent of h and H, such that

(51) ∀µH ∈WH , sup
vh∈V h

b(vh, µH)

‖vh‖V
≥ β∗‖µH‖W ′ .

with b(vh, µh) =
〈
µh, JvhK

〉
W ′,W

Proof. In order to prove this condition we use a general technique introduced by Brezzi and
Fortin in their book [12]. This technique can be summarized in the following proposition:

Proposition A.2 ([12]). Assume that

(52) ∀ µ ∈W ′, sup
v∈V

b(v, µ)

‖ v ‖V
≥ β ‖µ‖W ′ ,
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and assume that there exists a family of uniformly continuous operators Πh from V into V h

satisfying:

b(Πhw − w, µh) = 0, ∀µh ∈ (W h)′,(53a)

‖ Πhv ‖V 6 c ‖ v ‖v,(53b)

with c independent of h. Then we have

(54) ∀ µh ∈W h, sup
vh∈V h

b(vh, µh)

‖ vh ‖V h

≥ k0 ‖µh‖W ′ ,

with k0 =
β

c
.

In our case the inf-sup condition (52) is satisfied. Indeed, in the rest of this proof, we prove
the LBB condition relying on Proposition A.2.

We have the length of each segment S of the subdivision SH of ΓC is not less than 3h, then
similarly to [16] we can find a node aS such that the macro-element ∆S consisting of the six
triangles of T h with common vertex aS satisfies the following properties:

• S intersects at least one interior segment of ∆S at a distance from aS that is no larger
then half the length of this segment.

• The end point of S does not belong to the interior of ∆S .

• If S and S
′

are any two segments of SH , ∆S
⋂
∆S′ is either empty or reduced to a node

or a segment of T h, in other words, the macro-elements related to SH do not overlap.

Let Π1 the H1-stable interpolation operator of Vh defined in [4] by:

Definition A.3. Given a displacement field u ∈ H1(Ω) and two extensions ũ1 and ũ2 of u1 and
u2 in H1(Ω), respectively, we define Π1u as the element of V h such that:

(55) Π1u =
∑

j∈I\IH

αjϕj +
∑

j∈IH

[
βjϕjH1 + γiϕjH2

]
,

with

H1(x) =

{
1 if x ∈ Ω1,

0 if x ∈ Ω2,
H2(x) = 1−H1(x),

αi =
1

| ∆i |

∫

∆i

ũkdx if xi ∈ Ωk, βi =
1

| ∆i |

∫

∆i

ũ1dx,

γi =
1

| ∆i |

∫

∆i

ũ2dx, Sj :=
⋃

{S ∈ T h : supp(ϕj) ∩ S 6= ∅},

where ∆j is the maximal ball centered at xj such that ∆j ⊂ Sj and {xj}Jj=1 are the interior

nodes of mesh T h.

Then for any v ∈ H1(Ω), we propose the following restriction Πhv:

(56) Πhv = Π1v +
∑

S∈SH

CSHϕaS ,
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where ϕaS denotes the basis function of V h, with support ∆S , that takes the value 1 at the node
aS and 0 at all other nodes of T h, H is the Heaviside function and each constant CS is chosen
such that

(57)

∫

S
JΠhvKdΓ =

∫

S
JvKdΓ.

It remains to show that such constant CS exists and to establish the stability inequality (53a).
Using the definition of Πhv we have

∫

S
JΠ1vK − JvKdΓ +

∑

k∈SH

Ck

∫

S
ϕakdΓ = 0.

Using the properties of ∆S we have

(58) CS = − 1∫
S ϕaSdΓ

∫

S
JΠ1vK − JvKdΓ.

To derive an upper bound for the numerator of (58), we need the next two lemmas.

Lemma A.4. [16] Let T̂ denotes the reference unit triangle and let l̂ be any straight line segment
that intersects T̂ . Then, there exist a constant Ĉ, independent of l̂ such that

(59) ∀ŵ ∈ H1(T̂ ), ‖ŵ‖
0,l̂

≤ Ĉ‖ŵ‖
1,T̂
.

Lemma A.5. [16] Let l be a straight line segment that intersects a non degenerate triangle T
and let l̂ be its image on the reference unit triangle T̂ by the affine transformation that maps
T̂ onto T . Let JT denote the Jacobian matrix of this transformation and let ‖ det(JT )‖ be its
Euclidean norm. Then,

(60)
|l|
|l̂|

≤ ‖JT ‖.

Using these two last lemmas one can prove:

Lemma A.6. [16] We always have:

(61)

∫

S
ϕaSdΓ ≥ 1

4
√
2
h.

Now let us show that the operator Πhv defined by (56) satisfies the stability estimate (53b)
with a constant C independent of h and H. For any v ∈ H1(Ω), we have

‖Πhv‖1,Ω ≤ ‖Π1v‖1,Ω + ‖
∑

S∈SH

CSHϕaS‖1,Ω.

As each ϕaS has support ∆S and these supports are all disjoint, we have

‖
∑

S∈SH

CSHϕaS‖1,Ω ≤
( ∑

S∈SH

|CS |2‖ϕaS‖21,∆S

)1/2

,

we can easily see as in [16] that there exist, a constant Ĉ3 independent of h and H such that

(62) ‖ϕaS‖1,∆S
≤ Ĉ3.
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Next let us find a bound for CS . Let li denotes the straight line segments of S and Ti the element
of T h intersected by li. We denote by E1 (resp. E2) the continuous extension of Π1v|Ω1

(resp.

Π1v|Ω2
) defined by:

{
E1v =

∑
j∈I\IH

αjϕj +
∑

j∈IH
βjϕj in Ω,

E2v =
∑

j∈I\IH
αjϕj +

∑
j∈IH

γiϕj in Ω.

From (58) and (61), we have for all S ∈ SH

|CS | ≤ 4
√
2

h

∣∣∣∣
∫

S
JΠ1vK − JvKdΓ

∣∣∣∣,

≤ 4
√
2

h

(∣∣∣∣
∫

S
Π1v|Ω1

− v1dΓ

∣∣∣∣+
∣∣∣∣
∫

S
Π1v|Ω2

− v2dΓ

∣∣∣∣
)
,

≤ 4
√
2

h

(∑

i

|li|1/2‖Π1v|Ω1
− v1‖0,li +

∑

j

|lj |1/2‖Π1v|Ω2
− v2‖0,lj

)
,

≤ 4
√
2

h

(∑

i

|li|1/2‖Π1v|Ω1
− ṽ1‖0,li +

∑

j

|lj |1/2‖Π1v|Ω2
− ṽ2‖0,lj

)
.

Then, switching to the reference element and applying Lemmas A.4 and A.5, we obtain

|CS | ≤ 4
√
2

h
Ĉ

(∑

i

|li|1/2‖JTi
‖1/2‖Ê1v − ̂̃v1‖1,T̂ +

∑

j

|lj |1/2‖JTj
‖1/2‖Ê2v − ̂̃v2‖1,T̂

)
,

where Ĉ is the constant of Lemma A.4. Now, switching back to Ti and Tj , we have

|CS | ≤
4
√
2

h
Ĉ

( ∑

i

|li|1/2‖JTi
‖1/2|det JTi

|−1/2
(
‖E1v − ṽ1‖20,Ti

+ ‖JTi
‖2‖E1v − ṽ1‖21,Ti

)1/2

+
∑

j

|lj |1/2‖JTj
‖1/2|det JTj

|−1/2
(
‖E2

Tj
v − ṽ2‖0,Tj

+ ‖JTj
‖2‖E2

Tj
v − ṽ2‖1,Tj

)1/2
)
.(63)

As the triangulation T h is trivially regular, (62) and (63) yield

( ∑

S∈SH

|CS |2‖ϕaS‖21,∆S

)1/2

≤ 1

h
Ĉ4

√
L

( 2∑

j=1

( ∑

T
⋂

Γc 6=0

‖Ej
T v − ṽj‖20,T + h2‖Ej

T v − ṽj‖21,T
)1/2)

.

Using the same argument of the proof of Lemma 1 in [4] we easily show that

( ∑

S∈SH

|CS |2‖ϕaS‖21,∆S

)1/2

≤ Ĉ5‖v‖1,Ω

Using this last result with Lemma 1 in [4] we have inequality (53b) which finishes the proof of
Lemma A.1. �
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Appendix B : Singularity of the contact stress

Lemma B.7. Assume that we have a finite number of transition points between the contact
and the non contact zones and slip and non slip zones on the crack lips, then the normal and
tangential contact stresses (σn and σt) are in H1/2(ΓC).

Proof.

In order to shorten the proof we present only the analysis in the vicinity of the crack-tip.
We can restrict the study to the case of a contact occurring on a neighborhood of the crack-tip,
since σn = 0 if there is no contact at the crack-tip.
Using the div-rot lemma, we rewrite the stress components in terms of an Airy function φ as
follows:

σxx =
∂2φ

∂y2
, σyy =

∂2φ

∂x2
, σxy = σyx = − ∂2φ

∂x∂y
.

In two-dimensional isotropic elasticity, the Hooke’s law is given by:

σxx = (λ
L
+ 2µ

L
)εxx + λ

L
εyy,

σyy = (λ
L
+ 2µ

L
)εyy + λ

L
εxx,

σxy = µ
L
(εxy + εyx) = 2µ

L
εxy.

So

εxy = εyx = − 1

2µ
L

∂2φ

∂x∂y
,

εxx =
1

4µ
L
(λ

L
+ µ

L
)

(
(λ

L
+ 2µ

L
)
∂2φ

∂y2
− λ

∂2φ

∂x2

)
,

εyy = − 1

4µ(λ
L
+ µ

L
)

(
λ

L

∂2φ

∂y2
− (λ

L
+ 2µ

L
)
∂2φ

∂x2

)
.

The compatibility relations
∂2εxx
∂y2

+
∂2εyy
∂x2

− 2
∂2εxy
∂x∂y

= 0,

lead to the bi-harmonic equation:

λ
L
+ 2µ

L

4µ
L
(λ

L
+ µ

L
)

[
∂4φ

∂x4
+
∂4φ

∂y4
+ 2

∂4φ

∂x2∂y2

]
= 0 ⇐⇒ ∆2φ = 0,

whose general solution in polar coordinates is a linear combination of the following elementary
functions:

rs+1 cos(s− 1)θ, rs+1 cos(s+ 1)θ, rs+1 sin(s− 1)θ, rs+1 sin(s+ 1)θ.

Let σrr, σθθ and σrθ be the polar stress components. By using er = (cos θ, sin θ), eθ =
(− sin θ, cos θ) and the fact that (er, eθ,k) is direct and ∇φ ∧ k is independent of x, y, we
obtain

σrr =
1

r2
∂2φ

∂θ2
+

1

r

∂φ

∂r
, σθθ =

∂2φ

∂r2
, σrθ =

1

r2
∂φ

∂θ
− 1

r

∂2φ

∂θ∂r
.
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Besides, we have

σxx = (λ
L
+ 2µ

L
)
∂ux
∂x

+ λ
L

∂uy
∂y

,

σyy = (λ
L
+ 2µ

L
)
∂uy
∂y

+ λ
L

∂ux
∂x

,

σxy = µ
L
(εxy + εyx) = µ

L

(
∂ux
∂y

+
∂uy
∂x

)
,

and ∇u =

(
∂ur
∂r

er +
∂uθ
∂r

eθ

)
⊗ er +

(
1

r

∂ur
∂θ

er +
1

r
ureθ −

1

r
uθer +

1

r

∂uθ
∂θ

eθ

)
⊗eθ where ur and

uθ are the radial and angular components of the displacement. So in polar coordinates, it
becomes

σrr = (λ
L
+ 2µ

L
)
∂ur
∂r

+
λ

L

r

(
ur +

∂uθ
∂θ

)
,

σθθ =
(λ

L
+ 2µ

L
)

r

(
ur +

∂uθ
∂θ

)
+ λ

L

∂ur
∂r

,

σrθ = µ
L

(
∂uθ
∂r

+
1

r

∂ur
∂θ

− 1

r
uθ

)
.

Consequently,

1

r2
∂2φ

∂θ2
+

1

r

∂φ

∂r
= (λ

L
+ 2µ

L
)
∂ur
∂r

+
λ

L

r

(
ur +

∂uθ
∂θ

)
,

∂2φ

∂r2
=

(λ
L
+ 2µ

L
)

r

(
ur +

∂uθ
∂θ

)
+ λ

L

∂ur
∂r

,

1

r2
∂φ

∂θ
− 1

r

∂2φ

∂θ∂r
= µ

L

(
∂uθ
∂r

+
1

r

∂ur
∂θ

− 1

r
uθ

)
.

In [17], Grisvard gives the corresponding displacement in polar coordinates with

ρ = 1 +
2µ

L

λ
L
+ µ

L

:

ur = rs(a sin(s+ 1)θ + b cos(s+ 1)θ + c(ρ− s) sin(s− 1)θ − d(ρ− s) cos(s− 1)θ),

uθ = rs(a cos(s+ 1)θ − b sin(s+ 1)θ − c(ρ+ s) cos(s− 1)θ − d(ρ+ s) sin(s− 1)θ),

(64)

where a, b, c, d are generic constants. The P1 finite-element method will not optimally approx-
imate the terms of this form which are not in H2(Ω). So we have to determine the terms for
which the real part of s is such that 0 < Re(s) < 1.
Contact without slip: The boundary conditions for the effective contact without slip on the
crack with θ = π can be expressed as:

uθ(r, π)− uθ(r,−π) = 0,

σθθ(r, π)− σθθ(r,−π) = 0,

ur(r, π)− ur(r,−π) = 0,

σrθ(r, π) = σrθ(r,−π).
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The first equality expresses the contact condition: the jump of the normal displacement is equal
to zero because we are not in the opening mode, the second equation represents the action-
reaction law and the third equality expresses stick.
By using (64), these conditions read as:

uθ(r, π)− uθ(r,−π) = 2rs
(
b sin(sπ) + d(ρ+ s) sin(sπ)

)
,

ur(r, π)− ur(r,−π) = 2rs
(
− a sin(sπ)− c(ρ− s) sin(sπ)

)

σrθ(r, π)− σrθ(r,−π) = 4sµ
L
rs−1

(
b sin(sπ) + d(s− 1) sin(sπ)

)

σθθ(r, π)− σθθ(r,−π) = rs−1(λ
L
(2as sin(s+ 1)π + 2c(ρ− s)s sin(s− 1)π)

+(λ
L
+ 2µ

L
)(−2as sin(s+ 1)π + 2cs(ρ+ s− 2) sin(s− 1)π))

= 4µ
L
srs−1

(
a sin(sπ)− c(s+ 1) sin(sπ)

)
.

The determinant of the corresponding linear system can be written as:

D = 64µ2
L
s2r4s−3 sin4(πs)

∣∣∣∣∣∣∣∣

0 1 −1 0
1 0 0 1
0 −s− 1 −ρ+ s 0

ρ+ s 0 0 (s− 1)

∣∣∣∣∣∣∣∣

= −64µ2
L
s2r4s−3(ρ+ 1)2 sin4(πs).

So D 6= 0 for 0 < Re(s) < 1. As a consequence, there is no supplementary singular mode to the
classical shear mode and the normal stress component is not singular.
Contact with slip: This case is equivalent to the result of the nonhomogeneous elastostatic
problem. As the regularity of this problem is the same as the homogeneous problem (see [17])
only one singular mode is present (s = 1/2). For this singular mode, the tangent constraint is
necessarily null. The boundary conditions on the crack can be expressed as:

uθ(r, π)− uθ(r,−π) = 0,

σθθ(r, π)− σθθ(r,−π) = 0,

σrθ(r, π) = 0,

σrθ(r,−π) = 0.

By using (64), these conditions read as:

uθ(r, π)− uθ(r,−π) = 2rs(−b sin(s+ 1)π − d(ρ+ s) sin(s− 1)π)

= 2rs(b sin(sπ) + d(ρ+ s) sin(sπ)),

σrθ(r, π) = µ
L
rs−1(2as cos(s+ 1)π − 2bs sin(s+ 1)π − 2cs2 cos(s− 1)π

−2ds2 sin(s− 1)π)

= 2µ
L
rs−1(−as cos(sπ) + bs sin(sπ) + cs2 cos(sπ) + ds2 sin(sπ)),

σrθ(r,−π) = 2µ
L
rs−1(−as cos(sπ)− bs sin(sπ) + cs2 cos(sπ)− ds2 sin(sπ)),

σθθ(r, π)− σθθ(r,−π) = rs−1(λ
L
(2as sin(s+ 1)π + 2c(ρ− s)s sin(s− 1)π)

+(λ
L
+ 2µ

L
)(−2as sin(s+ 1)π + 2cs(ρ+ s− 2) sin(s− 1)π))

= rs−1(4µ
L
as sin(sπ)− 4csµ

L
(s+ 1) sin(sπ)).
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which implies for s = 1/2 that a = 3c
2 , b = 0, d = 0 and σθθ(r, π) = σθθ(r,−π) = 0. Then there is

no supplementary singular mode to the classical shear mode and the normal stress component
is not singular on the crack tip.

Let m be a transition point which delimits two zones of nonzero length. Using the same
argument, used in the analysis on the crack tip, we show that the normal and the tangent stress
component at the transition point m are in H1/2(ΓC).

�
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