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Stability of switched linear hyperbolic systems

by Lyapunov techniques (full version)

Christophe Prieur, Antoine Girard, and Emmanuel Witrant

Abstract

Switched linear hyperbolic partial differential equations are considered in this paper. They model

infinite dimensional systems of conservation laws and balance laws, which are potentially affected by a

distributed source or sink term. The dynamics and the boundary conditions are subject to abrupt changes

given by a switching signal, modeled as a piecewise constant function and possibly a dwell time. By

means of Lyapunov techniques some sufficient conditions are obtained for the exponential stability of

the switching system, uniformly for all switching signals. Different cases are considered with or without

a dwell time assumption on the switching signals, and on the number of positive characteristic velocities

(which may also depend on the switching signal). Some numerical simulations are also given to illustrate

some main results, and to motivate this study.

I. INTRODUCTION

Lyapunov techniques are commonly used for the stability analysis of dynamical systems, such

as those modeled by partial differential equations (PDEs). The present paper focuses on a class

of one-dimensional hyperbolic equations that describe, for example, systems of conservation

laws or balance laws (with a source term), see [5].

A switching behavior occurs for many control applications when the evolution processes

involve logical decisions, see [7] for the case where a stabilizing feedback is designed by means

of Lyapunov techniques applied to a discretization of switched parabolic PDE; see also [10],
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where the well-posed issue and the dependence of the solutions on the data of a network of

hyperbolic equations with switching as a control are considered. Switching can indeed be an

efficient control strategy for many infinite dimensional systems such as the wave equation ([8]),

the heat equation ([21]) or other infinite dimensional systems written in abstract form (as in [9]).

The exponential stabilizability of such systems is often proved by means of a Lyapunov

function, as illustrated by the contributions from [13], [18] where different control problems

are solved for particular hyperbolic equations. For more general nonlinear hyperbolic equations,

the knowledge of Lyapunov functions can be useful for the stability analysis of a system of

conservation laws (see [4]), or even for the design of exponentially stabilizing boundary controls

(see [3]). Other control techniques may be useful, such as Linear Quadratic regulation [1] or

semigroup theory [17, Chap. 6].

In this paper, the class of hyperbolic systems of balance laws is first considered without any

switching rule and we state sufficient conditions to derive a Lyapunov function for this class of

systems. It allows us to relax [5] where the Lyapunov stability for hyperbolic systems of balance

laws has been first tackled (see also [4]). Then, switched systems are considered and sufficient

conditions for the asymptotic stability of a class of linear hyperbolic systems with switched

dynamics and switched boundary conditions are stated. Some stability conditions depend on

the average dwell time of the switching signals (if such a positive dwell time does exist). The

stability property depends on the classes of the switching rules applied to the dynamics (as in

[15] for finite dimensional systems). The present paper is also related to [19] where unswitched

time-varying hyperbolic systems are considered.

In [2], the condition of [14] is employed. It allows analyzing the stability of hyperbolic

systems, assuming a stronger hypothesis on the boundary conditions. More precisely, our ap-

proach generalizes the condition of [4], which is known to be strictly weaker than the one

of [14]. Therefore our stability conditions are strictly weaker than the ones of [2]. Moreover

the technique in [2] is trajectory-based via the method of characteristics, while our approach is

based on Lyapunov functions, allowing for numerically tractable conditions. Indeed, the obtained

sufficient conditions are written in terms of matrix inequalities, which can be solved numerically.

Furthermore the estimated speed of exponential convergence is provided and can be optimized.

See Section V for the use of line search algorithms to numerically compute the variables in

our stability conditions, and thus to compute Lyapunov functions. The main results and the
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computational aspects are illustrated on two examples of switched linear hyperbolic systems.

The paper is organized as follows. The class of switched linear hyperbolic systems of balance

laws considered in this paper is given in Section II and a first stability condition is proven.

Switched systems of balance laws are presented in Section III. In Section IV our main results

are derived for the stability of switched hyperbolic systems. The conditions depend on the class

of piecewise constant switching signals that is considered (with and without a sufficiently large

dwell time). The stability conditions may also differ if the number of positive characteristic

velocities does not depend on the switching signal (see Section IV-A) or if this number is a

function of this signal (see Section IV-B). Section V collects the discussions on computational

aspects. It deals in particular with the numerical check of our stability conditions, and the

numerical computations of the considered Lyapunov functions. In Section VI two examples

illustrate the main results and motivate the class of Lyapunov functions considered in this paper.

Notation. The set R+ is the set of nonnegative real numbers. Given a matrix G, the transpose matrix of G

is denoted as G>. When G is invertible, then, to simplify the notation, (G−1)> is denoted as G−>. For positive

integers m and n, In and 0n,m are respectively the identity and the null matrix in Rn×n and in Rn×m. Given

some scalar values (a1, . . . , an), diag(a1, . . . , an) is the matrix in Rn×n with zero non-diagonal entries, and with

(a1, . . . , an) on the diagonal. Moreover given two matrices A and B, diag[A,B] is the block diagonal matrix

formed by A and B (and zero for the other entries). The notation A ≥ B means that A−B is positive semidefinite.

The usual Euclidian norm in Rn is denoted by | · | and the associated matrix norm is denoted ‖ · ‖, whereas the set

of all functions φ : (0, 1)→ Rn such that
∫ 1

0
|φ(x)|2 <∞ is denoted by L2((0, 1);Rn) that is equipped with the

norm ‖ · ‖L2((0,1);Rn). Given a topological set S, and an interval I in R+, the set C0(I,S) is the set of continuous

functions φ : I → S.

II. LINEAR HYPERBOLIC SYSTEMS

Let us first consider the following linear hyperbolic partial differential equation:

∂ty(t, x) + Λ∂xy(t, x) = Fy(t, x), x ∈ [0, 1], t ∈ R+ (1)

where y : R+ × [0, 1] → Rn, F is a matrix in Rn×n, Λ is a diagonal matrix in Rn×n such that

Λ = diag(λ1, . . . , λn), with λk < 0 for k ∈ {1, . . . ,m} and λk > 0 for k ∈ {m + 1, . . . , n}.

We use the notation y =
(
y−

y+

)
, where y− : R+× [0, 1]→ Rm and y+ : R+× [0, 1]→ Rn−m. In
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addition, we consider the following boundary conditions:(
y−(t,1)

y+(t,0)

)
= G

(
y−(t,0)

y+(t,1)

)
, t ∈ R+ (2)

where G is a matrix in Rn×n. Let us introduce the matrices G−− in Rm×m, G−+ in Rm×(n−m),

G+− in R(n−m)×m and G++ in R(n−m)×(n−m) such that G =
(
G−− G−+

G+− G++

)
.

We shall consider an initial condition given by

y(0, x) = y0(x), x ∈ (0, 1) (3)

where y0 ∈ L2((0, 1);Rn). Then, it can be shown (see e.g. [5]) that there exists a unique solution

y ∈ C0(R+;L2((0, 1);Rn)) to the initial value problem (1)-(3). As these solutions may not be

differentiable everywhere, the concept of weak solutions of partial differential equations has

to be used (see again [5] for more details). The linear hyperbolic system (1)-(2) is said to

be globally exponentially stable (GES) if there exist ν > 0 and C > 0 such that, for every

y0 ∈ L2((0, 1);Rn); the solution to the initial value problem (1)-(3) satisfies

‖y(t, .)‖L2((0,1);Rn) ≤ Ce−νt‖y0‖L2((0,1);Rn), ∀t ∈ R+. (4)

Sufficient conditions for exponential stability of (1)-(3) have been obtained in [5] using a

Lyapunov function. In this section, we present an extension of this result. This extension will

be also useful for subsequent work on switched linear hyperbolic systems.

Let Λ+ = diag(|λ1|, . . . , |λn|).

Proposition 2.1: Let us assume that there exist ν > 0, µ ∈ R and symmetric positive definite

matrices Q− in Rm×m and Q+ in R(n−m)×(n−m) such that, defining for each x in [0, 1], Q(x) =

diag[e2µxQ−, e−2µxQ+], Q(x)Λ = ΛQ(x), the following matrix inequalities hold

−2µQ(x)Λ+ + F>Q(x) +Q(x)F ≤ −2νQ(x) (5) Im 0m,n−m

G+− G++

>Q(0)Λ

 Im 0m,n−m

G+− G++

 ≤
 G−− G−+

0n−m,m In−m

>Q(1)Λ

 G−− G−+

0n−m,m In−m

 .

(6)

Then there exists C such that (4) holds and the linear hyperbolic system (1)-(2) is GES.

Proof: Let us consider the Lyapunov function, for all y ∈ L2((0, 1);Rn),

V (y) =

∫ 1

0

y(x)>Q(x)y(x) dx.
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SinceQ(x) and Λ commute and are symmetric, thenQ(x)Λ is symmetric, ∂xQ(x)Λ = −2µQ(x)Λ+,

and

y>Q(x)Λ∂xy + ∂xyΛQ(x)y − 2µy>Q(x)Λ+y = ∂x(y
>Q(x)Λy). (7)

Then, computing the time-derivative of V along the solutions of (1) yields the following:

V̇ (y) =

∫ 1

0

(y>Q(x)∂ty + ∂ty
>Q(x)y)dx

= −
∫ 1

0

y>Q(x)Λ∂xy dx−
∫ 1

0

∂xy
>ΛQ(x)y dx+

∫ 1

0

y>(F>Q(x) +Q(x)F )y dx.

Then, Equation (7) yields:

V̇ (y) = −[y>Q(x)Λy]10 −
∫ 1

0

2µy>Q(x)Λ+y dx+

∫ 1

0

y>(F>Q(x) +Q(x)F )y dx

= y>(t, 0)Q(0)Λy(t, 0)− y>(t, 1)Q(1)Λy(t, 1)

+

∫ 1

0

y>(−2µQ(x)Λ+ + F>Q(x) +Q(x)F )y dx

=

y−(t, 0)

y+(t, 1)

>

 Im 0m,n−m

G+− G++

>Q(0)Λ

 Im 0m,n−m

G+− G++



−

 G−− G−+

0n−m,m In−m

>Q(1)Λ

 G−− G−+

0n−m,m In−m



y−(t, 0)

y+(t, 1)


+

∫ 1

0

y>
(
−2µQ(x)Λ+ + F>Q(x) +Q(x)F

)
y dx

where the last equality is obtained by the boundary conditions (2). Then, (5) and (6) imply that

V̇ (y(t, .)) ≤ −2νV (y(t, .)) which yields, for all t ∈ R+, V (y(t, .)) ≤ V (y0)e−2νt. By remarking

that there exist α > 0, β > 0 (depending on the eigenvalues of Q−, Q+ and on µ) such

that α‖y(t, .)‖L2((0,1);Rn) ≤
√
V (y(t, .)) ≤ β‖y(t, .)‖L2((0,1);Rn), we obtain that, for all t ∈ R+,

‖y(t, .)‖L2((0,1);Rn) ≤ β
α
e−νt‖y0‖L2((0,1);Rn).

If all the diagonal elements of Λ are different, the assumption that Q(x)Λ = ΛQ(x) is equiv-

alent to Q being diagonal positive definite1. The main contributions of the previous proposition

with respect to the result presented in [5] is double: first, we do not restrict the values of

1This equivalence follows from the computation of matrices Q(x)Λ and ΛQ(x), and from a comparison between each of

their entries.

July 17, 2013 DRAFT



6

parameter µ to be positive, this allows us to consider non-contractive boundary conditions (it

will be the case for the numerical illustration considered in Example VI-B); second, we provide

an estimate of the exponential convergence rate (see Section V for computational aspects of this

estimate). When all the diagonal elements of the matrix Λ are positive, then Proposition 2.1 can

be interpreted in terms of two finite dimensional linear systems that share a common Lyapunov

function: one in continuous-time associated to (1) and one in discrete-time associated to (2).

Indeed we have the following result:

Corollary 2.2: Let us assume that m = 0 and there exists a diagonal positive definite matrix

M in Rn×n such that V : y ∈ Rn 7→ yTMy is a common Lyapunov function for the continuous-

time and discrete-time linear systems

ẏ(t) =
(
Λ−1F − µI

)
y(t), t ∈ R+, (8)

y(t+ 1) = (eµG) y(t), t ∈ N. (9)

Then, the linear hyperbolic system (1)-(2) is GES.

Proof: Remark first that Λ+ = Λ since it is assumed that m = 0. Let Q = MΛ−1,

then Q is diagonal positive definite. By writing the Lyapunov equation of the continuous-time

system (8), we obtain (Λ−1F − µI)
>
M + M (Λ−1F − µI) < 0 which can be rewritten as

(F − µΛ)>Q+Q (F − µΛ) = −2µQΛ+F>Q+QF < 0. This implies existence of ν > 0 such

that (5) holds. Also the Lyapunov equation of the discrete-time system (9) gives eµG>MeµG ≤

M. This can be rewritten as G>QΛG ≤ e−2µQΛ which is equivalent to (6), since m = 0 and

Q(x) = e−2µxQ. Thus the assumptions of Proposition 2.1 hold and this concludes the proof of

Corollary 2.2.

Let us remark that increasing µ improves the stability of (8) and degrades that of (9) while

decreasing µ will have the reverse effect. Another interpretation of the previous result is that the

linear hyperbolic system (1)-(2) is GES if there is a balance between the expansion (respectively

contraction) rate of the continuous-time linear system ẏ(t) = Λ−1Fy(t) and the contraction

(respectively expansion) rate of discrete-time linear system y(t+ 1) = Gy(t).
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III. SWITCHED LINEAR HYPERBOLIC SYSTEMS

We now consider the case of switched linear hyperbolic partial differential equation of the

form (see [2])

∂tw(t, x) + Lσ(t)∂xw(t, x) = Aσ(t)w(t, x) , x ∈ [0, 1], t ∈ R+ (10)

where w : R+ × [0, 1] → Rn, σ : R+ → I , I is a finite set (of modes), Ai and Li are matrices

in Rn×n, for i ∈ I . The partial differential equation associated with each mode is hyperbolic,

meaning that for all i ∈ I , there exists an invertible matrix Si in Rn×n such that Li = S−1
i ΛiSi

where Λi is a diagonal matrix in Rn×n satisfying Λi = diag(λi,1, . . . , λi,n), with λi,k < 0 for

k ∈ {1, . . . ,mi} and λi,k > 0 for k ∈ {mi + 1, . . . , n}. The matrices Si can be written as

Si =
(
S−>i S+>

i

)>
(11)

where S−i and S+
i are matrices in Rmi×n and R(n−mi)×n. We define the matrices Fi = SiAiS

−1
i

and Λ+
i = diag(|λi,1|, . . . , |λi,n|) for i ∈ I . The boundary conditions are given by

B0
σ(t)w(t, 0) +B1

σ(t)w(t, 1) = 0, t ≥ 0 (12)

where, for all i ∈ I , B0
i = G0

iSi and B1
i = G1

iSi, G
0
i and G1

i being matrices in Rn×n that satisfy

G0
i =

(
−Gi−− 0mi,n−mi
−Gi+− In−mi

)
, G1

i =
(

Imi −Gi−+

0mi,n−mi −Gi++

)
.

For i ∈ I , let us define the matrices in Rn×n, Gi =
(
Gi−− Gi−+

Gi+− Gi++

)
. We shall consider an initial

condition given by

w(0, x) = w0(x), x ∈ (0, 1) (13)

where w0 ∈ L2((0, 1);Rn).

A switching signal is a piecewise constant function σ : R+ → I , right-continuous, and with

a finite number of discontinuities on every bounded interval of R+. This allows us to avoid the

Zeno behavior, as described in [15]. The set of switching signals is denoted by S(R+, I). The

discontinuities of σ are called switching times. The number of discontinuities of σ on the interval

(τ, t] is denoted by Nσ(τ, t). Following [12], for τD > 0, N0 ∈ N, we denote by SτD,N0(R+, I)

the set of switching signals verifying, for all τ < t, Nσ(τ, t) ≤ N0 + t−τ
τD
. The constant τD is

called the average dwell time and N0 the chatter bound.

We first provide an existence and uniqueness result for the solutions of (10)-(13):

July 17, 2013 DRAFT
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Proposition 3.1: For all σ ∈ S(R+, I), w0 ∈ L2((0, 1);Rn), there exists a unique (weak)

solution w ∈ C0(R+;L2((0, 1);Rn)) to the initial value problem (10)-(13).

Proof: We build iteratively the solution between successive switching times. Let (tk)k∈K

denote the increasing switching times of σ, with t0 = 0 and K be a (finite or infinite) sub-

set of N. Let us assume that we have been able to build a unique (weak) solution w ∈

C0([0, tk];L
2((0, 1);Rn)) for some k ≥ 0. Then, let ik be the value of σ(t) for t ∈ [tk, tk+1).

Let us introduce the following notation, for all k in K and for all x in [0, 1],

yk(t, x) = Sikw(t, x), t ∈ [tk, tk+1]. (14)

Note that closed time intervals are used on both sides due to technical reasons in this proof.

Then, (10) gives that, for all k in K, yk satisfies the following partial differential equation

∂tyk(t, x) + Λik∂xyk(t, x) = Fikyk(t, x), x ∈ [0, 1], t ∈ [tk, tk+1] . (15)

Also, we use the notations yk =
(
y−k
y+k

)
, where y−k : R+ × [0, 1]→ Rmik and y+

k : R+ × [0, 1]→

Rn−mik . The boundary conditions (12) give, for all k in K,(
y−k (t,1)

y+k (t,0)

)
= Gik

(
y−k (t,0)

y+k (t,1)

)
, t ∈ [tk, tk+1] . (16)

The initial condition ensuring the continuity of w at time tk is the following:

yk(tk, x) = Sikw(tk, x), x ∈ (0, 1) . (17)

It follows from [5] that, for all k in K, there exists a unique (weak) solution

yk ∈ C0([tk, tk+1];L2((0, 1);Rn)) to the initial value problem (15)-(17). Then, we can extend

the (weak) solution to the initial value problem (10)-(13), from the initial time tk, up to the

switching time tk+1; (17) ensures that w ∈ C0([0, tk+1];L2((0, 1);Rn)), and the uniqueness of

yk ensures that w is the unique solution. Finally, since there are only a finite number of switching

times on every bounded intervals of R+, the solution can be defined for all times, resulting on

a unique solution w ∈ C0(R+;L2((0, 1);Rn)).

IV. STABILITY OF SWITCHED LINEAR HYPERBOLIC SYSTEMS

Let S ⊆ S(R+, I). The switched linear hyperbolic system (10)-(12) is said to be globally

uniformly exponentially stable (GUES) with respect to the set of switching signals S if there

exist ν > 0 and C > 0 such that, for every w0 ∈ L2((0, 1);Rn), for every σ ∈ S, the solution to
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the initial value problem (10)-(13) satisfies ‖w(t, .)‖L2((0,1);Rn) ≤ Ce−νt‖w0‖L2((0,1);Rn), ∀t ∈ R+.

In this section, we provide sufficient conditions for the stability of switched linear hyperbolic

systems.

A. Mode independent sign structure of characteristics

Assume first that the number of negative and positive characteristics of the linear partial

differential equations associated with each mode is constant, that is for all i ∈ I , mi = m.

We provide a first result giving sufficient conditions such that stability holds for all switching

signals. The proof is based on a common Lyapunov function equivalent to the L2 norm. An alter-

native proof can be obtained by checking some semigroup properties and by using [11] (where

the equivalence is shown between the existence of a common Lyapunov function commensurable

with the squared norm and the global uniform exponential stability).

Theorem 1: Let us assume that, for all i ∈ I , mi = m and that there exist ν > 0, µ ∈ R and

diagonal positive definite matrices Qi in Rn×n, i ∈ I such that the following matrix inequalities

hold, for all i ∈ I and for all x in [0, 1],

−2µQi(x)Λ+
i + F>i Qi(x) +Qi(x)Fi ≤ −2νQi(x), (18) Im 0m,n−m

Gi+− Gi++

>Qi(0)Λi

 Im 0m,n−m

Gi+− Gi++

 ≤
 Gi−− Gi−+

0n−m,m In−m

>Qi(1)Λi

 Gi−− Gi−+

0n−m,m In−m

 ,

(19)

where Qi(x) = diag[e2µxQ−i , e
−2µxQ+

i ], Qi =
(
Q−
i 0

0 Q+
i

)
, Q−i and Q+

i are diagonal positive

matrices in Rmi×mi and R(n−mi)×(n−mi), together with the following matrix equalities, for all

i, j ∈ I ,

(S+
i )>Q+

i S
+
i = (S+

j )>Q+
j S

+
j , (S−i )>Q−i S

−
i = (S−j )>Q−j S

−
j . (20)

Then, the switched linear hyperbolic system (10)-(12) is GUES with respect to the set of switching

signals S(R+, I).

Proof: Given the diagonal matrices Qi satisfying the assumptions of Theorem 1, let M− =

(S−i )>Q−i S
−
i and M+ = (S+

i )>Q+
i S

+
i , by (20), these matrices do not depend on the index

i ∈ I . The proof is based on the use of a common Lyapunov function given by, for all w in

L2((0, 1);Rn),

V (w) =

∫ 1

0

w(x)>M(x)w(x) dx,

July 17, 2013 DRAFT
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where M(x) = e2µxM− + e−2µxM+. Let (tk)k∈K denote the increasing switching times of σ,

with t0 = 0 and K a (finite or infinite) subset of N. For k ∈ K, let ik be the value of σ(t) for

t ∈ [tk, tk+1), and let yk be given by (14). It thus satisfies the boundary conditions (16). Let us

remark that, due to (11) and (17), for t ∈ [tk, tk+1), V can be written as:

V (w(t, .)) =

∫ 1

0

yk(t, x)>Qik(x)yk(t, x) dx,

where Qik(x) = diag[e2µxQ−ik , e
−2µxQ+

ik
]. Note that Qik(x) commute with Λ since these matrices

are diagonal. Using (18) and (19) and following the proof of Proposition 2.1, we obtain that,

along the solutions of (10)-(12), it holds, for all k in K,

∀t ∈ [tk, tk+1), V (w(t, .)) ≤ V (w(tk, .))e
−2ν(t−tk). (21)

Moreover, V (w(t, .)) is continuous at the switching time tk+1, thus

∀k ∈ K, V (w(tk+1, .)) ≤ V (w(tk, .))e
−2ν(tk+1−tk). (22)

Equations (21) and (22) allow us to prove that, for all t ∈ R+, V (w(t, .)) ≤ V (w0)e−2νt.

By noting that there exist α > 0, β > 0 such that α‖w(t, .)‖L2((0,1);Rn) ≤
√
V (w(t, .)) ≤

β‖w(t, .)‖L2((0,1);Rn), we obtain that, for all t ∈ R+, ‖w(t, .)‖L2((0,1);Rn) ≤ β
α
e−νt‖w0‖L2((0,1);Rn).

This concludes the proof of Theorem 1.

The numerical computation of the unknown variables, satisfying the sufficient conditions of

Theorem 1, is explained in Section V below.

For systems that do not satisfy the assumptions of the previous theorem, but whose dynamics

in each mode satisfy independently the assumptions of Proposition 2.1 (i.e. the dynamics in each

mode is stable), it is possible to show that the system is stable provided that the switching is

slow enough:

Theorem 2: Let us assume that, for all i ∈ I , mi = m and that there exist ν > 0, γ ≥ 1,

µi ∈ R, diagonal positive definite matrices Qi in Rn×n, such that the following matrix inequalities

hold, for all x in [0, 1],

−2µiQi(x)Λ+
i + F>i Qi(x) +Qi(x)Fi ≤ −2νQi(x), (23) Im 0m,n−m

Gi+− Gi++

>Qi(0)Λi

 Im 0m,n−m

Gi+− Gi++

 ≤
 Gi−− Gi−+

0n−m,m In−m

>Qi(1)Λi

 Gi−− Gi−+

0n−m,m In−m

 ,

(24)
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11

where Qi(x) = diag[e2µixQ−i , e
−2µixQ+

i ], Qi =
(
Q−
i 0

0 Q+
i

)
, Q−i and Q+

i are diagonal positive

matrices in Rmi×mi and R(n−mi)×(n−mi), together with the following matrix inequalities, for all

i, j ∈ I ,

(S+
i )>Q+

i S
+
i ≤ γ(S+

j )>Q+
j S

+
j , (25)

(S−i )>Q−i S
−
i ≤ γ(S−j )>Q−j S

−
j . (26)

Let ∆µ = max(µ1, . . . , µn)−min(µ1, . . . , µn), then, for all N0 ∈ N, for all τD > ln(γ)
2ν

+ ∆µ

ν
,

the switched linear hyperbolic system (10)-(12) is GUES with respect to the set of switching

signals SτD,N0(R+, I).

Proof: Let (tk)k∈K denote the increasing switching times of σ, with t0 = 0 and K is a

(finite or infinite) subset of N. For k ∈ K, let ik be the value of σ(t) for t ∈ [tk, tk+1), and let

yk be given by (14). It satisfies the boundary conditions (16). Given the diagonal matrices Qi

satisfying the assumptions of Theorem 2, let M−
i = (S−i )>Q−i S

−
i and M+

i = (S+
i )>Q+

i S
+
i . The

proof is based on the use of multiple Lyapunov functions. More precisely, denoting Mik(x) =

e2µikxM−
ik

+ e−2µikxM+
ik

, let us define, for all w in C0([0,∞);L2((0, 1);Rn)), for all t in R+,

V (w(t, .)) =

∫ 1

0

w(t, x)>Mik(x)w(t, x) dx, if t ∈ [tk, tk+1) (27)

which may be rewritten as V (w(t, .)) =
∫ 1

0
yk(t, x)>Qik(x)yk(t, x) dx, if t ∈ [tk, tk+1).

Note that Qik(x) commute with Λik since these matrices are diagonal. Using (23) and (24),

and following the proof of Proposition 1, we get that, along the solutions of (10)-(12),

∀k ∈ K, ∀t ∈ [tk, tk+1), V (w(t, .)) ≤ V (w(tk, .))e
−2ν(t−tk). (28)

The function V may be not continuous at the switching times any more. Nevertheless, by (25)

and (26), we have that, for all k in K,

V (w(tk+1, .)) =

∫ 1

0

(
w(tk+1, x)>M−

ik+1
w(tk+1, x)e2µik+1

x + w(tk+1, x)>M+
ik+1

w(tk+1, x)e−2µik+1
x
)
dx

≤ γ

∫ 1

0

(
w(tk+1, x)>M−

ik
w(tk+1, x)e2µik+1

x + w(tk+1, x)>M+
ik
w(tk+1, x)e−2µik+1

x
)
dx

≤ γe2∆µ

∫ 1

0

(
w(tk+1, x)>M−

ik
w(tk+1, x)e2µikx + w(tk+1, x)>M+

ik
w(tk+1, x)e−2µikx

)
dx

≤ γe2∆µ lim
t→t−k+1

V (w(t, .))
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where the continuity of w is used in the last inequality (it follows from Proposition 3.1). Then,

it follows from (28) that, for all k in K, V (w(tk+1, .)) ≤ γe2∆µV (w(tk, .))e
−2ν(tk+1−tk), and it

allows us to prove recursively that, for all t ∈ R+, V (w(t, .)) ≤
(
γe2∆µ

)Nσ(0,t)
V (w0)e−2νt ≤(

γe2∆µ
)(N0+ t

τD
)
V (w0)e−2νt. Let ν̄ = ν − ∆µ

τD
− ln(γ)

2τD
, the assumption on the average dwell time

gives that ν̄ > 0 and the previous inequality yields ∀t ∈ R+, V (w(t, .)) ≤
(
γe2∆µ

)N0 V (w0)e−2ν̄t

which allows us to conclude that the switched linear hyperbolic system is GUES with respect

to the set of switching signals SτD,N0(R+, I). This concludes the proof of Theorem 2.

Remark 4.1: Setting γ = 1 and µi = µ for all i ∈ I , we recover the assumptions of

Theorem 1. In that case we have ∆µ = 0: there is no positive lower bound imposed on the

average dwell time, which is consistent with Theorem 1. ◦

Remark 4.2: Note that the existence of γ ≥ 1 such that (25) holds is equivalent to Ker(S+
i ) =

Ker(S+
j ), for all i, j ∈ I . Therefore the existence of γ ≥ 1 such that (25) and (26) are satisfied

is equivalent to Ker(S+
i ) = Ker(S+

j ) and Ker(S−i ) = Ker(S−j ), for all i, j ∈ I (and also, by

recalling Li = S−1
i ΛiSi, the subspace associated with all positive (resp. negative) eigenvalues of

Li does not depend on i). If this condition does not hold, stability can still be analyzed using

other stability results presented in the following section. ◦

B. Mode dependent sign structure of characteristics

We now relax the assumption on the number of negative and positive characteristics. As in the

previous section, we provide a first result giving sufficient conditions such that stability holds

for all switching signals:

Theorem 3: Let us assume that there exist ν > 0 and diagonal positive definite matrices Qi

in Rn×n, i ∈ I such that, for all i ∈ I ,

F>i Qi +QiFi ≤ −2νQi, (29)

GT
i QiΛ

+
i Gi ≤ QiΛ

+
i , (30)

and such that, for all i, j ∈ I ,

S>i QiSi = S>j QjSj. (31)

Then, the switched linear hyperbolic system (10)-(12) is GUES with respect to the set of switching

signals S(R+, I).
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Proof: We use the same notations as in Theorem 1. We consider the candidate Lyapunov

function, for all w in C0([0,∞);L2((0, 1);Rn)), for all t ∈ R+,

V (w(t, .)) =

∫ 1

0

yk(t, x)>Qikyk(t, x)dx, if t ∈ [tk, tk+1),

where we used the change of variable (14). Using (29) and (30), and following the proof of

Proposition 2.1, we obtain that, along the solutions of (10)-(12), it holds, for all k in K, and

for all t ∈ [tk, tk+1), V (w(t, .)) ≤ V (w(tk, .))e
−2ν(t−tk). Recalling (14), we have yk(tk+1, .) =

Sikw(tk+1, .) and yk+1(tk+1, .) = Sik+1
w(tk+1, .), which gives yk+1(tk+1, .) = Sik+1

S−1
ik
yk(tk+1, .).

Hence, Equation (31) yields, for all k in K,

V (w(tk+1, .)) =

∫ 1

0

yk+1(tk+1, x)>Qik+1
yk+1(tk+1, x)dx

=

∫ 1

0

yk(tk+1, x)>S−>ik S>ik+1
Qik+1

Sik+1
S−1
ik
yk(tk+1, x)dx

=

∫ 1

0

yk(tk+1, x)>Qikyk(tk+1, x)dx = lim
t→t−k+1

V (w(t, .)).

Thus, V is continuous at the switching time tk+1. The end of the proof is similar to that of

Theorem 1.

The assumptions of the previous theorem are quite strong. To assure the asymptotic stability

for switching signals with a sufficiently large dwell time, weaker assumptions are needed. More

precisely, considering the assumptions of Theorem 2, the last main result of this paper can be

stated:

Theorem 4: Let us assume that there exist ν > 0, γ ≥ 1, µi ∈ R, and diagonal positive

definite matrices Qi in Rn×n, i ∈ I such that the matrix inequalities (23), (24) hold (where the

same notation for Qi(x) is used) together with the following matrix inequalities, for all i, j ∈ I ,

S>i QiSi ≤ γS>j QjSj. (32)

Let ∆̄µ = 2|µi| if I is a singleton and ∆̄µ = 2 maxi 6=j∈I(|µi|+ |µj|) else. Then, for all N0 ∈ N,

for all τD > ln(γ)
2ν

+ ∆̄µ

ν
, the switched linear hyperbolic system (10)-(12) is GUES with respect

to the set of switching signals SτD,N0(R+, I).

Proof: We use the same notations as in Theorem 2, and we consider the candidate Lyapunov

function (27). Using (23) and (24), Equation (28) still holds along the solutions of (10)-(12).
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Moreover, for all k in K,

V (w(tk+1, .)) ≤ e2|µik+1
|
∫ 1

0

yk+1(tk+1, x)>Qik+1
yk+1(tk+1, x)dx

≤ γe2|µik+1
|
∫ 1

0

yk+1(tk+1, x)>Qikyk+1(tk+1, x)dx

≤ γe2|µik+1
|+2|µik |

∫ 1

0

yk(tk+1, x)>Qik(x)yk(tk+1, x)dx

≤ γe2∆̄µ lim
t→t−k+1

V (w(t, .)).

The end of the proof follows the same lines as that of Theorem 2.

Let us note that Theorem 3 can be deduced from Theorem 4 by selecting γ = 1 and µi = 0

for all i ∈ I .

V. COMPUTATIONAL ASPECTS

The sufficient stability conditions of the results presented in this paper may be solved using

classical numerical tools. More precisely, let us remark that the matrix inequalities (18) and (19)

in the statement of Theorem 1 are linear in Qi but nonlinear in µ, some numerical methods may

be used:

• by particularizing to the case µ = 0;

• or when the source terms in (10)-(12) are diagonal;

• or when the matrices Λi are either all positive definite or all negative definite.

Let us consider these three cases in the next three sections.

A. Particularizing to the case µ = 0

By letting µ = 0 in the conditions (18) and (19), the matrix inequalities in Theorem 1 do not

depend on the x-variable. Therefore the following matrix inequalities

F>i Qi +QiFi ≤ −2νIn , Qi ≤ In. (33) Im 0m,n−m

Gi+− Gi++

>QiΛi

 Im 0m,n−m

Gi+− Gi++

 ≤
 Gi−− Gi−+

0n−m,m In−m

>QiΛi

 Gi−− Gi−+

0n−m,m In−m


(34)

imply (18) and (19).
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The previous conditions (33) and (34) are linear in the unknown variables ν and Qi and can

therefore be solved using semi-definite programming (see e.g., [16] with [20]). It is thus obtained

the following result as a corollary of Theorem 1:

Corollary 5.1: Let us assume that, for all i ∈ I , mi = m, and there exist ν > 0, and diagonal

positive definite matrices Qi in Rn×n satisfying the matrix inequalities (20), (33) and (34). Then,

the switched linear hyperbolic system (10)-(12) is GUES with respect to the set of switching

signals S(R+, I).

Moreover the proof of Theorem 1 implies that the function given by, for all w in L2((0, 1);Rn),

V (w) =

∫ 1

0

w(x)>Mw(x) dx,

where M = (S−i )>Q−i S
−
i + (S+

i )>Q+
i S

+
i is a Lyapunov function of (10)-(12), and, since the

estimation

‖w(t, .)‖L2((0,1);Rn) ≤ Ce−νt‖w0‖L2((0,1);Rn)

holds along the solutions w of (10)-(12), for a suitable value C > 0 (which does not depend

on the solution), it implies that the value of ν is an estimation of the speed of the exponential

stability. Semi-definite programming (as in [20]) allows us to optimize this estimation and to

compute the largest positive value ν such that the linear matrix inequalities (33), (34), and (20)

have a solution in the variables Qi and ν.

Analogous corollaries may be written by letting µi = 0, for all i ∈ I , in Theorems 2 and 4,

and by considering directly Theorem 3 (for which µ = 0).

To conclude this section, let us emphasize that this approach is allowed since µ = 0 is possible

in our main results. This is not possible using the approach of [5], where µ should be a strictly

positive value.

B. With a diagonal source term

If, for each i in I , the source term Fi in (10)-(12) is diagonal, then (18) is equivalent to

−µΛ+
i + Fi ≤ −νIn. (35)

Therefore the following result is a corollary of Theorem 1:

Corollary 5.2: Let us assume that for all i ∈ I , mi = m, the matrices Fi are diagonal and

that there exist ν > 0, µ ∈ R, and diagonal positive definite matrices Qi in Rn×n satisfying the
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matrix inequalities, (19), (20) and (35). Then, the switched linear hyperbolic system (10)-(12)

is GUES with respect to the set of switching signals S(R+, I).

The sufficient conditions (19), (20) and (35) of Corollary 5.2 are nonlinear in the unknown

variables ν, µ and Qi, due to the term Qi(1) in (19) which depends nonlinearly on Qi and µ.

However, µ being a scalar variable, one may combine a line search algorithm with semi-definite

programming to solve (19), (20) and (35). Analogously, when the source terms are diagonal in

(10)-(12), line search algorithms could be used to numerically check the sufficient conditions of

Theorems 2 and 4.

C. When Λi are all positive definite or all negative positive

Let us assume in this section, that all velocities in (10)-(12) have the same sign, that is that

either, for all i in I , Λi is positive definite or, for all i in I , Λi is negative definite. To ease the

presentation of this section, it is assumed, that the first case occurs: for all i in I , Λ+
i = Λi and

mi = 0. Then the following matrix inequalities

−2µQiΛi + F>i Qi +QiFi ≤ −2νIn, Qi ≤ In, (36)

G>i QiΛiGi ≤ e−2µQiΛi (37)

imply (18) and (19). This gives us the following corollary of Theorem 1:

Corollary 5.3: Let us assume that, for all i ∈ I , mi = 0, and that there exist ν > 0, µ ∈ R,

and diagonal positive definite matrices Qi in Rn×n satisfying the matrix inequalities (20), (36)

and (37). Then, the switched linear hyperbolic system (10)-(12) is GUES with respect to the set

of switching signals S(R+, I).

The conditions (20), (36) and (37) of Corollary 5.3 are again nonlinear in the unknown

variables ν, µ and Qi, due to the product of µ and Qi in (36) and the product of e−2µ and

Qi (37). However, since µ is a scalar variable, one may combine a line search algorithm with

semi-definite programming to solve (20), (36) and (37). Analogous techniques could be used as

well in Theorem 2. For Theorem 4, similar simplifications can be done if, for all i ∈ I , Λi is

negative definite or positive definite.
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VI. EXAMPLES

A. Mode independent sign structure of characteristics

Consider the wave equation: ∂2
t u(t, x) − ∂2

xu(t, x) = 0, where x ∈ [0, 1], t ∈ R+, and

u : R+ × [0, 1] → R. The solutions of the previous equations can be written as u(t, x) =

w1(t, x) + w2(t, x) with w = ( w1
w2 ) verifying

∂tw(t, x) + L∂xw(t, x) = 0, x ∈ [0, 1], t ∈ R+ (38)

where L = diag(−1, 1). We consider for this hyperbolic system the following switching bound-

ary conditions:

w1(t, 1) =

 −1.2w2(t, 1) if i(t) = 1

−0.6w2(t, 1) if i(t) = 2
, w2(t, 0) =

 0.6w1(t, 0) if i(t) = 1

1.2w1(t, 0) if i(t) = 2
. (39)

This is a switched linear hyperbolic system of the form (10)-(12) with L1 = L2 = L, A1 =

A2 = 02, S1 = S2 = I2, G1 = ( 0 −1.2
0.6 0 ) and G2 = ( 0 −0.6

1.2 0 ). With the notations defined in the

previous sections, we also have Λ+
1 = Λ+

2 = I2 and F1 = F2 = 02. We are in the particular

case described in Section V-B. Though, we were not able to apply Corollary 5.2 as we could

not find ν > 0, µ ∈ R, and diagonal positive definite matrices Q1 and Q2 such that the set of

matrix inequalities (35), (19), and (20) hold. Actually, this could be explained by the fact that

it is possible to find a switching signal that destabilizes the system as shown on the left part of

Figure 1 (where a periodic switching signal is used with a period equals to 1).

We can prove the exponential stability for a set of switching signals with an assumption

on the average dwell time using Theorem 2. Let us remark that since F1 = F2 = 0, (23) is

equivalent to µi ≥ ν for i ∈ {1, 2}. One can verify that Equations (24), (25) and (26) hold as

well for the choices Q1 = ( 0.75 0
0 2 ), Q2 = ( 1.5 0

0 1 ) and γ = 2. Then, Theorem 2 guarantees the

stability of the switched linear hyperbolic system for switching signals with average dwell time

greater than ln(γ)
2ν

= 2.3105. The right part of Figure 1 shows the stable behavior of the switched

linear hyperbolic system for a periodic switching signal with a period equals to 2.4. To illustrate

Corollary 5.2, we add a diagonal damping term to (38):

∂tw(t, x) + L∂xw(t, x) = Aw(t, x), x ∈ [0, 1], t ∈ R+ (40)

where A = diag(−0.3,−0.3). The boundary conditions are given by (39). Now, A1 = A2 =

F1 = F2 = A and the other matrices of the system remain unchanged. In the present case
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Fig. 1. Time evolution of u = w1 + w2, solution of (38)-(39) for periodic switching signals of period 1 (left) and 2.4 (right).

(35) is equivalent to ν ≤ µ + 0.3. One can verify that Corollary 5.2 applies with µ = −0.2,

ν = 0.1 and Q1 = Q2 = ( 1.5 0
0 1 ). Then, Theorem 1 guarantees the stability of the switched linear

hyperbolic system for all switching signals. Figure 2 shows the stable behavior of the switched

linear hyperbolic system for a periodic switching signal of period 1.

B. Mode dependent sign structure of characteristics

To illustrate the results of Section IV-B, we consider the following switched linear hyperbolic

system

∂tw(t, x) + Li(t)∂xw(t, x) = Fw(t, x), x ∈ [0, 1], t ∈ R+ (41)

where w : R+ × [0, 1]→ R, i(t) ∈ I = {1, 2}, L1 = 1 and L2 = −1 and F ∈ R. The boundary

conditions are given by
w(t, 0) = Gw(t, 1) if i(t) = 1

w(t, 1) = Gw(t, 0) if i(t) = 2
(42)

and G > 0. This is a switched linear hyperbolic system of the form (10)-(12) with A1 = A2 = F ,

S1 = S2 = 1, and G1 = G2 = G. With the notation defined in the previous sections, we also

have Λ+
1 = Λ+

2 = 1 and F1 = F2 = F .
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Fig. 2. Time evolution of u = w1 + w2, solution of (39)-(40) for a periodic switching signal of period 1.

We assume that F < − ln(G); if this does not hold, then it can be shown that the linear

hyperbolic systems in each mode are both not asymptotically stable. If F < 0 and G ≤ 1, then

Theorem 3 applies with Q1 = Q2 = 1 and ν = −F . Hence, in that case Theorem 3 guarantees

the stability of the switched linear hyperbolic system for all switching signals. If G > 1 (resp.

F > 0) then the condition (30) (resp. (29)) of Theorem 3 does not hold and thus Theorem 3

does not apply.

If G > 1, let F < µ < − ln(G), then Theorem 4 holds with µ1 = µ2 = µ, ν = µ − F ,

γ = 1 and Q1 = Q2 = 1. Then, Theorem 4 guarantees the stability of the switched linear

hyperbolic system for switching signals with average dwell time τD greater than ∆̄µ

ν
= −2µ

µ−F

for any µ ∈ (F,− ln(G)). The minimal value of −2µ
µ−F in this interval is −2 ln(G)

ln(G)+F
; therefore the

stability of the switched linear hyperbolic system is guaranteed for switching signals with τD

greater than −2 ln(G)
ln(G)+F

. For G = 2 and F = −1, in that case the minimal required τD is 4.5178.

Figure 3 shows unstable and stable behaviors for these values of G and F and for periods equal

to 1.2 and 4.6.

If F > 0, let G and µ such that F < µ < − ln(G), then Theorem 4 holds with µ1 = µ2 = µ,

ν = µ − F , γ = 1 and Q1 = Q2 = 1. Then, Theorem 4 guarantees the stability of the
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switched linear hyperbolic system for switching signals with τD greater than ∆̄µ

ν
= 2µ

µ−F for any

µ ∈ (F,− ln(G)). The minimal value of 2µ
µ−F in this interval is 2 ln(G)

ln(G)+F
; therefore stability of the

switched linear hyperbolic system is guaranteed for switching signals with τD > 2 ln(G)
ln(G)+F

. For

G = 0.5 and F = −0.1, the minimal required τD is 2.3372. Figure 4 shows unstable and stable

behaviors for these values of G and F and for periods equal 0.9 and 2.4.

Fig. 3. Time evolution of w, solution of (41)-(42) with F = −1 and G = 2, for periodic switching signals of period 1.2 (left)

and 4.6 (right).

VII. CONCLUSION

In this paper, some sufficient conditions have been derived for the exponential stability of

hyperbolic PDE with switching signals defining the dynamics and the boundary conditions.

This stability analysis has been done with Lyapunov functions and exploiting the dwell time

assumption, if it holds, of the switching signals. The sufficient stability conditions are written

in terms of matrix inequalities which lead to numerically tractable problems.

This work lets many questions open and may have natural applications on physical applica-

tions. In particular, exploiting the sufficient conditions for the derivation of switching stabilizing

boundary controls (as for the physical application considered in [6]) seems to be a natural
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Fig. 4. Time evolution of w, solution of (41)-(42) with F = 0.1 and G = 0.5, for periodic switching signals of period 0.9

(left) and 2.4 (right).

extension. The generalization of the results to linear hyperbolic with space-varying entries may

also be studied.
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