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Switched linear hyperbolic partial differential equations are considered in this paper. They model infinite dimensional systems of conservation laws and balance laws, which are potentially affected by a distributed source or sink term. The dynamics and the boundary conditions are subject to abrupt changes given by a switching signal, modeled as a piecewise constant function and possibly a dwell time. By means of Lyapunov techniques some sufficient conditions are obtained for the exponential stability of the switching system, uniformly for all switching signals. Different cases are considered with or without a dwell time assumption on the switching signals, and on the number of positive characteristic velocities (which may also depend on the switching signal). Some numerical simulations are also given to illustrate some main results, and to motivate this study.

I. INTRODUCTION

Lyapunov techniques are commonly used for the stability analysis of dynamical systems, such as those modeled by partial differential equations (PDEs). The present paper focuses on a class of one-dimensional hyperbolic equations that describe, for example, systems of conservation laws or balance laws (with a source term), see [START_REF] Diagne | Lyapunov exponential stability of linear hyperbolic systems of balance laws[END_REF].

A switching behavior occurs for many control applications when the evolution processes involve logical decisions, see [START_REF] El-Farra | Coordinating feedback and switching for control of spatially distributed processes[END_REF] for the case where a stabilizing feedback is designed by means of Lyapunov techniques applied to a discretization of switched parabolic PDE; see also [START_REF] Hante | Modeling and analysis of modal switching in networked transport systems[END_REF],

C. Prieur and E. Witrant are from the Department of Automatic Control, Gipsa-lab, Université de Grenoble, 11 rue des Mathématiques, BP 46, 38402 Saint-Matin d'Hères Cedex, France. Email: {christophe.prieur, emmanuel.witrant}@gipsa-lab.fr and A. Girard is with Laboratoire Jean Kuntzmann, Université de Grenoble, BP 53, 38041 Grenoble, France, antoine.girard@imag.fr. This work is partly supported by HYCON2 Network of Excellence Highly-Complex and Networked Control Systems, grant agreement 257462. July 17, 2013 DRAFT where the well-posed issue and the dependence of the solutions on the data of a network of hyperbolic equations with switching as a control are considered. Switching can indeed be an efficient control strategy for many infinite dimensional systems such as the wave equation ( [START_REF] Gugat | An example for the switching delay feedback stabilization of an infinite dimensional system: The boundary stabilization of a string[END_REF]), the heat equation ( [START_REF] Zuazua | Switching control[END_REF]) or other infinite dimensional systems written in abstract form (as in [START_REF] Hante | On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping[END_REF]).

The exponential stabilizability of such systems is often proved by means of a Lyapunov function, as illustrated by the contributions from [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF], [START_REF] Prieur | Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations[END_REF] where different control problems are solved for particular hyperbolic equations. For more general nonlinear hyperbolic equations, the knowledge of Lyapunov functions can be useful for the stability analysis of a system of conservation laws (see [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF]), or even for the design of exponentially stabilizing boundary controls (see [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF]). Other control techniques may be useful, such as Linear Quadratic regulation [START_REF] Aksikas | LQ control design of a class of hyperbolic PDE systems: Application to fixed-bed reactor[END_REF] or semigroup theory [START_REF] Luo | Stability and stabilization of infinite dimensional systems and applications[END_REF]Chap. 6].

In this paper, the class of hyperbolic systems of balance laws is first considered without any switching rule and we state sufficient conditions to derive a Lyapunov function for this class of systems. It allows us to relax [START_REF] Diagne | Lyapunov exponential stability of linear hyperbolic systems of balance laws[END_REF] where the Lyapunov stability for hyperbolic systems of balance laws has been first tackled (see also [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF]). Then, switched systems are considered and sufficient conditions for the asymptotic stability of a class of linear hyperbolic systems with switched dynamics and switched boundary conditions are stated. Some stability conditions depend on the average dwell time of the switching signals (if such a positive dwell time does exist). The stability property depends on the classes of the switching rules applied to the dynamics (as in [START_REF] Liberzon | Switching in systems and control[END_REF] for finite dimensional systems). The present paper is also related to [START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF] where unswitched time-varying hyperbolic systems are considered.

In [START_REF] Amin | Exponential stability of switched linear hyperbolic initial-boundary value problems[END_REF], the condition of [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF] is employed. It allows analyzing the stability of hyperbolic systems, assuming a stronger hypothesis on the boundary conditions. More precisely, our approach generalizes the condition of [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF], which is known to be strictly weaker than the one of [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF]. Therefore our stability conditions are strictly weaker than the ones of [START_REF] Amin | Exponential stability of switched linear hyperbolic initial-boundary value problems[END_REF]. Moreover the technique in [START_REF] Amin | Exponential stability of switched linear hyperbolic initial-boundary value problems[END_REF] is trajectory-based via the method of characteristics, while our approach is based on Lyapunov functions, allowing for numerically tractable conditions. Indeed, the obtained sufficient conditions are written in terms of matrix inequalities, which can be solved numerically.

Furthermore the estimated speed of exponential convergence is provided and can be optimized.

See Section V for the use of line search algorithms to numerically compute the variables in our stability conditions, and thus to compute Lyapunov functions. The main results and the 

: (0, 1) → R n such that 1 0 |φ(x)| 2 < ∞ is denoted by L 2 ((0, 1); R n ) that is equipped with the norm • L 2 ((0,1);R n ) .
Given a topological set S, and an interval I in R + , the set C 0 (I, S) is the set of continuous functions φ : I → S.

II. LINEAR HYPERBOLIC SYSTEMS

Let us first consider the following linear hyperbolic partial differential equation:

∂ t y(t, x) + Λ∂ x y(t, x) = F y(t, x), x ∈ [0, 1], t ∈ R + (1) 
where

y : R + × [0, 1] → R n , F is a matrix in R n×n , Λ is a diagonal matrix in R n×n such that Λ = diag(λ 1 , . . . , λ n ), with λ k < 0 for k ∈ {1, .
. . , m} and λ k > 0 for k ∈ {m + 1, . . . , n}.

We use the notation y = y - y + , where y -: R + × [0, 1] → R m and y + : R + × [0, 1] → R n-m . In July 17, 2013 DRAFT addition, we consider the following boundary conditions:

y -(t,1) y + (t,0) = G y -(t,0) y + (t,1) , t ∈ R + (2)
where G is a matrix in R n×n . Let us introduce the matrices

G --in R m×m , G -+ in R m×(n-m) , G +-in R (n-m)×m and G ++ in R (n-m)×(n-m) such that G = G --G -+ G +-G ++ .
We shall consider an initial condition given by y(0, x) = y 0 (x), x ∈ (0, 1)

where y 0 ∈ L 2 ((0, 1); R n ). Then, it can be shown (see e.g. [START_REF] Diagne | Lyapunov exponential stability of linear hyperbolic systems of balance laws[END_REF]) that there exists a unique solution

y ∈ C 0 (R + ; L 2 ((0, 1); R n ))
to the initial value problem (1)- [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF]. As these solutions may not be differentiable everywhere, the concept of weak solutions of partial differential equations has to be used (see again [START_REF] Diagne | Lyapunov exponential stability of linear hyperbolic systems of balance laws[END_REF] for more details). The linear hyperbolic system (1)-( 2) is said to be globally exponentially stable (GES) if there exist ν > 0 and C > 0 such that, for every

y 0 ∈ L 2 ((0, 1); R n ); the solution to the initial value problem (1)-(3) satisfies y(t, .) L 2 ((0,1);R n ) ≤ Ce -νt y 0 L 2 ((0,1);R n ) , ∀t ∈ R + . (4) 
Sufficient conditions for exponential stability of (1)-(3) have been obtained in [START_REF] Diagne | Lyapunov exponential stability of linear hyperbolic systems of balance laws[END_REF] using a Lyapunov function. In this section, we present an extension of this result. This extension will be also useful for subsequent work on switched linear hyperbolic systems.

Let

Λ + = diag(|λ 1 |, . . . , |λ n |).
Proposition 2.1: Let us assume that there exist ν > 0, µ ∈ R and symmetric positive definite

matrices Q -in R m×m and Q + in R (n-m)×(n-m) such that, defining for each x in [0, 1], Q(x) = diag[e 2µx Q -, e -2µx Q + ], Q(x)Λ = ΛQ(x), the following matrix inequalities hold -2µQ(x)Λ + + F Q(x) + Q(x)F ≤ -2νQ(x) (5) 
  I m 0 m,n-m G +-G ++   Q(0)Λ   I m 0 m,n-m G +-G ++   ≤   G --G -+ 0 n-m,m I n-m   Q(1)Λ   G --G -+ 0 n-m,m I n-m   . (6) 
Then there exists C such that (4) holds and the linear hyperbolic system (1)-( 2) is GES.

Proof: Let us consider the Lyapunov function, for all y ∈ L 2 ((0, 1); R n ),

V (y) = 1 0 y(x) Q(x)y(x) dx.
July 17, 2013 DRAFT Since Q(x) and Λ commute and are symmetric, then

Q(x)Λ is symmetric, ∂ x Q(x)Λ = -2µQ(x)Λ + ,
and

y Q(x)Λ∂ x y + ∂ x yΛQ(x)y -2µy Q(x)Λ + y = ∂ x (y Q(x)Λy). (7) 
Then, computing the time-derivative of V along the solutions of (1) yields the following:

V (y) = 1 0 (y Q(x)∂ t y + ∂ t y Q(x)y)dx = - 1 0 y Q(x)Λ∂ x y dx - 1 0 ∂ x y ΛQ(x)y dx + 1 0 y (F Q(x) + Q(x)F )y dx.
Then, Equation ( 7) yields:

V (y) = -[y Q(x)Λy] 1 0 - 1 0 2µy Q(x)Λ + y dx + 1 0 y (F Q(x) + Q(x)F )y dx = y (t, 0)Q(0)Λy(t, 0) -y (t, 1)Q(1)Λy(t, 1) + 1 0 y (-2µQ(x)Λ + + F Q(x) + Q(x)F )y dx =   y -(t, 0) y + (t, 1)        I m 0 m,n-m G +-G ++   Q(0)Λ   I m 0 m,n-m G +-G ++   -   G --G -+ 0 n-m,m I n-m   Q(1)Λ   G --G -+ 0 n-m,m I n-m        y -(t, 0) y + (t, 1)   + 1 0 y -2µQ(x)Λ + + F Q(x) + Q(x)F y dx
where the last equality is obtained by the boundary conditions (2). Then, ( 5) and ( 6) imply that V (y(t, .)) ≤ -2νV (y(t, .)) which yields, for all t ∈ R + , V (y(t, .)) ≤ V (y 0 )e -2νt . By remarking that there exist α > 0, β > 0 (depending on the eigenvalues of 1 . The main contributions of the previous proposition with respect to the result presented in [START_REF] Diagne | Lyapunov exponential stability of linear hyperbolic systems of balance laws[END_REF] is double: first, we do not restrict the values of parameter µ to be positive, this allows us to consider non-contractive boundary conditions (it will be the case for the numerical illustration considered in Example VI-B); second, we provide an estimate of the exponential convergence rate (see Section V for computational aspects of this estimate). When all the diagonal elements of the matrix Λ are positive, then Proposition 2.1 can be interpreted in terms of two finite dimensional linear systems that share a common Lyapunov function: one in continuous-time associated to (1) and one in discrete-time associated to (2).

Q -, Q + and on µ) such that α y(t, .) L 2 ((0,1);R n ) ≤ V (y(t, .)) ≤ β y(t, .) L 2 ((0,1);R n ) , we obtain that, for all t ∈ R + , y(t, .) L 2 ((0,1);R n ) ≤ β α e -νt y 0 L 2 ((0,1);R n ) . If all the diagonal elements of Λ are different, the assumption that Q(x)Λ = ΛQ(x) is equiv- alent to Q being diagonal positive definite

Indeed we have the following result:

Corollary 2.2: Let us assume that m = 0 and there exists a diagonal positive definite matrix

M in R n×n such that V : y ∈ R n → y T M
y is a common Lyapunov function for the continuoustime and discrete-time linear systems

ẏ(t) = Λ -1 F -µI y(t), t ∈ R + , (8) 
y(t + 1) = (e µ G) y(t), t ∈ N. (9) 
Then, the linear hyperbolic system (1)-( 2) is GES.

Proof:

Remark first that Λ + = Λ since it is assumed that m = 0. Let Q = M Λ -1 ,
then Q is diagonal positive definite. By writing the Lyapunov equation of the continuous-time system [START_REF] Gugat | An example for the switching delay feedback stabilization of an infinite dimensional system: The boundary stabilization of a string[END_REF], we obtain (Λ -1 F -µI) M + M (Λ -1 F -µI) < 0 which can be rewritten as

(F -µΛ) Q + Q (F -µΛ) = -2µQΛ + F Q + QF < 0.
This implies existence of ν > 0 such that (5) holds. Also the Lyapunov equation of the discrete-time system ( 9) gives e µ G M e µ G ≤ M. This can be rewritten as G QΛG ≤ e -2µ QΛ which is equivalent to [START_REF] Santos | Boundary control of open channels with numerical and experimental validations[END_REF], since m = 0 and

Q(x) = e -2µx Q.
Thus the assumptions of Proposition 2.1 hold and this concludes the proof of Corollary 2.2.

Let us remark that increasing µ improves the stability of ( 8) and degrades that of (9) while decreasing µ will have the reverse effect. Another interpretation of the previous result is that the linear hyperbolic system (1)-( 2) is GES if there is a balance between the expansion (respectively contraction) rate of the continuous-time linear system ẏ(t) = Λ -1 F y(t) and the contraction (respectively expansion) rate of discrete-time linear system y(t + 1) = Gy(t).
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III. SWITCHED LINEAR HYPERBOLIC SYSTEMS

We now consider the case of switched linear hyperbolic partial differential equation of the form (see [START_REF] Amin | Exponential stability of switched linear hyperbolic initial-boundary value problems[END_REF])

∂ t w(t, x) + L σ(t) ∂ x w(t, x) = A σ(t) w(t, x) , x ∈ [0, 1], t ∈ R + (10) 
where w : R + × [0, 1] → R n , σ : R + → I, I is a finite set (of modes), A i and L i are matrices in R n×n , for i ∈ I. The partial differential equation associated with each mode is hyperbolic, meaning that for all i ∈ I, there exists an invertible matrix S i in R n×n such that

L i = S -1 i Λ i S i where Λ i is a diagonal matrix in R n×n satisfying Λ i = diag(λ i,1 , . . . , λ i,n ), with λ i,k < 0 for k ∈ {1, . . . , m i } and λ i,k > 0 for k ∈ {m i + 1, . . . , n}.
The matrices S i can be written as

S i = S - i S + i (11)
where S - i and S + i are matrices in R m i ×n and R (n-m i )×n . We define the matrices

F i = S i A i S -1 i and Λ + i = diag(|λ i,1 |, . . . , |λ i,n |) for i ∈ I.
The boundary conditions are given by

B 0 σ(t) w(t, 0) + B 1 σ(t) w(t, 1) = 0, t ≥ 0 (12) 
where, for all i ∈ I, B 0 i = G 0 i S i and

B 1 i = G 1 i S i , G 0 i and G 1 i being matrices in R n×n that satisfy G 0 i = -G i--0 m i ,n-m i -G i+-I n-m i , G 1 i = Im i -G i-+ 0 m i ,n-m i -G i++ .
For i ∈ I, let us define the matrices in R n×n ,

G i = G i--G i-+ G i+-G i++ .
We shall consider an initial condition given by w(0, x) = w 0 (x), x ∈ (0, 1)

where

w 0 ∈ L 2 ((0, 1); R n ).
A switching signal is a piecewise constant function σ : R + → I, right-continuous, and with a finite number of discontinuities on every bounded interval of R + . This allows us to avoid the Zeno behavior, as described in [START_REF] Liberzon | Switching in systems and control[END_REF]. The set of switching signals is denoted by S(R + , I). The discontinuities of σ are called switching times. The number of discontinuities of σ on the interval (τ, t] is denoted by N σ (τ, t). Following [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF], for τ D > 0, N 0 ∈ N, we denote by S τ D ,N 0 (R + , I)

the set of switching signals verifying, for all τ < t, N σ (τ, t) ≤ N 0 + t-τ τ D . The constant τ D is called the average dwell time and N 0 the chatter bound.

We first provide an existence and uniqueness result for the solutions of ( 10)-( 13):

July 17, 2013 DRAFT Proposition 3.1: For all σ ∈ S(R + , I), w 0 ∈ L 2 ((0, 1); R n ), there exists a unique (weak) solution w ∈ C 0 (R + ; L 2 ((0, 1); R n )) to the initial value problem (10)- [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF].

Proof: We build iteratively the solution between successive switching times. Let (t k ) k∈K denote the increasing switching times of σ, with t 0 = 0 and K be a (finite or infinite) subset of N. Let us assume that we have been able to build a unique (weak) solution w ∈

C 0 ([0, t k ]; L 2 ((0, 1); R n )) for some k ≥ 0. Then, let i k be the value of σ(t) for t ∈ [t k , t k+1 ).
Let us introduce the following notation, for all k in K and for all x in [0, 1],

y k (t, x) = S i k w(t, x), t ∈ [t k , t k+1 ]. (14) 
Note that closed time intervals are used on both sides due to technical reasons in this proof.

Then, [START_REF] Hante | Modeling and analysis of modal switching in networked transport systems[END_REF] gives that, for all k in K, y k satisfies the following partial differential equation

∂ t y k (t, x) + Λ i k ∂ x y k (t, x) = F i k y k (t, x), x ∈ [0, 1], t ∈ [t k , t k+1 ] . (15) 
Also, we use the notations

y k = y - k y + k , where y - k : R + × [0, 1] → R m i k and y + k : R + × [0, 1] → R n-m i k .
The boundary conditions [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF] give, for all k in K,

y - k (t,1) y + k (t,0) = G i k y - k (t,0) y + k (t,1) , t ∈ [t k , t k+1 ] . (16) 
The initial condition ensuring the continuity of w at time t k is the following:

y k (t k , x) = S i k w(t k , x), x ∈ (0, 1) . ( 17 
)
It follows from [START_REF] Diagne | Lyapunov exponential stability of linear hyperbolic systems of balance laws[END_REF] that, for all k in K, there exists a unique (weak) solution

y k ∈ C 0 ([t k , t k+1 ]; L 2 ((0, 1); R n ))
to the initial value problem ( 15)- [START_REF] Luo | Stability and stabilization of infinite dimensional systems and applications[END_REF]. Then, we can extend the (weak) solution to the initial value problem (10)- [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF], from the initial time t k , up to the switching time t k+1 ; [START_REF] Luo | Stability and stabilization of infinite dimensional systems and applications[END_REF] ensures that w ∈ C 0 ([0, t k+1 ]; L 2 ((0, 1); R n )), and the uniqueness of y k ensures that w is the unique solution. Finally, since there are only a finite number of switching times on every bounded intervals of R + , the solution can be defined for all times, resulting on a unique solution w ∈ C 0 (R + ; L 2 ((0, 1); R n )).

IV. STABILITY OF SWITCHED LINEAR HYPERBOLIC SYSTEMS

Let S ⊆ S(R + , I). The switched linear hyperbolic system (10)-( 12) is said to be globally uniformly exponentially stable (GUES) with respect to the set of switching signals S if there exist ν > 0 and C > 0 such that, for every w 0 ∈ L 2 ((0, 1); R n ), for every σ ∈ S, the solution to July 17, 2013 DRAFT the initial value problem (10)-( 13) satisfies w(t, .) L 2 ((0,1);R n ) ≤ Ce -νt w 0 L 2 ((0,1);R n ) , ∀t ∈ R + . In this section, we provide sufficient conditions for the stability of switched linear hyperbolic systems.

A. Mode independent sign structure of characteristics

Assume first that the number of negative and positive characteristics of the linear partial differential equations associated with each mode is constant, that is for all i ∈ I, m i = m.

We provide a first result giving sufficient conditions such that stability holds for all switching signals. The proof is based on a common Lyapunov function equivalent to the L 2 norm. An alternative proof can be obtained by checking some semigroup properties and by using [START_REF] Hante | Converse Lyapunov theorems for switched systems in Banach and Hilbert spaces[END_REF] (where the equivalence is shown between the existence of a common Lyapunov function commensurable with the squared norm and the global uniform exponential stability).

Theorem 1: Let us assume that, for all i ∈ I, m i = m and that there exist ν > 0, µ ∈ R and diagonal positive definite matrices Q i in R n×n , i ∈ I such that the following matrix inequalities hold, for all i ∈ I and for all x in [0, 1],

-2µQ i (x)Λ + i + F i Q i (x) + Q i (x)F i ≤ -2νQ i (x), (18) 
  I m 0 m,n-m G i+-G i++   Q i (0)Λ i   I m 0 m,n-m G i+-G i++   ≤   G i--G i-+ 0 n-m,m I n-m   Q i (1)Λ i   G i--G i-+ 0 n-m,m I n-m   , (19) 
where

Q i (x) = diag[e 2µx Q - i , e -2µx Q + i ], Q i = Q - i 0 0 Q + i , Q - i and Q + i are diagonal positive matrices in R m i ×m i and R (n-m i )×(n-m i )
, together with the following matrix equalities, for all i, j ∈ I,

(S + i ) Q + i S + i = (S + j ) Q + j S + j , (S - i ) Q - i S - i = (S - j ) Q - j S - j . (20) 
Then, the switched linear hyperbolic system (10)-( 12) is GUES with respect to the set of switching signals S(R + , I).

Proof: Given the diagonal matrices Q i satisfying the assumptions of Theorem 1, let [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF], these matrices do not depend on the index i ∈ I. The proof is based on the use of a common Lyapunov function given by, for all w in L 2 ((0, 1); R n ),

M -= (S - i ) Q - i S - i and M + = (S + i ) Q + i S + i , by
V (w) = 1 0 w(x) M(x)w(x) dx, July 17, 2013 DRAFT
where M(x) = e 2µx M -+ e -2µx M + . Let (t k ) k∈K denote the increasing switching times of σ, with t 0 = 0 and K a (finite or infinite) subset of N. For k ∈ K, let i k be the value of σ(t) for t ∈ [t k , t k+1 ), and let y k be given by [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF]. It thus satisfies the boundary conditions [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF]. Let us remark that, due to ( 11) and ( 17), for t ∈ [t k , t k+1 ), V can be written as:

V (w(t, .)) = 1 0 y k (t, x) Q i k (x)y k (t, x) dx,
where

Q i k (x) = diag[e 2µx Q - i k , e -2µx Q + i k ]. Note that Q i k (x)
commute with Λ since these matrices are diagonal. Using ( 18) and ( 19) and following the proof of Proposition 2.1, we obtain that, along the solutions of ( 10)-( 12), it holds, for all k in K,

∀t ∈ [t k , t k+1 ), V (w(t, .)) ≤ V (w(t k , .))e -2ν(t-t k ) . (21) 
Moreover, V (w(t, .)) is continuous at the switching time t k+1 , thus

∀k ∈ K, V (w(t k+1 , .)) ≤ V (w(t k , .))e -2ν(t k+1 -t k ) . (22) 
Equations ( 21) and ( 22) allow us to prove that, for all t ∈ R + , V (w(t, .)) ≤ V (w 0 )e -2νt .

By noting that there exist α > 0, β > 0 such that α w(t, .) L 2 ((0,1);R n ) ≤ V (w(t, .)) ≤ β w(t, .) L 2 ((0,1);R n ) , we obtain that, for all t ∈ R + , w(t, .) L 2 ((0,1);R n ) ≤ β α e -νt w 0 L 2 ((0,1);R n ) . This concludes the proof of Theorem 1.

The numerical computation of the unknown variables, satisfying the sufficient conditions of Theorem 1, is explained in Section V below.

For systems that do not satisfy the assumptions of the previous theorem, but whose dynamics in each mode satisfy independently the assumptions of Proposition 2.1 (i.e. the dynamics in each mode is stable), it is possible to show that the system is stable provided that the switching is slow enough: Theorem 2: Let us assume that, for all i ∈ I, m i = m and that there exist ν > 0, γ ≥ 1,

µ i ∈ R, diagonal positive definite matrices Q i in R n×n ,
such that the following matrix inequalities hold, for all x in [0, 1],

-2µ i Q i (x)Λ + i + F i Q i (x) + Q i (x)F i ≤ -2νQ i (x), (23) 
  I m 0 m,n-m G i+-G i++   Q i (0)Λ i   I m 0 m,n-m G i+-G i++   ≤   G i--G i-+ 0 n-m,m I n-m   Q i (1)Λ i   G i--G i-+ 0 n-m,m I n-m   , (24) 
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where

Q i (x) = diag[e 2µ i x Q - i , e -2µ i x Q + i ], Q i = Q - i 0 0 Q + i , Q - i and Q + i are diagonal positive matrices in R m i ×m i and R (n-m i )×(n-m i )
, together with the following matrix inequalities, for all i, j ∈ I,

(S + i ) Q + i S + i ≤ γ(S + j ) Q + j S + j , (25) 
(S - i ) Q - i S - i ≤ γ(S - j ) Q - j S - j . (26) 
Let ∆ µ = max(µ 1 , . . . , µ n ) -min(µ 1 , . . . , µ n ), then, for all N 0 ∈ N, for all τ D > ln(γ) 2ν + ∆µ ν , the switched linear hyperbolic system (10)-( 12) is GUES with respect to the set of switching signals S τ D ,N 0 (R + , I).

Proof: Let (t k ) k∈K denote the increasing switching times of σ, with t 0 = 0 and K is a (finite or infinite) subset of N. For k ∈ K, let i k be the value of σ(t) for t ∈ [t k , t k+1 ), and let y k be given by [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF]. It satisfies the boundary conditions [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF]. Given the diagonal matrices Q i satisfying the assumptions of Theorem 2, let

M - i = (S - i ) Q - i S - i and M + i = (S + i ) Q + i S + i .
The proof is based on the use of multiple Lyapunov functions. More precisely, denoting

M i k (x) = e 2µ i k x M - i k + e -2µ i k x M + i k , let us define, for all w in C 0 ([0, ∞); L 2 ((0, 1); R n )), for all t in R + , V (w(t, .)) = 1 0 w(t, x) M i k (x)w(t, x) dx, if t ∈ [t k , t k+1 ) (27) 
which may be rewritten as V (w(t, .))

= 1 0 y k (t, x) Q i k (x)y k (t, x) dx, if t ∈ [t k , t k+1 ). Note that Q i k (x)
commute with Λ i k since these matrices are diagonal. Using (23) and (24), and following the proof of Proposition 1, we get that, along the solutions of ( 10)- [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF],

∀k ∈ K, ∀t ∈ [t k , t k+1 ), V (w(t, .)) ≤ V (w(t k , .))e -2ν(t-t k ) . ( 28 
)
The function V may be not continuous at the switching times any more. Nevertheless, by ( 25) and ( 26), we have that, for all k in K,

V (w(t k+1 , .)) = 1 0 w(t k+1 , x) M - i k+1 w(t k+1 , x)e 2µ i k+1 x + w(t k+1 , x) M + i k+1 w(t k+1 , x)e -2µ i k+1 x dx ≤ γ 1 0 w(t k+1 , x) M - i k w(t k+1 , x)e 2µ i k+1 x + w(t k+1 , x) M + i k w(t k+1 , x)e -2µ i k+1 x dx ≤ γe 2∆µ 1 0 w(t k+1 , x) M - i k w(t k+1 , x)e 2µ i k x + w(t k+1 , x) M + i k w(t k+1 , x)e -2µ i k x dx ≤ γe 2∆µ lim t→t - k+1 V (w(t, .))
July 17, 2013 DRAFT where the continuity of w is used in the last inequality (it follows from Proposition 3.1). Then, it follows from (28) that, for all k in K, V (w(t k+1 , .)) ≤ γe 2∆µ V (w(t k , .

))e -2ν(t k+1 -t k ) , and it allows us to prove recursively that, for all t ∈ R + , V (w(t, .)) ≤ γe 2∆µ Nσ(0,t) V (w 0 )e -2νt ≤ γe 2∆µ (N 0 + t τ D

) V (w 0 )e -2νt . Let ν = ν -∆µ τ D -ln(γ) 2τ D , the assumption on the average dwell time gives that ν > 0 and the previous inequality yields ∀t ∈ R + , V (w(t, .)) ≤ γe 2∆µ N 0 V (w 0 )e -2νt which allows us to conclude that the switched linear hyperbolic system is GUES with respect to the set of switching signals S τ D ,N 0 (R + , I). This concludes the proof of Theorem 2.

Remark 4.1: Setting γ = 1 and µ i = µ for all i ∈ I, we recover the assumptions of Theorem 1. In that case we have ∆ µ = 0: there is no positive lower bound imposed on the average dwell time, which is consistent with Theorem 1.

• Remark 4.2: Note that the existence of γ ≥ 1 such that (25) holds is equivalent to Ker(S + i ) = Ker(S + j ), for all i, j ∈ I. Therefore the existence of γ ≥ 1 such that ( 25) and ( 26) are satisfied is equivalent to Ker(S + i ) = Ker(S + j ) and Ker(S - i ) = Ker(S - j ), for all i, j ∈ I (and also, by recalling L i = S -1 i Λ i S i , the subspace associated with all positive (resp. negative) eigenvalues of L i does not depend on i). If this condition does not hold, stability can still be analyzed using other stability results presented in the following section.

•

B. Mode dependent sign structure of characteristics

We now relax the assumption on the number of negative and positive characteristics. As in the previous section, we provide a first result giving sufficient conditions such that stability holds for all switching signals:

Theorem 3: Let us assume that there exist ν > 0 and diagonal positive definite matrices Q i in R n×n , i ∈ I such that, for all i ∈ I,

F i Q i + Q i F i ≤ -2νQ i , (29) 
G T i Q i Λ + i G i ≤ Q i Λ + i , (30) 
and such that, for all i, j ∈ I,

S i Q i S i = S j Q j S j . (31) 
Then, the switched linear hyperbolic system (10)-( 12) is GUES with respect to the set of switching signals S(R + , I).
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Proof: We use the same notations as in Theorem 1. We consider the candidate Lyapunov function, for all w in C 0 ([0, ∞); L 2 ((0, 1); R n )), for all t ∈ R + ,

V (w(t, .)) = 1 0 y k (t, x) Q i k y k (t, x)dx, if t ∈ [t k , t k+1 ),
where we used the change of variable [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF]. Using ( 29) and (30), and following the proof of Proposition 2.1, we obtain that, along the solutions of ( 10)-( 12), it holds, for all k in K, and

for all t ∈ [t k , t k+1 ), V (w(t, .)) ≤ V (w(t k , .
))e -2ν(t-t k ) . Recalling ( 14), we have y k (t k+1 , .) = S i k w(t k+1 , .) and y k+1 (t k+1 , .) = S i k+1 w(t k+1 , .), which gives y k+1 (t k+1 , .) = S i k+1 S -1 i k y k (t k+1 , .). Hence, Equation (31) yields, for all k in K,

V (w(t k+1 , .)) = 1 0 y k+1 (t k+1 , x) Q i k+1 y k+1 (t k+1 , x)dx = 1 0 y k (t k+1 , x) S - i k S i k+1 Q i k+1 S i k+1 S -1 i k y k (t k+1 , x)dx = 1 0 y k (t k+1 , x) Q i k y k (t k+1 , x)dx = lim t→t - k+1 V (w(t, .)).
Thus, V is continuous at the switching time t k+1 . The end of the proof is similar to that of Theorem 1.

The assumptions of the previous theorem are quite strong. To assure the asymptotic stability for switching signals with a sufficiently large dwell time, weaker assumptions are needed. More precisely, considering the assumptions of Theorem 2, the last main result of this paper can be stated:

Theorem 4: Let us assume that there exist ν > 0, γ ≥ 1, µ i ∈ R, and diagonal positive definite matrices Q i in R n×n , i ∈ I such that the matrix inequalities (23), ( 24) hold (where the same notation for Q i (x) is used) together with the following matrix inequalities, for all i, j ∈ I,

S i Q i S i ≤ γS j Q j S j . ( 32 
)
Let ∆µ = 2|µ i | if I is a singleton and ∆µ = 2 max i =j∈I (|µ i | + |µ j |) else.
Then, for all N 0 ∈ N, for all τ D > ln(γ) 2ν + ∆µ ν , the switched linear hyperbolic system (10)-( 12) is GUES with respect to the set of switching signals S τ D ,N 0 (R + , I).

Proof: We use the same notations as in Theorem 2, and we consider the candidate Lyapunov function (27). Using (23) and (24), Equation (28) still holds along the solutions of ( 10)- [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF]. July 17, 2013 DRAFT Moreover, for all k in K,

V (w(t k+1 , .)) ≤ e 2|µ i k+1 | 1 0 y k+1 (t k+1 , x) Q i k+1 y k+1 (t k+1 , x)dx ≤ γe 2|µ i k+1 | 1 0 y k+1 (t k+1 , x) Q i k y k+1 (t k+1 , x)dx ≤ γe 2|µ i k+1 |+2|µ i k | 1 0 y k (t k+1 , x) Q i k (x)y k (t k+1 , x)dx ≤ γe 2 ∆µ lim t→t - k+1 V (w(t, .)).
The end of the proof follows the same lines as that of Theorem 2.

Let us note that Theorem 3 can be deduced from Theorem 4 by selecting γ = 1 and µ i = 0 for all i ∈ I.

V. COMPUTATIONAL ASPECTS

The sufficient stability conditions of the results presented in this paper may be solved using classical numerical tools. More precisely, let us remark that the matrix inequalities ( 18) and [START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF] in the statement of Theorem 1 are linear in Q i but nonlinear in µ, some numerical methods may be used:

• by particularizing to the case µ = 0;

• or when the source terms in (10)-( 12) are diagonal;

• or when the matrices Λ i are either all positive definite or all negative definite.

Let us consider these three cases in the next three sections.

A. Particularizing to the case µ = 0

By letting µ = 0 in the conditions ( 18) and ( 19), the matrix inequalities in Theorem 1 do not depend on the x-variable. Therefore the following matrix inequalities

F i Q i + Q i F i ≤ -2νI n , Q i ≤ I n . ( 33 
)   I m 0 m,n-m G i+-G i++   Q i Λ i   I m 0 m,n-m G i+-G i++   ≤   G i--G i-+ 0 n-m,m I n-m   Q i Λ i   G i--G i-+ 0 n-m,m I n-m   (34) 
imply [START_REF] Prieur | Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations[END_REF] and [START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF].
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The previous conditions (33) and (34) are linear in the unknown variables ν and Q i and can therefore be solved using semi-definite programming (see e.g., [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF] with [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF]). It is thus obtained the following result as a corollary of Theorem 1:

Corollary 5.1: Let us assume that, for all i ∈ I, m i = m, and there exist ν > 0, and diagonal positive definite matrices Q i in R n×n satisfying the matrix inequalities ( 20), ( 33) and (34). Then, the switched linear hyperbolic system (10)-( 12) is GUES with respect to the set of switching signals S(R + , I).

Moreover the proof of Theorem 1 implies that the function given by, for all w in L 2 ((0, 1); R n ),

V (w) = 1 0 w(x) M w(x) dx, where M = (S - i ) Q - i S - i + (S + i ) Q + i S +
i is a Lyapunov function of ( 10)-( 12), and, since the estimation w(t, .) L 2 ((0,1);R n ) ≤ Ce -νt w 0 L 2 ((0,1);R n ) holds along the solutions w of ( 10)-( 12), for a suitable value C > 0 (which does not depend on the solution), it implies that the value of ν is an estimation of the speed of the exponential stability. Semi-definite programming (as in [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF]) allows us to optimize this estimation and to compute the largest positive value ν such that the linear matrix inequalities (33), (34), and [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF] have a solution in the variables Q i and ν.

Analogous corollaries may be written by letting µ i = 0, for all i ∈ I, in Theorems 2 and 4, and by considering directly Theorem 3 (for which µ = 0).

To conclude this section, let us emphasize that this approach is allowed since µ = 0 is possible in our main results. This is not possible using the approach of [START_REF] Diagne | Lyapunov exponential stability of linear hyperbolic systems of balance laws[END_REF], where µ should be a strictly positive value.

B. With a diagonal source term

If, for each i in I, the source term F i in (10)-( 12) is diagonal, then ( 18) is equivalent to

-µΛ + i + F i ≤ -νI n . (35) 
Therefore the following result is a corollary of Theorem 1:

Corollary 5.2: Let us assume that for all i ∈ I, m i = m, the matrices F i are diagonal and that there exist ν > 0, µ ∈ R, and diagonal positive definite matrices Q i in R n×n satisfying the July 17, 2013 DRAFT matrix inequalities, ( 19), ( 20) and (35). Then, the switched linear hyperbolic system (10)-( 12)

is GUES with respect to the set of switching signals S(R + , I).

The sufficient conditions ( 19), ( 20) and (35) of Corollary 5.2 are nonlinear in the unknown variables ν, µ and Q i , due to the term Q i (1) in ( 19) which depends nonlinearly on Q i and µ.

However, µ being a scalar variable, one may combine a line search algorithm with semi-definite programming to solve [START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF], ( 20) and (35). Analogously, when the source terms are diagonal in ( 10)-( 12), line search algorithms could be used to numerically check the sufficient conditions of Theorems 2 and 4.

C. When Λ i are all positive definite or all negative positive

Let us assume in this section, that all velocities in (10)-( 12) have the same sign, that is that either, for all i in I, Λ i is positive definite or, for all i in I, Λ i is negative definite. To ease the presentation of this section, it is assumed, that the first case occurs: for all i in I, Λ + i = Λ i and m i = 0. Then the following matrix inequalities

-2µQ i Λ i + F i Q i + Q i F i ≤ -2νI n , Q i ≤ I n , (36) 
G i Q i Λ i G i ≤ e -2µ Q i Λ i (37) 
imply [START_REF] Prieur | Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations[END_REF] and [START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF]. This gives us the following corollary of Theorem 1:

Corollary 5.3: Let us assume that, for all i ∈ I, m i = 0, and that there exist ν > 0, µ ∈ R, and diagonal positive definite matrices Q i in R n×n satisfying the matrix inequalities ( 20), ( 36) and (37). Then, the switched linear hyperbolic system (10)-( 12) is GUES with respect to the set of switching signals S(R + , I).

The conditions [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF] ). Then, Theorem 1 guarantees the stability of the switched linear hyperbolic system for all switching signals. Figure 2 shows the stable behavior of the switched linear hyperbolic system for a periodic switching signal of period 1.

B. Mode dependent sign structure of characteristics

To illustrate the results of Section IV-B, we consider the following switched linear hyperbolic system

∂ t w(t, x) + L i(t) ∂ x w(t, x) = F w(t, x), x ∈ [0, 1], t ∈ R + (41) 
where

w : R + × [0, 1] → R, i(t) ∈ I = {1, 2}, L 1 = 1 and L 2 = -1 and F ∈ R. The boundary conditions are given by w(t, 0) = Gw(t, 1) if i(t) = 1 w(t, 1) = Gw(t, 0) if i(t) = 2 (42) 
and G > 0. This is a switched linear hyperbolic system of the form (10)-( 12 We assume that F < -ln(G); if this does not hold, then it can be shown that the linear hyperbolic systems in each mode are both not asymptotically stable. If µ-F in this interval is 2 ln(G) ln(G)+F ; therefore stability of the switched linear hyperbolic system is guaranteed for switching signals with τ D > 2 ln(G) ln(G)+F . For G = 0.5 and F = -0.1, the minimal required τ D is 2.3372. Figure 4 shows unstable and stable behaviors for these values of G and F and for periods equal 0.9 and 2.4. 

VII. CONCLUSION

In this paper, some sufficient conditions have been derived for the exponential stability of hyperbolic PDE with switching signals defining the dynamics and the boundary conditions. This stability analysis has been done with Lyapunov functions and exploiting the dwell time assumption, if it holds, of the switching signals. The sufficient stability conditions are written in terms of matrix inequalities which lead to numerically tractable problems. This work lets many questions open and may have natural applications on physical applications. In particular, exploiting the sufficient conditions for the derivation of switching stabilizing boundary controls (as for the physical application considered in [START_REF] Santos | Boundary control of open channels with numerical and experimental validations[END_REF]) seems to be a natural [START_REF] Zuazua | Switching control[END_REF] DRAFT extension. The generalization of the results to linear hyperbolic with space-varying entries may also be studied.

Fig. 1 .

 1 Fig. 1. Time evolution of u = w1 + w2, solution of (38)-(39) for periodic switching signals of period 1 (left) and 2.4 (right).

(

  35) is equivalent to ν ≤ µ + 0.3. One can verify that Corollary 5.2 applies with µ = -0.2, ν = 0.1 and Q 1 = Q 2 = ( 1.5 0 0 1

) with A 1 =

 1 A 2 = F , S 1 = S 2 = 1, and G 1 = G 2 = G. With the notation defined in the previous sections, we also have Λ + 1 = Λ + 2 = 1 and F 1 = F 2 = F . July 17, 2013 DRAFT

Fig. 2 .

 2 Fig. 2. Time evolution of u = w1 + w2, solution of (39)-(40) for a periodic switching signal of period 1.

F < 0

 0 and G ≤ 1, then Theorem 3 applies with Q 1 = Q 2 = 1 and ν = -F . Hence, in that case Theorem 3 guarantees the stability of the switched linear hyperbolic system for all switching signals. If G > 1 (resp. F > 0) then the condition (30) (resp. (29)) of Theorem 3 does not hold and thus Theorem 3 does not apply. If G > 1, let F < µ < -ln(G), then Theorem 4 holds with µ 1 = µ 2 = µ, ν = µ -F , γ = 1 and Q 1 = Q 2 = 1. Then, Theorem 4 guarantees the stability of the switched linear hyperbolic system for switching signals with average dwell time τ D greater than ∆µ ν = -2µ µ-Ffor any µ ∈ (F, -ln(G)). The minimal value of -2µ µ-F in this interval is -2 ln(G) ln(G)+F ; therefore the stability of the switched linear hyperbolic system is guaranteed for switching signals with τ D greater than -2 ln(G) ln(G)+F . For G = 2 and F = -1, in that case the minimal required τ D is 4.5178.

Figure 3

 3 shows unstable and stable behaviors for these values of G and F and for periods equal to 1.2 and 4.6.If F > 0, let G and µ such that F < µ < -ln(G), then Theorem 4 holds with µ 1 = µ 2 = µ, ν = µ -F , γ = 1 and Q 1 = Q 2 =1. Then, Theorem 4 guarantees the stability of the July 17, 2013 DRAFT switched linear hyperbolic system for switching signals with τ D greater than ∆µ ν = 2µ µ-F for any µ ∈ (F, -ln(G)). The minimal value of 2µ

Fig. 3 .

 3 Fig. 3. Time evolution of w, solution of (41)-(42) with F = -1 and G = 2, for periodic switching signals of period 1.2 (left) and 4.6 (right).

Fig. 4 .

 4 Fig. 4. Time evolution of w, solution of (41)-(42) with F = 0.1 and G = 0.5, for periodic switching signals of period 0.9 (left) and 2.4 (right).

  [START_REF] Zuazua | Switching control[END_REF] DRAFT computational aspects are illustrated on two examples of switched linear hyperbolic systems.The paper is organized as follows. The class of switched linear hyperbolic systems of balance laws considered in this paper is given in Section II and a first stability condition is proven.Switched systems of balance laws are presented in Section III. In Section IV our main results are derived for the stability of switched hyperbolic systems. The conditions depend on the class of piecewise constant switching signals that is considered (with and without a sufficiently large dwell time). The stability conditions may also differ if the number of positive characteristic velocities does not depend on the switching signal (see Section IV-A) or if this number is a function of this signal (see Section IV-B). Section V collects the discussions on computational

aspects. It deals in particular with the numerical check of our stability conditions, and the numerical computations of the considered Lyapunov functions. In Section VI two examples illustrate the main results and motivate the class of Lyapunov functions considered in this paper.

Notation. The set R + is the set of nonnegative real numbers. Given a matrix G, the transpose matrix of G is denoted as G . When G is invertible, then, to simplify the notation, (G -1 ) is denoted as G -. For positive integers m and n, I n and 0 n,m are respectively the identity and the null matrix in R n×n and in R n×m . Given some scalar values (a 1 , . . . , a n ), diag(a 1 , . . . , a n ) is the matrix in R n×n with zero non-diagonal entries, and with (a 1 , . . . , a n ) on the diagonal. Moreover given two matrices A and B, diag[A, B] is the block diagonal matrix formed by A and B (and zero for the other entries). The notation A ≥ B means that A -B is positive semidefinite. The usual Euclidian norm in R n is denoted by | • | and the associated matrix norm is denoted • , whereas the set of all functions φ

  , (36) and (37) of Corollary 5.3 are again nonlinear in the unknown variables ν, µ and Q i , due to the product of µ and Q i in (36) and the product of e -2µ and Q i (37). However, since µ is a scalar variable, one may combine a line search algorithm with

	semi-definite programming to solve (20), (36) and (37). Analogous techniques could be used as
	well in Theorem 2. For Theorem 4, similar simplifications can be done if, for all i ∈ I, Λ i is
	negative definite or positive definite.
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This equivalence follows from the computation of matrices Q(x)Λ and ΛQ(x), and from a comparison between each of their entries.July 17, 
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VI. EXAMPLES

A. Mode independent sign structure of characteristics

Consider the wave equation: ∂ 2 t u(t, x) -∂ 2 x u(t, x) = 0, where x ∈ [0, 1], t ∈ R + , and u : R + × [0, 1] → R. The solutions of the previous equations can be written as u(t, x) =

where L = diag(-1, 1). We consider for this hyperbolic system the following switching boundary conditions:

This is a switched linear hyperbolic system of the form ( 10)-( 12) with

). With the notations defined in the previous sections, we also have

We are in the particular case described in Section V-B. Though, we were not able to apply Corollary 5.2 as we could not find ν > 0, µ ∈ R, and diagonal positive definite matrices Q 1 and Q 2 such that the set of matrix inequalities (35), [START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF], and (20) hold. Actually, this could be explained by the fact that it is possible to find a switching signal that destabilizes the system as shown on the left part of Figure 1 (where a periodic switching signal is used with a period equals to 1).

We can prove the exponential stability for a set of switching signals with an assumption on the average dwell time using Theorem 2. Let us remark that since F 1 = F 2 = 0, (23) is equivalent to µ i ≥ ν for i ∈ {1, 2}. One can verify that Equations (24), ( 25) and (26) hold as well for the choices Q 1 = ( 0.75 0 0 2 ), Q 2 = ( 1.5 0 0 1 ) and γ = 2. Then, Theorem 2 guarantees the stability of the switched linear hyperbolic system for switching signals with average dwell time greater than ln(γ) 2ν = 2.3105. The right part of Figure 1 shows the stable behavior of the switched linear hyperbolic system for a periodic switching signal with a period equals to 2.4. To illustrate Corollary 5.2, we add a diagonal damping term to (38):

where A = diag(-0.3, -0.3). The boundary conditions are given by (39). Now, A 1 = A 2 = F 1 = F 2 = A and the other matrices of the system remain unchanged. In the present case July 17, 2013 DRAFT