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Introduction
Computational resources are often a limitation for the
simulation of long range sound propagation. Especially,
time domain methods such as FDTD or TLM meth-
ods for acoustics still require consequent computational
power. Simulations of free-field wave propagation should
be equivalent to wave propagation in an infinite domain
but in practice computational domain is always finite.
Furthermore, the truncation of the propagation domain
can be seen as an approach to minimize computational
burden. Therefore, the truncation, i.e. the artificial
numerical boundary, should not impact the propagation
domain of interest. The methods that prevent from
phenomena such as unwanted reflections can be divided
into two categories: absorbing boundaries and absorbing
layers. Each approach aims at simulating free-space
propagation in order to allow a truncation of the com-
putational domain. Considering the transmission-line
matrix (TLM) method, absorbing boundaries have shown
limited interest, i.e. some of them induce instabilities
and/or are only efficient for normal incidence. Therefore,
absorbing layer methods appear to be more promising
for the TLM method. Two absorbing layer methods
have already been tested with the TLM method: the
dissipative medium [1] and the matched connexion law [2,
3]. The perfectly matched layer (PML) proposed by
Bérenger in electromagnetism has been used in several
methods for acoustic simulations. This approach shows
convincing performances in most calculation methods
used for acoustics but no rigorous implementation of
Bérenger’s perfectly matched layers has been proposed
yet for TLM applications in acoustics.

The first part of this document presents the basics of
the TLM principle. The second part briefly reminds the
approaches used to implement absorbing conditions to
the TLM method. The method to adapt the PML to the
TLM method is presented in the third part. A condition
on the solutions and the validity of every approximate
PML formulation is discussed in part four and five.
Finally, the numerical results are presented and discussed
in the conclusion.

The TLM method for acoustics
Incident pulses tI

n
(i,j) and scattered pulses tS

m
(i,j) for

a given node position (i, j) are depicted by figure 1.
Indexes n and m correspond to the number of the branch
where pulses are traveling. Incident and scattered pulses
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Figure 1: Incident tI
n
(i,j) and scattered tS

m
(i,j) pulses for

a node (i, j) at the time t for an homogeneous and non
dissipative medium (2D).

can be put into vectors as follow:

tI(i,j) = [ tI
1; tI

2; tI
3; tI

4]T(i,j), (1)

tS(i,j) = [ tS
1; tS

2; tS
3; tS

4]T(i,j) (2)

where (i, j) corresponds to the node position in the
discretized TLM network and the exponent T denotes
the transposed of the original vectors tI(i,j) and tS(i,j).
The scattering process for each node of the transmission-
line network is written as:

tS(i,j) = tD(i,j) tI(i,j) , (3)

where tD(i,j) is the scattering matrix, which define the
proportion of reflected and transmitted pulses at every
node of the TLM network.

In the case of outdoor sound propagation, physical
phenomena such as atmospheric turbulence induce het-
erogeneities of the propagation medium. Atmospheric
absorption induces additional dissipation which should
be taken into account in the model. Both phenomena
are implemented in the TLM method through the intro-
duction of specific additional branches.

Heterogeneities

It has been shown [6] that an additional branch at
each node can be used to set the local sound celerity.
This approach introduces the parameter η that allows
to modify the local impedance through an additional
fifth branch of length δl/2. This branch presents a
characteristic impedance Z0/η (see Fig. 2), where Z0

corresponds to the characteristic impedance of the main
branches.

Dissipation

Dissipation phenomena additional to the geometrical
divergence can be simulated for a given frequency by
adding a branch. This branch presents an anechoic
termination and a specific impedance Z0/ζ. As the
termination of the dissipation’s branch is anechoic, the
wave that travels in such a branch is neither transmitted
nor reflected.



Therefore, to simulate acoustic propagation in an hetero-
geneous and dissipative medium the TLM network has to
be modified as shown in figure 2, which give rise to five
incident and scattered pulses.
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Figure 2: Additional branches for acoustic propagation in
an heterogeneous and dissipative medium (2D).

tI(i,j) = [ tI
1; tI

2; tI
3; tI

4; tI
5]T(i,j), (4)

tS(i,j) = [ tS
1; tS

2; tS
3; tS

4; tS
5]T(i,j), (5)

where tI
5 and tS

5 corresponds to incident and scattered
pulses from the additional fifth branch which aims
at introducing heterogeneities in the transmission-line
network.

The superposition principle allows to write the pressure
at a given node position as follows:

tp(i,j) =
2

η(i,j) + ζ(i,j) + 4

[
4∑

n=1

tI
n
(i,j) + η(i,j) tI

5
(i,j)

]
.

(6)
At a given node position (i, j), each scattered pulse tS

m

travel along the discretized distance δl during the time
δt and becomes an incident pulse t+δtI

n at an adjacent
node. For the node position (i, j), this is written as:

t+δtI
1
(i,j) = tS

2
(i−1,j), (7a)

t+δtI
2
(i,j) = tS

1
(i+1,j), (7b)

t+δtI
3
(i,j) = tS

4
(i,j−1), (7c)

t+δtI
4
(i,j) = tS

3
(i,j+1). (7d)

t+δtI
5
(i,j) =t S

5
(i,j). (7e)

From the combination of the matrix relation, the connex-
ion laws and the nodal pressure definition, the iterative
schemes for heterogeneous and dissipative TLM network
is written as:

t+δtp(i,j) =
2

η(i,j) + ζ(i,j) + 4
[ tp(i+1,j) + tp(i−1,j)

+ tp(i,j+1) + tp(i,j−1) + η(i,j) tp(i,j)]

−
η(i,j) − ζ(i,j) + 4

η(i,j) + ζ(i,j) + 4
t−δtp(i,j) , (8)

where time and spatial derivatives ca n be identified to
give the wave following wave equation:[(

∂2

∂x2
+

∂2

∂y2

)
− η + 4

2

δt2

δl2
∂2

∂t2
− ζ δt

δl2
∂

∂t

]
tp(i,j) = 0 .

(9)

Absorbing conditions for the TLM
method
The review of the absorbing conditions for TLM method
shows that absorbing layer approach presents the most
convincing results for the truncation of the propagation
domain of interest. For the use of TLM method in
acoustics, the proposed absorbing layers [2, 3] are mostly
based on empirical approaches. Guillaume [3] proposed
an optimized formulation of the matched connexion laws,
which is named Guillaume’s matched connexion law
(GMCL). The author reminded that the principle of a
PML is to attenuate acoustic wave following the direction
normal to the layer boundary. Therefore, instead of
applying the attenuation factor on the four connexion
laws as it was initially proposed by de Cogan [2], the
GMCL treats only connexion law which corresponds to
the main propagation axis.

Adaptation of the PML to the
TLM method
The only TLM calculation in acoustics truncated by a
PML [5] has been carried out through the connexion of
an FDTD PML calculation which surrounded the TLM
domain of interest. Although PML is seen as convincing
method to truncate the propagation domain, still no
rigorous formulation is available for acoustic simulation
using the TLM method.

Based on an analogy between electromagnetic and acous-
tic fields, for a 2D acoustic wave propagation case, the
acoustic pressure p is split into two additive components:
p = g(x) + h(y). The functions g(x) and h(y) are
the pressure components that respectively only depend
on the spatial variable x and y. The particle velocity
v is composed of two vectorial components vx and vy
following respectively x and y directions. The split-field
PML formulation involves the four acoustic components:
g, h, vx, vy, through the mass continuity and momentum
equations. In 2D Cartesian coordinates the PML can be
written as:

∂g(x)
∂t + c20

∂vx
∂x + σx g(x) = 0 , (10a)

∂h(y)
∂t + c20

∂vy
∂y + σy h(y) = 0 , (10b)

∂vx
∂t + ∂p

∂x + σx vx = 0 , (10c)
∂vy
∂t + ∂p

∂y + σy vy = 0 , (10d)

where c0 is the sound celerity, vx and vy are the particle
velocity components, p the acoustic pressure which can
be split into two components: g(x) and h(y). After
rearrangement, equations (10) give rise to the following
propagation system:

∂2g(x)
∂t2 − c20

∂2p
∂x2 + 2σx

∂g(x)
∂t + σ2

x g(x) = 0 , (11a)

∂2h(y)
∂t2 − c20

∂2p
∂y2 + 2σy

∂h(y)
∂t + σ2

y h(y) = 0 . (11b)

Assuming that σ = σx + σy, equations (11) can be



rewritten into an unsplit form as follows:

∂2p(x, y, t)

∂t2
− c20

(
∂2p(x, y, t)

∂x2
+
∂2p(x, y, t)

∂y2

)
+ 2σ

∂p(x, y, t)

∂t
+ σ2p(x, y, t) = 0, (12)

where the pressure p and the acoustic velocity v are
unsplited. Equation (12) is named as the unsplit PML
wave equation.

Using finite centered differences and the TLM notations,
equation (12) can be discretized and written as an
iterative propagation scheme:

t+δtp(i,j) =
1

2

1

(1 + σδt)
[ tp(i+1,j) + tp(i−1,j)

+ tp(i,j+1) + tp(i,j−1) − 2σ2δt2 tp(i,j)]

− 1− σδt
1 + σδt

t−δtp(i,j). (13)

The propagation schemes (13) and (8) are compared and
each factor are identified from one equation to the other.
From this identification a system of three linear equations
can be written:

2

η + ζ + 4
=

1

2

1

1 + σδt
, (14a)

2η

η + ζ + 4
= − σ2δt2

1 + σδt
, (14b)

η − ζ + 4

η + ζ + 4
=

1− σδt
1 + σδt

, (14c)

where η is the heterogeneity term and ζ is the dissipative
term inherent to the TLM simulations in heterogeneous
and dissipative media. The term σ is the PML attenua-
tion factor. To not overload the notation in this section
the indexes (i, j) are not written, keeping in mind that
each variable η, ζ and σ may depend on the node location
(i, j) in the TLM model.

The system (14) is made up of three linear equations
and two unknown variables: η and ζ. As (14) is an
inconsistent system there no unique solution for η and ζ.
However, three independent combinations of equations
can be studied to solve a part of the system. The three
combinations of equations give rise to three independent
sets of solutions for η and ζ. Each set of solution can be
seen as an approximate PML formulation for the TLM
method.

- The first set of solutions for η and ζ is
calculated from equations (14a) and (14b). After
rearrangement, equation (14a) gives directly:

η = −2σ2δt2. (15)

The expression of η (15) can be injected in (14b).
By substitution, this gives:

ζ = 4σδt− 2σ2δt2, (16)

this corresponds to the first approximate PML
formulation in this document.

- The second set of solutions is calculated from
equations (14b) and (14c). This system gives:

η = − 4σ2δt2

2 + σ2δt2
, (17)

and

ζ =
8σδt

2 + σ2δt2
, (18)

this corresponds to the second approximate PML
formulation.

- The third set of solutions is calculated from
equations (14a) and (14c). This system gives:

η = 0, (19)

and

ζ = 4σδt, (20)

this corresponds to the third approximate PML
formulation.

Condition on the first set of solu-
tions
A condition on σ is introduce which enables to verify
every equation of the system (14) with the solutions (15)
and (16). From equation (14a) the following equality can
be written:

η + ζ + 4 = 4(1 + σδt), (21)

and using (15), (16) and (21) in equation (14c) enable to
write:

η − ζ + 4

η + ζ + 4
=

1− σδt− σ2δt2

1 + σδt
. (22)

If relation (22) is related to equation (14c), then the
following condition should be satisfied: σ2δt2 << 1−σδt.
This induces the following inequality:

σ2δt2

1− σδt
< ε, (23)

where ε should be minimized. This condition introduces
a limitation on the value of the PML attenuation factor
σ which is written as:

σ <
1

2δt
(
√
ε2 + 4ε− ε). (24)

This condition (24) on σ allow to verify every equation
of the system (14). From equation (24) it can be seen
that the maximum value for the PML attenuation factor
σmax is determined as a function of the variable ε. This
can be written as:

σmax =
1

2δt
(
√
ε2 + 4ε− ε). (25)

For the following simulations the parameter ε is set equal
to: ε = 10−2. Similarly, the condition on the second
set of solutions can be derived in order to verify every
equation of the system (14).



Discussion on the validity of every
set of solutions
Whereas the first and second sets of solutions can be
optimized to satisfy every equation of the system (14) by
setting a condition on the parameter σ, the third solution
can not be used to solve the whole system of equations
as it gives rise to incoherent condition. Thus, the third
solution is rejected from this study.

However, it can be noticed that the third set of solutions
corresponds to a purely dissipative TLM propagation
scheme. This can be the object for further work on the
absorbing conditions.

Assessment of the absorbing layers
In order to assess the numerical efficiency of a given
absorbing condition, an ideal free-field (pff) wave propa-
gation is compared to the real pressure (p) in presence of
the absorbing layer as depicted by figure 3. Therefore,
Sheu et al. [4] defined the mean error level to evaluate the
impact of absorbing layers on the truncated propagation
domain of interest:

error(x, y) = 10 log10

∑T
t=0 |pff(x, y, t)− p(x, y, t)|2∑T

t=0 |pff(x, y, t)|2
.

(26)
The free-field pressure is calculated for an infinite propa-
gation domain (D0) and used as a reference. Whereas the
true pressure is calculated inside the test area depicted
by figure 3. The width of the absorbing layer is denoted
by eAL. It is important to distinguish the propagation
domain (D0) and the absorbing layer domain (D1) where
the tested absorbing formulation is implemented. The
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Figure 3: Computational domain implemented to assess the
performances of an absorbing layer inside the test area (green
square).

contour of the whole computational domain is made
up of rigid boundaries. The source position allows to
simulate wave propagation which can be considered as
semi-infinite following the y-axis in the 2D cartesian plan,
for a simulation duration tsim = 0.5 s.

Numerical results
Numerical simulations has been carried with the param-
eter: ε = 10−2, which gives a maximum value for the

attenuation factor: σmax = 190.

Figure 4: Mean error function level (dB) inside the test area
for an absorbing layer thickness 40nodes ⇔ Nλ = 2, fsignal =
100 Hz: (a) first and second approximate PML formulations
; (b) GMCL.

Conclusion
The results show that both first and second approximate
PML formulations are typical of the introduction of
a discontinuity between the propagation domain and
the absorbing layer. This phenomenon caused by the
negative heterogeneity fluctuation. Although the third
set of solutions as been rejected from this study, it is
interesting to not that it give rise to purely dissipative
TLM propagation scheme. This dissipative propagation
scheme would give rise to further investigations.
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