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Guaranteed Robust Nonlinear
Minimax Estimation

L. Jaulin 12 and E. Walter!

Abstract: Minimax parameter estimation aims at characterizing the set of all values of the
parameter vector that minimize the largest absolute deviation between experimental data and
corresponding model outputs. However, minimax estimation is well known to be extremely
sensitive to outliers in the data resulting, e.g., of sensor failures. In this paper, a new method
is proposed to robustify minimax estimation by allowing a prespecified number of absolute
deviations to become arbitrarily large without modifying the estimates. By combining tools of
interval analysis and constraint propagation, it becomes possible to compute the corresponding
minimax estimates in an approximate but guaranteed way, even when the model output is
nonlinear in its parameters. The method is illustrated on a problem where the parameters are
not globally identifiable, which demonstrates its ability to deal with the case where the minimax

solution is not unique.

Keywords: constraint propagation, interval computation, nonlinear estimation, minimax esti-

mation, outliers, robust estimation.

1 Introduction

When the parameter vector p of a model has to be estimated from experimental data y, the
procedure to be followed depends on the assumptions about the noise. If the components of y are
assumed independently corrupted by an additive noise uniformly distributed over the interval
[—8,06], with § unknown, then a maximum-likelihood estimate of p is obtained by minimizing
the largest absolute deviation between the data and the corresponding model outputs, which
correspond to minimax estimation. The resulting estimate p belongs to the set of all parameter
vectors that are consistent with any value of 6 large enough for the set to be nonempty. Moreover,
the corresponding largest absolute deviation § is a lower bound for 6, which provides useful
information to anyone interested in bounded-error parameter estimation. (See [[18], [19], [21],
[16], [5], [14] and the references therein).

Minimax estimation is well known, however, to be extremely sensitive to outliers, as a single
of them may suffice to ruin the estimate [20], [2]. Outliers are data that result of events not
accounted for by the model, such as sensor failures, transcription errors or erroneous hypotheses

on noise distribution. The purpose of this paper is to present a new algorithm for computing
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guaranteed robust minimax estimates, robust meaning here that a prespecified number of ab-
solute deviations are allowed to become arbitrarily large, and guaranteed meaning that an outer
approximation of the set of robust minimax estimates is obtained. The basic idea is akin to that
in [15] and [2], but its implementation is radically new. It combines the tools of interval analysis
and constraint propagation to provide guaranteed results (contrary to [15]) for nonlinear mod-
els (contrary to [2]). This combination is called Interval Constraint Propagation (ICP) [6], [7].
Some basic notions of ICP are recalled in Section 3, and the necessity of extending it to deal with
robust minimax estimation (RME) is stressed. Section 4 gives a rather classical optimization
algorithm based on ICP. In order to develop an efficient reduction procedure, able to handle
RME, Section 5 introduces the notion of set polynomials. To the best of our knowledge, this
notion is new, at least in this context. A test-case is presented in Section 5 to demonstrate the

efficiency of the approach advocated.

2 Relaxed minimax estimator

In what follows, the parameter vector p € R” is assumed to belong to the prior axis-aligned
search box [po]. Let y € R™ be the data vector, y,, (p) € R™ be the associated model output
vector and f (p) € R™ be the (absolute) error vector defined as |y —y., (p) |, where the absolute
value is taken componentwise. Denote by ¢ the number of data allowed to become arbitrarily

large. Define the ¢-max function from R™ — R, where m is an integer with m > ¢ > 0, as

the function that associates to x = (71, ... 7:1:m)T its (¢ + 1)th largest entry. For example, if
x = (3,-4,3,5,0)" , then 0-max(x) = 5, l-max(x) = 3, 2-max(x) = 3, 3-max(x) = 0 and
4-max(x) = —4. In a minimax context, the cost function to be used if ¢ outliers are assumed

can be written

jq (P) = g-max (f (p)) . (1)

With any given ¢ and y, the relazed minimax estimator (RME) associates the set

o~

Sq = arg mian[po] jq (p) s (2)

which is often a singleton or a finite number of vectors. Note that since j,(p) is a decreasing

function of g, the minimum 3'\(1 of j(p) over [pg] is also a decreasing function of g, i.e.,

q1 S q2 <:>5q2 S qu- (3)

The set

Sq(8) = {p € [po] | Jq (P) <6} (4)

is increasing with g, i.e., S (6) C S1(6) C ... C Sn (6) = [po] and with 8, i.e., 61 < 6y &
Sy (61) C Sy (62) . Figure 1 illustrates these properties when the dimension of p is 1. For read-
ability, the dependency of the set S, in é is not mentioned.



Figure 1: Tllustration of the properties of the cost function: whereas j,(p) and ,}'q are decreasing

functions of ¢, S;(6) increases with ¢ and 6

To implement RM FE, an efficient and reliable algorithm is needed to compute the set Sq of all
minimizers of j, (p) on [pg]. This task will be performed by the algorithm MINIMIZE, to be
presented in Section 4, which is based on interval constraint propagation (ICP), briefly recalled

in the next section.

3 Interval arithmetic and constraint propagation

The approach to be employed combines two complementary tools, namely interval analysis [17]
and constraint propagation [22] into what is known as interval constraint propagation (ICP) [6],
[7]. Note that interval analysis is also used for reliable global optimization without constraint
propagation, see, e.g., [8], [23] in a general context and [24], [13] in a minimax context. Reliable
global optimization based on ICP is often more efficient [25], [9]. Moreover, ICP handles subsets
of R (or domains) that may not be intervals. Although such domains are less easily manipulated

than intervals, they allow more accurate outer approximations of sets.

3.1 Interval and domain arithmetics

A domain X of R is a subset of R. Domain arithmetic is a generalization for domains of

the classical arithmetic for real numbers. Let X and ) be two domains, ¢ an operator in



{+,—,%,/, ,max,min...} and f a real function such as sin, cos, tan, sqr, abs. ..

XY = {rxpylreX,yeV},
f(xX) = {f(z)|r e}

When the domains, to be handled are intervals, classical operations as defined by interval analysis

()

can be used to perform these operations. Here, the domains are assumed to consist of finite
unions of intervals and interval computation can be extended to computing with such domains
[10]. The main advantages of using domains instead of intervals are that the set of domains
is closed with respect to the union operator U and that domain computation makes it possible
to avoid hull pessimism when discontinuous or multivalued functions are involved ([10], [13]).
For instance, with interval arithmetic 1/[—1,1] = ]—o00,00[, whereas with domain arithmetic
1/[-1,1] =] = 00, —1] U[1, 00].

We shall call Cartesian domain of R™ the Cartesian product of n domains of R, i.e., X =
X1 X «-- X X,. The notion of Cartesian domain can be interpreted as an extension of that of
axis-aligned box (or interval vector). This extension allows a more accurate outer bounding of
compact sets with disconnected parts. Note that an axis-aligned box is a Cartesian domain, the
components X; of which are intervals. We shall denote the set of all Cartesian domains of R"
by D (R™). Vector calculus can be extended to Cartesian domains using interval arithmetic [17],

and the notion of inclusion function. Consider a function f : R™ — R. An inclusion function

of f is a function F : D (R") — D (R)
VX € DR"), f(X)C F(X), (6)

where f(X) = {f(x)|x € X}. Domain arithmetic makes it possible to compute inclusion func-
tions for a very large class of functions f. The principle is to replace each occurrence of a variable
x; in the expression of f by the corresponding domain and each operator or basic function by
its domain counterpart, as defined by (5). The following example illustrates the computation
on domains and demonstrates the pessimism resulting from multiple occurrences of variables in

the expression of f.

Example 1 Consider the function f(x) = 1 + x1xe, and the domain X = X} X Xa, with
X1 =1[1,2] and Xy = [-3, -2 U [3,4]. A possible inclusion function for f is F(X) = X1 + X1

that is evaluated as follows

FX) = 12+ (12 ([=3, -2 U [3,4])) (7)

= [L2]+ (=6, -21U[3,8)) (8)

= [-5,0]U[4,10]. (9)

If f(x) is rewritten as g(x) = x1(1 + x2), a new inclusion function is obtained as G(X) =



X1 (1 4+ Xy). Its evaluation yields

G(x) = 2 (L1 + (-3, -2V [3,4]) (10)
= [1,2)*([~2, -1 U[4,5) (11)
— [=4,-1]U[4,10]. (12)

Note that f(X) = G(X) C F(&X), i.e., G(X) provides the exact image of X by f whereas F(X)
provides only an outer approximation (because the two occurrences of x1 are treated as if they

were independent). [ |

With domain computation, inclusion functions can be obtained for a large class of functions f
for which an analytical expression is available. We shall see in Section 5.4 how to obtain an
inclusion function for the cost function j,(p) defined by (1) with the help of the notion of set

polynomials introduced in Section 5.

3.2 Interval constraint propagation

We shall call primitive constraints relations involving up to three real variables that can be

written in one of the three following forms:

(unary constraint)  z; € Z, where Z € D(R),
(binary constraint) z1 = f(22), where f € {cos, sin, exp, log, sqr, sqrt. ..},
(ternary constraint) z; = 2o @ 23, where ® € {+, —, %, /, °, max, min}.

A constraint is and-decomposable if it can be decomposed into a finite set of primitive constraints

related by the Boolean operator and. For instance, the constraint
(max (129, 21 — log(x2)))? + exp(x1) < 3 (13)

is and-decomposable since it admits the following decomposition into primitive constraints:

(
21 = 1172

z9 = log(za)
23 =1 — 29
24 = max(z1, 23)
z5 = sqr (z4)
26 = exp(r1)
27 = 25 + 26

(14)

276]—00,3}.

If f is a function from R” to R, & € D(R") and Y € D(R), ICP makes it possible to obtain, in

a very efficient way, a Cartesian domain that encloses the set

S=xnf), (15)



provided that the constraint x € f1()) is and-decomposable (see, e.g., [10], [4], [3]). To
contract X with respect to § means to find a Cartesian domain R such that S C R C X. Let

us illustrate, on a simple example, how ICP is used to contract a box or a Cartesian domain X'.

Example 2 Consider the set S defined by (15), where f(x) £ x2x9 + w371, X = [1, 10}3 and
Y =[—4,4]. To contract X, first decompose the constraint f(x) € Y as

(C1) 2z =13,
(C2) 29 = x921,
(C3) 23 = xgx,
(C4) y =29+ 23,
(C5) ye[—4,4].

The domains to which the variables x1, o, 13,21, 29, 23 and y are a priori assumed to belong are
given by [x1] = [x2] = [x3] = [1,10], [21] = [22] = [z3] = [y] = |—00,00[. For simplicity, these
domains have been chosen as intervals, but this is not required by the method. By propagating

these four constraints as long as contraction takes place, one gets

(C5) — [y =[-4,4]
(C1) — [z]:=[z] N ([#)? = ([1,10]) = [1,100],
(C2) — [zo] :=[z] N ([we] * [1]) = [1,10] = [1,100] = [1,1000] ,
(C3) —  [za] :=[z] N ([wa] % [x1]) = [1,10] * [1, 10] = [1,100],
(C4) — [y= Nz +[s) =[-44n(1,1000] + [1,100]) =[2,4],
(C1) — [z]:=[z]N(y -[z=]) =1, 1000} ([2,4] = [1,100)  =1[1,3], (16)
(C4) — [zs] =[] N ([y] = [22]) =[1,100] N ([1,4] —[2,3]) =[1,3],
(C3) — [a] =[] N ([2s] / [=3]) =[1,10]N([L,3]/[1,10]) = [1,3],
(C3) — [as] = [as] N ([2s] /[z1]) =[1,10]N([L,3]/[L,3]) =[1,3],
(C2) — [z1]:=[a]N([z2] /[x2]) =[1,100] N ([1,3]/[1,10]) = [1,3],
(C2) — [wo] =[N ([] /[2]) =[1,10]N([1,3]/[1,3]) =[1,3],
(C1) — [r] = [m]n 7] —[1,3]n /L3 — [1.V3].
Thus,
{x € [1,10]% | 2320 + w321 € [—4,4]} c {1\/5} x [1,3]2. (17)
L

When the constraints encountered are not and-decomposable, the classical ICP approach does
not apply directly. For instance, the constraint j,(p) < j* involved in the solution of the robust

minimax estimation problem is not and-decomposable, as illustrated by the following example.



Example 3 If j(p) = 1-max(p,p?,sin(p)), the constraint j(p) < j*+ can be expanded into the

following primitive constraints:

2 =p’
and z9 = sin(p)
23 = maX(p7 Zl)

and 23 €] —o00,j ]

ilp) <jit e (18)
and or z4 = max(p, z2)
and z4 €] — 00, )]
or z5 = max(z1, 29)

and 25 €] — 00, j 7]

\
Because of the presence of the Boolean operator or, the constraint is not and-decomposable and

classical ICP cannot be applied. |

An adaptation of ICP to such and-or-decomposable problems will be made possible by the
introduction of the new notion of set polynomials in Section 5. To implement RME, we also
need a reliable procedure for global optimization. We shall use a trivial adaptation of a classical
optimization algorithm [25], [9] presented in the following section. The resulting algorithm is

particularly well suited to the use of ICP.

4 MINIMIZE algorithm

The problem to be solved is the minimization of a cost function j(p) over a box [pg]. Let S be
the set of all global minimizers of j over [pg] and [j]([p]) be an inclusion function for the cost
function j(p). The algorithm MINIMIZE, presented on Table 1, generates a list of boxes ST,
the union of which contains §, and computes an enclosure of the minimum j It uses a local
minimization procedure GODOWN (at Step 4), similar to that presented in [12], to decrease the
upper bound j* for the minimum 3 Interval analysis is involved at Steps 10 and 11 to compute
an inclusion function [j]([p]) in order to enclose the range of j over the box [p]. By taking
advantage of the availability of the upper bound 5+, ICP is involved at Step 5 to replace [p] by
a smaller box [r] such that any global minimizer in [p] is also in [r]. @ is a First-In-First-Out
list of boxes containing the part of the search space that has not yet been studied. Any point of
Q is still a potential candidate for being a global minimizer. The real number € > 0 is the width
below which boxes will not be bisected. m is an interval that contains the global minimum j.
It is computed by interval evaluation of j over all boxes of ST at Step 11. The lower bound of
the interval [j]([p] is denoted by Ib([5]([p]))-

In the context of RME, two other problems remain to be solved, namely getting an inclusion
function for j,(p) as defined by (1) and adapting an ICP-based procedure to the contraction
of a box [p] under the constraint j,(p) < j* , as required by Step 5 of MINIMIZE. These two



MiNMIZE(in: [pol, 7(.); out: [j], &T)
1 Q={lpol}; ST =0 j* = o0; [j] =0;
2 while Q #0,
3 put first element of @ into [p];
4 T = GoDown(Center([p]), j(.));
5 find a box [r] such that [p] N ! (] —oc,jT]) C [r] C [p];
6 if [r] = @, then go to 2;
7 if (width([r]) <€), then {ST = 8T U {[r]}; go to 2;}
8 bisect [r] and append the two resulting boxes to @;
9  end while
10 remove all [p] in ST such that 1b([j]([p])) > jiT;
11 for all [p] in ¥, [j] = [j] U [{]([p));
12 )= [ - 00,

Table 1: Classical ICP-based algorithm for reliable minimization

operations will be based upon of a new type of object, namely set polynomials, presented in the

next section.

5 Set polynomials

5.1 Introduction

The problem considered here is the contraction of a Cartesian domain P associated with the
vector p subject to the constraint j(p) € Y when this constraint is and-or-decomposable. This
problem has to be solved to implement Step 5 of MINIMIZE where the constraint to be taken into
account is j,(p) € | — o0, jT]. The notions developed in this section will also be used to obtain

an inclusion function for the cost function j,(p), as needed at Steps 10 and 11 of MINIMIZE.

The principle of the procedure followed to contract P consists of three steps.

e Step 1: Decompose the constraint j(p) € Y into a set of m and-decomposable constraints
related by the Boolean operator or. For instance, the constraint considered on Example 3

is decomposed as follows:

Lmax(p,p?,sin(p) < j* & { or max(p?,sin(p)) < j* (19)

or max(p,sin(p)

e Step 2: Contract P with respect to each of the m constraints taken independently. Thus

m Cartesian domains P(1),...,P (m) are obtained.



e Step 3: Compute P(1)U---UP (m).

The disjunctive decomposition at Step 1 leads to a combinatorial explosion in our context. It
can be avoided by adapting this scheme: we shall use a specific decomposition to replace the
disjunctive form at Step 1 and a specific set algorithm to replace the unions at Step 3. The
theoretical background needed to understand this adaptation is presented in Sections 5.2 and
5.3, via the notion of set polynomials. In Section 5.4, a new procedure is given for contracting

P under the constraint j,(p) €] — oo, 1] while avoiding combinatorial explosion.

5.2 Set polynomials
5.2.1 Definitions

The set function F : P (R"”) x --- x P(R") — P (R"), where P (R") is the set of all subsets of

R™, is inclusion monotonic if
X1)cy@),....X(m)cY(m)=F(X1),....xX(m)) cFYQA),....Y(m).  (20)

For instance, F (X(1),X(2),X(3)) £ (X(1)NX(2)) U (X(1)NX(3)) is inclusion monotonic,
contrary to F (X) £ X, where X is the complementary set of X in R".

Let X(i) € P(R™),i=1,...,m, be m set indeterminates. The construction of the set B[X'(1),

.., X(m)] of all polynomials in these indeterminates with coefficients in the set of Boolean
numbers B £ {0,1} is, in principle, illicit, because (P (R"),U,N) is not a ring but only a
semi-ring, since (P (R™),U) is only a monoid and not a group (see [11], page 116). By an
abuse of notation commonly committed, e.g., in the (max,+) community [1], we shall neverthe-
less speak of B[X(1),...,X(m)] as a set of polynomials. One should keep in mind, however,
that some classical operations allowed for ring-based polynomials are no longer valid. Any ele-
ment of B[X(1),...,X(m)] will be called a set polynomial. An example of a set polynomial is
(X(1)NX(2)U(X(1)NA(1))UX(2), which is an element of B[X (1), X(2)]. When there is no
ambiguity, AU B and AN B will be denoted more concisely by A+ B and A.B, respectively. Set

polynomials are obviously inclusion monotonic.

To enclose a set S = F(X(1),...,X(m)) where F is inclusion monotonic, it suffices to en-
close each X (k) into a box Y(k) (or more generally a Cartesian domain) and then to compute
FY(A),...,Y(m)). A method for evaluating F (Y (1)

section.

., Y (m)) is proposed in the following

PO



5.2.2 [Evaluation of set polynomials over Cartesian domains

Theorem 1 (Cartesian expansion): Let X and Y be two Cartesian domains. Then

(i) (X1 x - xX)NOh X xY) = (XNV) x---x (X, NY)

(ii) (X X XX U XX Yy) C (U)X X (X UVy) (21)

Proof: The proof for (i) is trivial, and we shall only give a proof for (ii). First, recall that if

ai,...,0n,01,...,0, are Boolean numbers, then,
n
H (CLZ' —+ bz) = (CL16L2 ... an,lan) + (a1a2 - an,lbn) + 4 (blbg S bnflbn) . (22)
i=1

Now, since in Boolean algebra, a + b > a, (22) implies that

H ai + ;) > (a1az . .. an—1a,) + (b1ba .. . by 1by), (23)
i=1
or equivalently that 3:
(@102 .. an 1a,) + (biby .- by 1by) = [ [ (s + b)) (24)
i=1

Let z be a vector in R",

ZE(X1><~~~><Xn)U(y1X"'Xyn)

& (s eX) and ... and (2, € &,)) or ((z1 € Y1) and ... and (z, € V)

(21) (25)
= ((z1€X) or (z1 €W1))and ... and ((z, € X,) or (2, € V)

= ZG(Xluyl)X“-X(Xnuyn).

Theorem 2 (Cartesian decomposition): If X (1),...,X (m) are m Cartesian domains of R",

and F s a set polynomial, then

FAX), ., X(m) CFXL(A),. e Xy (1) X X F (X (m), ..., X (m)).  (26)

This theorem is a direct consequence of Theorem 1. We shall only give a sketch its proof on an

academic example.

Example 4 : Assume that

FXV,Z2)=XY+ V.2, (27)

3Recall that, in the set of Boolean number {0,1}, @ > b implies that if b = 1, then a = 1, i.e., if b is true, a is

also true, which can be written as b = a.

10
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Figure 2: The grey box is the value of the set polynomial F (X, Y, Z) defined by (29).

with n = 2. Then

27
F,Y,2) 2 (< A) . (1 x Yo+ (V1 % D) (21 x 2)
21, i
P2 (300) X (BD0)) + (1.21) x (V. 22) 28)
(21, ii)
C (A +W.21) X (X Yo+ )o.2s)
= F(X,0,21) x F (X2, D, 22). u
When X (1) ,...,X (m) are Cartesian domains and F is a set polynomial, the smallest Cartesian
domain containing F (X (1),...,X (m)) can be computed exactly by rewriting F in disjunctive
form. Consider, for instance, the situation of Figure 2, with
FX,Y,Z2)=(XnNnY)uYynZ)u(Xnz2). (29)
F(X,Y, Z) is the box painted grey:
FX,Y,Z2)=0U0u(XnZ)=12,3] x[2,3]. (30)

However, an exact procedure to evaluate it via the computation of a disjunctive form may become
too complex when the number m of sets increases, because this disjunctive form is usually longer
than the initial form. To avoid this, one may use Cartesian decomposition. Since (29) is already
in disjunctive form (a very special case), the complexity of using the Cartesian decomposition

remains the same, but the result is now pessimistic:

F (X1, M1, 21) X F (X2, Vo, 29)
— (BN UL Z) U XN Z)) % (KN Ys) U s N 22) U (XN 25))
= ([2,3]n[4,6]U[4,6] N[1,5] U[2,3]N[1,5]) x ([2,6] N [4,5] U [4,5] N[1,3] U[2,6]N]1,3])
— UM U 3]) x (4,5 UBU[2,3]) = (12,3] U4,5]) x (12,3 U[4,5]).

The resulting Cartesian domain thus consists of four boxes, and is an outer approximation of
the actual solution F (X, Y, 2Z) =[2,3] x [2,3]. |

11



5.3 Case of elementary set polynomials

We now focus our attention on constraints of the form j,(p) < j*, as needed by Step 5 of
MINTMIZE.  We first recall the definition of symmetric set polynomials and show how they
govern the relations between the and-decomposable constraints of the robust minimax estimation
problem. Then, we propose a recursive definition of symmetric polynomials, in order to derive

an efficient algorithm for their outer evaluation over Cartesian domains.

5.3.1 Definitions

A set polynomial F (X(1),...,X(m)) is symmetric if it is invariant under permutation. For
instance, X(1)X(2) + X(1)X(3) + X(2)X(3) + X(1)X(2)X(3) is symmetric. The elementary
symmetric set polynomials are defined (by analogy with [11], page 133) as

Bo(m) — [[X6), @ (m)=[[X0)+XG), 2(m)— [ X00)+XG) = X(k),.(31)
i=1 1<j i<j<k
Tms(m) = 3 XOXGARE), By (m) =S XHXG), By (m) =S X().  (32)
i<j<k i<j =1

By convention, ®,, (m) = R”. We shall call ®,(m) the g-intersection of the m sets X(k),k €

{1,...,m}, as it is the set of all x’s that belong to at least m — ¢ of these sets. Since

p € &y (m)

with Xi:ffl (]—Oo,j+}),i€{1,---7m} ’ (33)

ja(p) <t & {
an enclosure of S,(j*) £ {p € [p] | j,(p) <j*} could be obtained by expanding ®, into its
disjunctive form. Unfortunately, this expansion gives rise to a combinatorial explosion. For
instance, if m = 10 and ¢ = 4, which corresponds to 10 measurements with at most 4 outliers,
@, is the sum of 210 monomials. This combinatorial explosion can be avoided using a recursive

definition for ®,, presented next.

5.3.2 Recursive definition of the elementary set symmetric polynomials

The next theorem provides a new way to evaluate @, (m),0 < r < g, efficiently and recursively

over m.

12



Theorem 3 : Assume that ®o(m —1),...,®,(m — 1) are available and that a new set X(m)

has to be taken into account. Then ®g(m),..., P, (m) can be obtained recursively as follows:
[0 ] [ Onfon 1)) 1
o) | _ | 0= X)) "
By(m) | | @y (m— 1) X0m) U@y 4 (m— 1)
where @y (0) =R"” and Pi(k) =R" if k € {0,...,q}. [ |

In a (U,N)-algebra, this recursive equation can thus be interpreted as a nonlinear discrete-time

set system where the state vector is ® (m) = [®q (m) ... B, (m)]" and the input is X' (m).

Proof: The proofis a direct application of Horner’s scheme. To avoid introducing new notations

and tedious manipulations of indices, we shall restrict ourselves to checking (34) for m = 4.

@ (4) X1 Xo X3 Xy
1(4) | o | XA + X1 20X) + X1 X340 + XAz
(4)

A=A

D, (4 XX + X1 X3 + X1 Xy + XA + X + A3y
_(1)3(4)J {X1+X2+X3+X4
i (X1X2X3) X D (3) X(4)
_ (X1 + X1 X 4 Ao A3) Xy + (A Xp ) _ | ¥ (3)X(4) + Py (3
(X1 + o + A3) Ay + (A1 Ay + A1 A3 + AL AR) Dy (3) X(4) + ©1 (3)
i RnX4—|—(X1 + Xy +X3) (Dg (3) X(4) + ®y (3
|
The following theorem gives three basic properties of the set polynomials ®,(m).
Theorem 4 The following properties hold true.
(1) Do (m) C @1 (m) C -+ C Og(m),
(ii) Oy(m) CPy(m—1)C--- CPy(q) =---=P,(0) =R",
fiii) X ()N (m) = 0= By (m) = By (X (1), X (k= 1), X (k+1),..., X (m).
(35)

Proof: (i) &5 (m) is the sum of all monomials of the form Xy = &X' (i1) X (i2) X (i3) ... X (i k).
Now, the monomial Xy 1 = X' (i1)X (i2)X (73) ... X (im—k—1) is a monomial of ®y 1 (m). Thus,
any monomial of @y (m) is included in @1 (m). Therefore Oy (m) C Priq (m).

(ii) @4 (m) = @4 (m —1)X(m) U g1 (m —1). Now, from (i), g_1(m —1) C $y(m —1) so
Py(m) C Dg(m—1)X(m) U Py(m—1) =Py (m—1).

iii) Set @Z(m) =0,(X(1),....,X(k-1),X(k+1),...,& (m)). Factor ®,(m) with respect
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¢-INTERSECTION(in: X' (1),..., & (m); out: [®,(m)])
For k€ {0,...,m}, [®_4] (k) = 0;
For £ € {0,...,q}, [®] (0) = R™;
For k=1uptom
For / =0 up to g
D0 ()] = ([0 (k — 1) N X)) U 1] (k= 1)

Tt > W N =

Table 2: Evaluation of an enclosure of the set polynomial ®, over m Cartesian domains

to X (k) to get @, (m) = <I>Z (m)X (k)U(Ibgfl(m). Intersect both sides of this equation with ®, (m)
to get &, (m) = O, (m)AX (k) D4 (m) U@Zﬁl(m){)q (m). Now, by assumption, X (k) N®, (m) = 0.
Therefore ®, (m) =0 N®, ,(m)®, (m) which implies that &, (m) = (DZ*l(m)' [ |

C

k

g
In the context of bounded-error estimation, Theorem 4 can be interpreted as follows: p € X' (k)
means that p is consistent with the kth datum; (i) if p is consistent with at least m — ¢ data,
then it is also consistent with at least m — ¢ — 1 of them; (ii) if p is consistent with at least
m — q of the m first data, then it is also consistent with at least m — 1 — ¢ of the m — 1 first
data; (iii) if there exists no p consistent with at least m — ¢ of the data and also with the kth
datum, then one can remove the kth datum (which is interpreted as an outlier) from the data

set and replace ¢ by ¢ — 1 to get a simpler definition of ®, (m).

5.3.3 Evaluation over Cartesian domains

To implement the recursive procedure (34), one should use sets on which unions or intersections
can be computed or at least enclosed, such as Cartesian domains, boxes, ellipsoids or poly-
topes. Unfortunately, the enclosure with such sets introduces pessimism and the equality (34)
becomes an inclusion. The ¢-INTERSECTTON algorithm given in Table 2 computes a Cartesian
domain that encloses the set @, (X (1),...,X (m)), £ € {1,...,q}, where the sets X (k) are
Cartesian domains. In the computer, [®/] (k), ¢ € {—1,...,q}, k € {0,...,m} is represented as

a ((¢+2) x (m+ 1))-matrix, the entries of which are Cartesian domains.

This algorithm will now be illustrated on the situation described by Figure 3, where the
Cartesian domains to be considered are boxes. For ¢ = 0,1,2, ¢-INTERSECTION respectively
yields (@] ([x] (1) .-, [x] (9)) = 0, [01] (5] (1) . [x] (9)) = 0 and 2] ([x) (1) ,..... %] (9)) €
6,7] x [5,6] (represented by the black box in Figure 2). The results obtained here are exact,
but in general they are pessimistic. To limit such a pessimism, a possible improvement based

Theorem 4 (iii) can be used. This improvement has not been implemented yet.
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2 4 6 & 10 12

Figure 3: The black box is the 2-intersection of 9 boxes.

5.4 Application to robust minimax estimation

In this paragraph, we show how set polynomials can be used to contract [p] under the constraint
Jq(p) < jT, as required by Step 5 of MINIMIZE in the context of robust minimax estimation,
and to obtain an inclusion function for j,, as required by Steps 10 and 11. The contraction of

[p| is a direct application of the fact that

Pl N3y (1= 00,57 = @y ([l N fi (1 = 00,57, [PI N £ (| = 00,57T)) (36)
(see (33)). The following algorithm contracts [p].

CoNTRACT(in: [p], 5; out: [r]);
1 for k=1 to m, compute a Cartesian domain P (k)
such that ([p] 0 2 (] = 09,5+))) < P(k) C [pl;
2 R = ¢-INTERSECTION(P(1),...,P(m));
3 return [r], the smallest box that contains [p| NR.

Since the contraint fj (p) < j7, is and-decomposable, P(k) can be obtained by using interval

constraint propagation as explained in Section 3.2.

To get an inclusion function for j,(p), consider the semi-ring (R, min, max). Denote the gth

elementary symmetric polynomial in m indeterminates by ®,(x1,...,xy). For instance,
Oo(21,22,73) = max(x1,x2,x3)
®1(z1,2,73) = min(max (21, 22),max (22, x3) , max (21, 73)) (37)
®o(w1,2,73) = min (z1,22,23).

The cost function j,(p) of (1) can then be expressed as

ja(P) =jg(m, p) = L4(f1(P),-- -, fm(P)). (38)
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and the recursive implementation (34) can be adapted to this context to compute j,(p):

[ jo (m, p) w [ max(jo (m — 1,p) , fm(p))
J1(m,p) _ min(max(ji (m — 1,p), fm(P)), jo (m — 1,p)) (30)

jq (77’1,, p) min(max(jq (m -1, p) vfm(p))vjqfl (m -1, p))

where jo(k, p) = ®¢(f1(p)---, fu(P)); k € 1,...,m; k> q; ji(0,p) = —oc and ji(k,p) = —o0.
An inclusion function for j,(p), can thus be derived from (39) by applying the rules of interval

computation and by returning the interval enclosure of j,(m, [p]).

6 Test case

Consider a two-exponential model where the relation between the parameter vector p and the

model output is given by

Y (P, t) = p1exp(—pat) + p3 exp(—pat). (40)

Since a permutation of p; with ps and of po with ps does not affect the model output y,,, the
model is not globally identifiable. Therefore, any reliable identification method should lead
to symmetrical solutions, if the search domain is large enough. Assume that ten data points
y(1),...,y(10) are generated as follows. First, a noise-free data vector y* is computed. Its 10
components are obtained by computing ., (p*,#;) as given by (40) for p* = (20,0.8,-10,0.2)*
and t = ik:27 k € {1,...,10}. Noisy data are then obtained by adding to each component y;
of y* the noise ny = (|y;| + 5) * 1y, where 1, is a random noise with a uniform distribution
in the interval [—0.1,0.1]. The resulting data vector y" is the regular data vector. A second
data vector y! is obtained by replacing y3 by 30 in y', and a third one y? by replacing yg by
—30 in y!. For ¢ = 0.05 and [po] = [-40,40] x [0,1] x [—40,40] x [0,1], the results obtained
by using RME as described in Section 2 are summarized in Table 3, where #Sq+ is the number
of boxes of Sq+ and #split is the number of bisections performed by MINIMIZE. All computing
times are for a Pentium 133MHz. Note that for a given data vector y*, j,(p*) and j, (p) are
decreasing when ¢ increases as expected. At each run, S(;“ turns out to consist of two connected
components. One of them, denoted by S;‘ (1), belongs to the half space where p; > 0 and the
second one S; (2) belongs to the half space where p; < 0). The smallest boxes guaranteed to
contain Sf (1) (i.e., the set associated with p*) obtained are given in Table 4, which evidences
the fact that reasonable estimates are obtained only provided that ¢ is equal to or greater than

the actual number of outliers ¢*.

Various strategies can be thought to for the choice of ¢, the maximum number of tolerated
outliers. A reasonable guide line is to iterate the minimization of j,(p) over [po] for ¢ =0, 1,2, ...

until the results obtained lead one to believe that ¢ is greater than the actual number of outliers
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data set | q | #split | time (sec.) | #S, [74] Jq(P*)
yY 0 323 20,7 42 | [0.4415,0.4577] 1.067
y 1 845 69.6 18 | [0.3719,0.3748] 0.694
yY 2 6044 770.0 21 | [0.1983,0.2138] | 0.465
y! 0 1581 83.8 230 | [14.056,14.097] | 33.070
y! 1 341 27.8 70 | [0.4429,0.4582] 1.067
y! 2 906 104.0 10 | [0.3728,0.3746] | 0.694
y? 0 298 15.16 70 | [17.605,17.651] | 33.070
y? 1 2779 220.1 246 | [14.059,14.097] | 29,59
y? 2 343 41.5 59 | [0.4418,0.4580] 1.067

Table 3: Results obtained by the robust minimax estimator for three data sets with 0, 1 and 2

outliers respectively and for three values of ¢ (first part)

data set Box guaranteed to contain S (1)

18.31,18.63] x [0.9043,0.9244] x [—7.622, —7.405] x [0.1607,0.1648]
17.78,17.93] x [0.9952, 1] x [—6.628, —6.558] x [0.1582, 0.1590]
19.16,19.31] x [0.9924,1] x [-7.672,=7.573] x [0.1891,0.1919]
39.45,40] x [0.300,0.3042] x [—40, —39.45] x [0.988,1]

[
[
[
[
[18.41,18.64] x [0.9045,0.9252] x [—7.602, —7.4767] x [0.1620,0.1644]
[
[
[
[

17.79,18.17] x [0.9928, 1] x [—6.734, —6.5618] x [0.1583,0.1602]
39.942,40] x 0.1369,0.1514] x [—17.087, —16.15] x [0.001, 0.0012]
39.398,40] x [0.300, 0.3042] x [—40, —39.45] x [0.9878, 1]
18.38,18.64] x [0.9035,0.9275] x [—7.6531, —7.455] x [0.1617,0.1656]

—
NN el B NG B el B ORI el B

Table 4: Results obtained by the robust minimax estimator for three data sets with 0, 1 and 2

outliers respectively and for three values of ¢ (second part)
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q*. No systematic procedure exists for the detection of ¢*. Nevertheless,as illustrated by the

example in this section, if the optimizers are on the border of [pg] or if the value of jq is too large,
we can suspect that there are at least ¢ + 1 outliers. Note that the dimension of ,;q is that of the
output error and one often knows some bound on the largest error one is prepared to accept.
Moreover, if j, — jgu+1 is large the reliability of the datum y; which satisfies j, = [y —4um.i(D)]
for one p € Sq is questionable since its presence modify the estimation results heavily. These
comments suggest the following strategy for the choice of g: take the smallest g such that, (i)

Jq is acceptably small, (ii) 7, is close to J,41, and (iii) S, is not on the border of the search box

[Po]-

7 Conclusions

When the noise corrupting the data can be assumed to belong to a sequence of random variables
that are independently uniformly distributed over the interval [—§, §], with § unknown, minimax
estimation is a standard approach for the identification of the model parameters, because the
resulting estimated parameter vector belongs to the set of all maximum-likelihood estimates for
any value of § such that this set is not empty. Minimax estimation is however seldom used
in practice, because of its well known sensitivity to outliers. The procedure described in this
paper makes a minimax robust estimator robust to a prespecified number of data points that
can take arbitrary values. It does so in a guaranteed way, by enclosing the set of robust minimax
estimates thus defined in a union of boxes in parameter space, even in the case where the model
is nonlinear in its parameters and the estimates are not unique, as illustrated by an example.
To the best of our knowledge, there is no other method available in the literature to deal with

this type of problem.

There are many reasons why combinatorial complexity looms over any attempt at solving such
a problem, and several measures were taken to limit it as much as possible. First, it should be
stressed that the various combinations of up to ¢ outliers among m data points are not considered
in isolation but collectively. The other measures for limiting complexity while preserving guaran-
teedness result from the combination of three tools: interval analysis which provides guaranteed
results on the computations, constraint propagation to efficiently eliminate large parts of the
search space without requiring bisections, and set polynomzials to deal with Boolean connections

between the constraints.

The notion of and-or-decomposable function, motivated by robust minimax estimation and in-
troduced in this paper, represents a significant extension of the class of problems to be considered
with interval constraint propagation. As such, it opens up new possibilities of research in this
relatively young field, which should also lead to improvements in the algorithms for guaranteed

nonlinear estimation in the presence of outliers.
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