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Abstract—A set of autonomous robots have to collaborate in outdated perceptions. From the practical viewpoint, thelk-o
order to accomplish a common task in a ring-topology where Compute-Move model faithfully describes the behavior of
neither nodes nor edges are labeled. We present a unified ap-some real robots

proach to solve three important problems: the exclusive pgretual . . . .
exploration, the exclusive perpetual search and the gathérg In the continuous plane, this model is referred in the

problems. In the first problem, each robot aims at visiting egh literature also as th€ ORDAmodel [2]. The inaccuracy of
node infinitely often; in perpetual graph searching, the tean of the sensors used by robots to scan the surrounding environ-
robots aims at clearing the whole network infinitely often; and ~ ment motivates its discretization. Moreover, robots cameho

in the gathering problem, all robots must eventually occupythe software agents moving on a computer network.

same node. We investigate these tasks in the Look-Compute- Vari bl h b tudied in thi i h
Move distributed computing model where the robots cannot arnous problems have been studied in this setling suc

communicate but can perceive the positions of other robotsach ~ as pattern formation(in Euclidean metric spacesjraph ex-
robot is equipped with visibility sensors and motion actuabrs, ploration with stop exclusive perpetual exploratipexclusive
and it operates in asynchronous cycles. In each cycle, a robo perpetual graph searchingnd gathering Recently, several
takes a snapshot of the current global configuration (Look)then, algorithms have been proposed to solve these problems in

based on the perceived configuration, takes a decision to stidle ticular t loai h i . t d cirld
or to move to one of its adjacent nodes (Compute), and in the particular topologies such as lines, rings, trees and grdse,

latter case it eventually moves to this neighbor (Move). Mcgover, W€ propose a unified approach to solve the last three problems
robots are endowed with very weak capabilities. Namely, theare in rings. The relevance of the ring topology is motivated by

anonymous, oblivious, uniform (execute the same algorithjrand  jts completely symmetrical structure. It means that atons
have no common sense of orientation. In this setting, we d&& ¢, yings are more difficult to devise as they cannot exploit

algorithms that, starting from an exclusive rigid (i.e. apeiodic t logical struct Il nodes look th Ih f
and asymmetric) configuration, solve the three above problas any topological structure, as all nodes 100 e same. I fac

in anonymous ring-topologies. our algorithms are only based on robots’ disposal and not on
topology.
I. INTRODUCTION We consider a minimalist variant of the Look-Compute-

In the field of robot-based computing systems, we considéove model which has very weak hypothesis. Neither nodes
k > 1 robots placed on the nodes of an input graph. Robd1§" edges of the graph are labeled and no local memory is
are equipped with visibility sensors and motion actuatans| available on nodes. Robots. aa{eonymou,sunlform (i.e. they
operate inLook-Compute-Moveycles in order to achieve aall execute the same algorithngblivious (memoryless) and
common task (see [1]). have no common sense of orientation. Guided by physical

The Look-Compute-Move model considers that in each c§onstraints, the robots may also satisfy éxelusivity property
cle a robot takes a snapshot of the current global configurat@ccording to which at most a node can be occupied by at
(Look), then, based on the perceived configuration, takesT¥St one robot [3]. In contrast to the CORDA model in the
decision to stay idle or to move to one of its adjacent nod€gntinuous plane, we assume that moves are instantaneous,
(Compute), and in the latter case it moves to this neighb@fd hence any robot performing a Look operation sees all
(Move). Cycles are performed asynchronously, i.e., thee tinPther robots at nodes and not_on edges. Note t_hat, in a qascret
between Look, Compute, and Move operations is finite p@gynchronous environment this QOes not constitute a liimita
unbounded, and it is decided by the adversary for each rodgt.the model. In fact, an algorithm cannot take advantages

Hence, robots that cannot communicate may move basedtn seeing robots on the edges as the adversary can decide
to perform the Look operations only when the robots are on
This work has been partially supported by Fondazione CARGHRtaly) the nodes. On the other hand, if an algorithm takes advantage

within project “ARISE” (Arising Robust Internetworked Sgen for Emer-  from the assumption that the robots a|Way5 occupy nodes, the
gency contexts). N. Nisse and K. Suchan are partially suegdoy Project

ECOS-SUD Chile (Action ECOS C12E03) and the Inria Assodiafeam S@Mme algorithm can be applied by adding the rule that if a
AlDyNet. robot sees another robot on an edge, it just don’t move fi.e. i



waits until all the robots occupy only nodes). In the follogj wheren is odd, %k is even, andl0 < k£ < n — 5. Papers [24]
we denote such model as théescrete CORDA model and [25] do not assume that the initial configuration is rigid
The discrete CORDA model received a lot of attention in thEhe remaining cases with local multiplicity detection aeé |
recent years. Most of the proposed algorithms considetlieat open and a the design of a unified algorithm for all the cases
starting configuration igxclusive i.e., any node is occupiedis still not known.
by at most one robot, an@bid, i.e., asymmetric and aperiodic.Contribution. In this work, we provide a unified approach
In the following, we review the literature concerning ongia for solving different tasks in the discrete CORDA model
topologies focusing on rings. For the literature about tire¢ on ring topologies. Namely, we present an algorithm that,
problems under study in different settings, the intereatlee starting from any rigid configuration, solves: the exclesiv
can refer to [4-10]. perpetual exploration, the exclusive perpetual searcth,thae
Related work. In the problem of graph exploration with gathering with local multiplicity detection capabilityu®main
stop [11-13], it is required that each node (or each edge)alforithms consist of two phases. The first phase is common
the input graph is visited a finite number of times by at leas all problems and allows > 2 robots to achieve a particular
one robot and, eventually, all the robots have to stop. WAsgrerigid exclusive configuration, denoted below 8y, in ann-
the exclusive perpetual graph exploration [3, 14—16] mexui node ring,k < n — 2. The second phase depends on the
that each robot visits each node of the graph infinitely mangsk. On the one hand, we design an algorithm that, starting
times. Moreover, it adds the exclusivity constraint. In][15from configuratiorC*, solves the gathering problem with local
first results onn-node rings are given. In detail, the papemultiplicity detection for any team of robots in n-node
gives algorithms fork = 3 andn > 10, for k = n — 5 (if rings,2 < &k < n — 2 (note that, ifn = 2 or k > n — 2,
n mod k # 0), and shows that the problem is infeasible fono rigid configuration exists). On the other hand, we present
k=3 andn < 9, and for some symmetric configurationsan algorithm that, starting from configurati@ri, solves both
wherek > n — 4. the perpetual exclusive graph exploration and the perpetua
Graph searching has been widely studied in centralized [@clusive search problems, for any teamkabbots inn-node
and distributed setting (e.g., [9]). The aim is to make théngs,n > 10, 5 < k < n — 3 (but fork = 5 andn = 10).
robots clear all the edges of a contaminated graph. An eddgereover, we design a specific algorithm that, starting from
is cleared if it is traversed by a robot or if both its endany rigid configuration, solves the perpetual exclusivepgra
are occupied. However, a clear edge can be recontaminagedrching problem using — 3 robots in anyn-node ring,
if there is a path without robots from a contaminated edge> 10. Finally, we provide some impossibility results for the
to it. The study of graph searching in the discrete CORDperpetual exclusive graph searching problem, showingftnat
model when the exclusivity property must be always satisfiegd< n < 9 andk < n, ork € {1,2,3,n—2,n — 1} and
is introduced in [17] where a characterization of the pargkt n > 4, the problem cannot be solved inmnanode ring withk
exclusive graph searching on tree topologies is given. As fabots. All together, we obtain an almost full charactdicra
as we know, no results have been proposed in ring topologa@sexclusive perpetual graph searching in rings, leavinly on
for the perpetual exclusive graph searching problem in tlopen the caseg = 4,n > 9) and(k = 5,n = 10). Moreover,
discrete CORDA model. for the exclusive perpetual exploration and for the gatitgri
The gathering problem consists in moving all the robots problem, besides being a unified approach, we solve some
the same node and remain there. In [18], a full charactésizat open cases.
of the gathering on grid topologies without any multiplcit Outline. In the next section we define the notation used in the
detection is given. On rings, it has been proven that thaper and describe the discrete CORDA model. In Section I,
gathering is unsolvable if the robots are not empowered ke propose an algorithm to achieve the special configuration
the so-callednultiplicity detectioncapability [19], either in its C*. Perpetual exclusive graph searching is formally defined
global or local version. In the former type, a robot is able tand studied in Section IV. We note that the algorithms given
perceive whether any node of the graph is occupied by a singiethis section also solve the perpetual exclusive explomat
robot or more than one (i.e.,maultiplicity occurs). In the latter problem. The gathering problem is considered in Section V.
type, a robot is able to perceive the multiplicity only ifstpart We then conclude with some possible future research direc-
of it. Using the global multiplicity detection capabilityy [19], tions. Due to space constraints, some of the proofs of the
some impossibility results have been proven. Then, sevel@ihmata and theorems and the pseudo-codes of each algorithm
algorithms have been proposed for different kinds of exetus are given in the full paper [26].
initial configurations in [19-21]. These papers left opemso
cases which have been closed in [22] where a unified strategy
for all the gatherable configurations has been providedn Wit We consider a team of > 1 robots spread in an-node
local multiplicity detection capability, an algorithm gfiag ring,n > 3. The ring isanonymousthat is its nodes and edges
from rigid configurations where the number of robdisis are undistinguishable, and no orientation is provided.
strictly smaller thanL%J has been designed in [23]. In [24], A configurationconsists of the set of nodes that are oc-
the case wherk is odd and strictly smaller thamn—3 has been cupied by a robot. Note that, it does not take into account
solved. In [25], the authors provide an algorithm for theecashe number of robots in each node. A configuration is said

Il. MODEL AND NOTATIONS



exclusiveif each node is occupied by at most one robot. Fair is periodic with periods; (iii) |Ic| > 2 iff C is periodic,

2 < k < n—2, we denote byC* the configuration that with period at most;.

consists oft — 1 consecutive occupied nodes, one empty node,We consider a discrete variant of the CORDA model
one occupied node, and remainig 2 consecutive empty introduced in [2] where the robots have no explicit way
nodes. Aninterval in a configuration is an inclusion-maximalof communicate to each other (e.g., they cannot exchange
(possibly empty) subset of consecutive empty nodes, i.e.messages). However, they are endowed with visibility senso
subpath of empty nodes that stands between two occupigidwing each robot to perceive their own position in thepgra
nodes. For instance, @, there are:—2 intervals of lengtt, and the positions of all the other robots.

one interval of length and one interval of length—k—1 > 1. The robots proceed by cycles of three phademk-
_ Ina conflguratlo_rC, aview at some occupied no'dee C  Compute-Move In the Look-phase, a robot at some node
is a sequence of intege®d’(r) = (qo,q1,.--,¢;), j < k. 1 accesses @napshotof the network that consists of the

that represents the sequence of the lengths of the intervglsy W(r). In the Compute-phase, the robot decides its

met when traversing the ring in one direction (clockwise Qiction based on the information it received during the Look-

anti-clockwise) starting fromr. Abusing the notation, for any phase. Finally, during the Move-phase, the robot exectses i

i < j, we refer tog; as the corresponding interval. Note thataction, i.e., it moves to a neighboring node or stays idlee Th

if C is exclusive, thenj = k —1 and} .., ;¢; = n — k. environmentis fully asynchronous which, in particular,ane

Note also that, a nodemay have2 distinct views, depending that the Compute-phase may be executed based on an out-

on the direction. Unless differently specified, we refer tgated view of the network.

W(r) = (g, q1,-..,q;) as the view at- that is minimum  \ye consider a minimalist variant of the model, where the

in the lexicographical order. _ robots have very weak abilities. Robots are anonymous, i.e.
Let W(C) be the set of the at mostk views (at most yhey do not have identifiers, and ammiform i.e., they all

two views per occupied node) in the configuration The  ,n"the same algorithm. Robots asblivious (memoryless).
supermin configuration view/’S .~ of the configuratiorC is The robots have ncsense of directioni.e., they do not
the minimal view inW(C) in the lexicographical order. Note agree on a common orientation of the ring. Unless diffeyentl
that, in W, no interval has length strictly smaller thanypecified, two or more robots cannot occupy the same node
qo'cfmd' moreover, ifc < n, thengy—, > 0. For instance, (eycusivity property When the exclusivity property is not
Winin = (0,5 qk—2,q1—1) With qo = ... = 43 = 0, imposed (e.g. for solving the gathering problem), the rebot
qo—2 =1andgy_ =n—Fk—1. _ _ have the so calletbcal multiplicity detectioncapability that
_For any view W = (qo,q1,---,¢;) in a configura- js 5 ronot is able to detect whether the node where it resides
tion C, we setW = (qo,9,¢j-1,---,q1), and W; ~ is occupied by more than one robot or only by itself, but it is
(i 4(i+1) mod (j+1): - - -+ 4(i+) mod (j+1)) deNOtes the View o apie to detect the exact number of robots occupying the
obtained by readingl” starting fromg; as first interval. Note ,o4e Note that this is the weakest assumption that has to be
that W(C) = {Wi, Wi, | 0 < i < j} Letle bg the set made to solve the gathering since it has been shown that the
of intervalsg; such thatiV; or W; are equal toWy,;,,. The  gathering is impossible if no multiplicity detection caip
intervals inI. are thesuperminof C. E.g.,|I¢-| = 1. is allowed [19].

An exclusive configuration is callesymmetricif the ring

admits a geometricahxis of symmetry dividing the ring In contrast to the CORDA model in the continuous plane,

. . ) S we assume that moves are instantaneous, and hence any robot
into two specular halves. An exclusive configuration isezll

TP . S performing a Look operation sees all other robots at nodes
periodicif it is invariable under non-trivial (i.e., non-complete)

and not on edges. We remark that, in a discrete asynchronous

ir;)tsslcl):dsr.igi\dconflguratlon which is aperiodic and asymmemenvironment this does not constitute a limitation to the slod

We now give some useful properties that are proved in [22 _e call such model theliscrete CORDA model

In particular, Lemma 1 is used to detect possible symmetry ort(.)urtgoi1I IS tt?] '3;/ estigate lihﬁ featilb”.'ty \(/)\f/ several co:jhabt th
periodicity of a configuration, rative tasks wi ese weak hypothesis. We assume that the

Property 1 ([22]): Given a viewlV’ of a configuratiort, (i) starting configuration is rigid and exclusive.
there exist$) < i < j such that = W, iff C is periodic; (ii)

there exist®) < i < j such thatiV = W iff C is symmetric; I1l. REACHING CONFIGURATIONC*
(iii) C is aperiodic and symmetric iff there exists one unique
axis of symmetry. In this section, we propose an algorithm, calledi®w,

It follows that if a configuration is rigid, then each occupiein the discrete CORDA model that allows to reach config-
node has a view which is different from any other occupiedaration C* starting from any exclusive rigid configuration.
node. Algorithm ALIGN will be used in next sections to achieve the

Lemma 1 ([22]): Given a configuratiorC, (i) |Ic| = 1 iff configurations suitable for the graph exploration, seaghor
C is either rigid or it admits only one axis of symmetry passingathering problems. We first describe the algorithm all@win
through the supermin; (iij)lc| = 2 iff C is either aperiodic and to reach configuratiof*. In the second subsection, we prove
symmetric with the axis not passing through any supermin ¢ correctness.



A. AlgorithmALIGN in the intervalge, > 0. Then, the new configuration is

: P g e (CIO7Q1a---aCI€2_17QK2—17(]@2-&-1"‘1,---,%—1);
The assumption of initial rigidity and exclusivity ensures REDUCTION _1(C): The robot aid moves to its neighbor

that one single robot moves at time. The moves performed® . . . S
. . . o . X in the intervalg;,_; > 0. Then, the new configuration is
aim to reduce the unique supermin of a rigid configuration

) . . . . L2 ... _ 1,g._1 —1).
in a way that the obtained configuration is again rigid and _(qO,q1, Gh-2 7t L G )
exclusive, until configuratiod* is achieved. Itis clear from the definition of the rules that, from an exclu

By rigidity and exclusivity, the starting configuration has sive rigid configuration, only one robot can execute a moxk an

unique supermin interval and each node has a unique superh?%t the r;aiht(:\d conpgura:!on(;gs St'” ;}g!”sf’eb l\iotle,2t|rrat
configuration view. Therefore, the snapshots provided & t € case that the configurationds (i.e. =(0.1,1,2)),

min
robot allow to agree on a common view (the unique minimuf"Y, REDUCTION move creates a symmetric configuration.
one) where each robot can identify its position. This ersur

Lp this case, we perfornrREDUCTION; which produces the

i 1 i c
that a single robot will move and that the next configuratioi?lftmmteht.rIC conflgurgtlorC such thathmind_ ((j(),_t(),|2, Z)' ¢
is still exclusive. Given a configuratio@, four rules, called o er I/';’C*RE_DUOT(') 1'\'13'3 aAgaCm_ per ormci. a?h " 1eads 10
REDUCTION;(C), i € {—1,0,1,2}, are defined below where, (-e Wy, = (0,0,1,3)). As C is symmetric, the supermin

for each rule, a single robot is asked to move to an empty nod rlfiguration view can be obtained by reading the ring in both
REDUCTIONy(C) is executed only if the supermin has lengtk

jpossible direction (i.ewt,. = (WE, )). However roboth

at least one. If the supermin has null lengEpUCTION, (C) is unequivocally identified as the single robot on thg axis
is executed if the corresponding move does not create a‘?{ symmetry andR!EDUCT'ONl corre;sp_onds t_o moving in
symmetry. OtherwiseREDUCTION;(C) is executed if it does a arblt_rary direction. In any cas@)_ is achieved. In_next
not create any symmetry, arREDUCTION_; (C) is executed subsection, we formally prove thét is eve_ntua!ly achle\{ed
otherwise. We prove that, starting from any rigid configiara and .that, except for the ca§e_©f, the obtained intermediate
the move resulting from this algorithm achieves a new rigiaonﬁguratlons are always rigid.

configuration. The only exception is configuratiGi such B. Correctness

that W<, = (0,1,1,2). In fact, from such a configura-
tion, any single move would generate either a symmetrd'
configuration or configuratiof® itself. In this case, we first
perform REDUCTION; (Cs), obtaining the symmetric config-
uration ¢’ such thatw¢, = (0,0,2,2), then we perform

We consider a rigid exclusive configuratiGnwith unique
By Lemma 1) supermin configuration viewvs. —=
(go,q1,---,95—1). We prove that, when one of the four rules
is applied by Algorithm AIGN, the resulting configuration
min C’ is still rigid. Moreover, in the case of the first three rules,

/ H * H H
REDUCTION (C*) which Iead.s t@”. Inany case, in the ent.|re the supermin configuration view @f is strictly smaller than
algorithm, only one robot is allowed to move at one time, ¢ In the case OREDUCTION. ;, we must consider the

Moreover, we prove tha.tEDU.CT'O'\L‘(C)' i€{0,1,2} _St”CtIY next move to strictly reduce the supermin configuration view
decreases the supermin. Finally, from some configuration

. . . Since W¢. = (qo,qu,...,qx—1) is the supermin con-
/ mn Y ) I
applying REDUCTION_;(C) may lead to a configuratiod figuration view, no interval has length smaller thas and

with a gregter_supermln conflguratlon_ view. However, we" 4r_1. Therefore, ifgy > 0 andREDUCTION, is applied,

prove that, in this case, the next move will reach a new confi e vie 1 1) is clearly the unique
tion whose supermin configuration view is strictly small v V\_/(qo L, -2, g1+ )i : y the uniqu

ura : . - ) . supermin configuration view of the resulting configurati&n

that the one of’. Since, clearlyC* is the rigid configuration By Lemma 1, we obtain:

with smallest supermin configuration view, this will provet Lemma 2 ([22]): The configuratiorc’ obtained by apply-

executing Algorithm A'(_BN eventually achieveg : ing REDUCTION, in the rigid exclusive configuratiod with
We now formally define the four rules mentioned abov%,0 > 0 is rigid. Moreover, W<, > W¢ (in lexicographical

Let C be any exclusive rigid configuration and I8tS, = order). i e

(40,41, -, qr—1) be its unique supermin configuration View. - ajgorithm ALIGN performsREDUCTION, until it reaches

Let ¢, be the smallest integer such that, > 0 and 4 fjgiq exclusive configuratiod with supermin configuration
let ¢, be the second smallest integer such that > \iew WC — (0,1, ..,q5-1) (i.e., go = 0). In this case

. . C o min
0. That is, if 0 < £ and & + 1 < 6, Wy, = gepycTion, cannot be applied as otherwise there would

(0,...,0,00,,0,...,0,005, 4ts11, - - -, qh—1)- L€t a,b,candd  po 5 collision. ThereforeREDUCTION;, REDUCTION, OF
be the nodes between the interva@jsandgx—1, ¢, @ndae, +1,  grepucTion. ; are applied depending on the configuratin
qe; andge, +1, andgx—» andgx—, respectively. In particular,REDUCTION, is applied if it does not create any
e REDUCTION(C): The robot ata moves to its neighbor symmetry. Ifgo = 0, by performingREDUCTION; we cannot
in the intervalgy > 0. Then, the new configuration isobtain a symmetry except for some particular configurations
(g0 — 1,q15 -+ Qr—2y qr—1 + 1); given in the next lemma.
e REDUCTION(C): The robot ath moves to its neighbor Lemma 3:Let C be a rigid exclusive configuration with
in the intervalg,, > 0. Then, the new configuration issupermin configuration viewVS. = (qo,q1,---, qx—1),
(Qosq1y -y qey—1:q0, — L, qey 41+ 1, o q—1); go = 0 and{¢; > 0 be the smallest integer such that > 0.
o REDUCTION(C): The robot atc moves to its neighbor Then, the configuratio@’ resulting from the application of



REDUCTION; is aperiodic. Moreoverg’ is symmetric if and of z exactlyn times. Given a configuratiof we say thaiC
only if the following conditions hold: belongs to a patter® if it has a viewWW that matches the
rules of the pattern. We denote it B/ € P. As an example,

¢ =0, foreachi =0,1,...,4 — 1 (@) the configurationC with a view (0,0,0,1,...,1,2,2,...,2)
qe, =1 (2)  belongs to(0{3}, 1% 27).
qry+1+1=qg-1; 3) Lemma 4:Let C be a rigid exclusive configuration with
the sequencey, 2, ge, 13, . . gr_2 IS Symmetric.  (4) supermin configuration vieWs . = (qo, q1,- - -, qe—1), With

3<k<n-—2 q =0, ¢, be the smallest integer such that
Proof: By rigidity of C, only one robot can perform g, > 0 and Conditionsl—4 hold. Then, the configuratio’
REDUCTION; and thenC’ is well defined and admits aresulting from the application OREDUCTION, is aperiodic.

view W = (¢4, 41, ---,q_1) = (q0,q1,---.q¢, — 1,q,,41 + Moreover,C’ is symmetric if and only if one of the following
L. qr—1)- conditions hold:
If C' is periodic, by Property 1, there must exist> 0 .
SUCH that(q; o > 9541 mod k2 -+ Djg 01) mod k) = (05415 we. €(0,1,1%,2); (5)
.qs, — 1) = (0,...,0,q¢, — 1). Note that, asg; ,, > WE,, € (0tal 1 {ola-1 13+ ota=2 1), (6)
0, then j > ¢ 4+ 1. Hence, in that case, the view . ]
(Gjs- - Qh1,00:- - -, q;—1) i @ view ofC strictly smaller than It foIIow§ that We can USEDUCTION, in all thg_conflgu—
If equations 1—4 hold, then ¢’ has a view W = Thenextlemma shows thatin the remaining cases we can use

(0,...,0,q0,41 + 1,40, 42, Ger 43, - - - Q2. Ge, 41 + 1) which REDUCTION_ i, the resulting configuration being rigid.

is symmetric with the axis of symmetry passing through Lemma5:Let C be a rigid exclusive config-

the middle of the sequenceso,qi,...,q,, — 1 and uration with supermin configuration view W¢, .

Qr2, Qs 3s - - Qs If either WC¢, € (0,1,1,17,2) or WE. €
We now show the only if statement. Note that Conditiof0'*?, 1, {011, 13,0122} 1), then, the configuration

1 is always satisfied by the hypothesis thgt= 0 and the C’ resulting from the application GREDUCTION_; is rigid.

definition of ¢;. Let us assume thaf’ is symmetric and By the above lemma, it follows that if we apply
let W = (qo.q1s---,qe,—1:qe, — 1,qe,41 + 1,...,qr—y) = REDUCTION_; to a supermin configuration view’¢ . ful-

man

(0,0,...,0,qe, = L,qoy 41+ 1, ..., qr—1). filling Condition 5 or 6, the only case in which the obtained

For the sake of contradiction, let us assume that> 1. configuration can be symmetric is whé#ig,;, = (0,1,1,2).
Then, because,, < ¢,_1 andgq, — 1 > 0, it is easy to The correctness of AGN then follows from next theorem.
check thatlV is the supermin configuration view @f, and  Theorem 1:Let3 < k < n—2 robots standing in an-node
W < Wncnn- Hence,qo must be the unique supermin 6f ring and forming a rigid exclusive configuration, Algorithm
since otherwise, a supermin interval different frggwould ALIGN eventually terminates achieving configuratiéh and
have been a supermin intervalGh contradicting the fact that all intermediate configurations obtained are exclusive and
W, is the supermin minimum view @f. By Lemma 1, since €ither rigid or such that the supermin view(is 0, 2, 2).
|Ic:| =1 andC’ is symmetric, the (unique) axis of symmetry Proof: As ALIGN starts from a rigid exclusive con-
of W passes through the edge corresponding,tdHowever, figuration, by Lemma 1, there exists a unique supermin in
sinceq,, — 1 < qx_1, C' is not symmetric, a contradiction. the initial configuration. Hence exactly one robot moves at
It follows that ¢;,, = 1. In this case, the first; elements one time. Moreover, all the performed movements reduce an
of W are 0 and, as before, this sequence is unique and tigerval which is strictly greater than 0 and hence the olet@i
possible axis of symmetry @’ passes through the middle ofconfiguration is exclusive.
such unigue sequence. This implies tiais symmetric only if First, we assume that the initial configuration is @6t
gr,+1+1 = qx—1 and that the sequengg y2, qr,+3, - - -, Gr—2 In a current rigid exclusive configuratiof with unique
iS symmetric. m supermin configuration vieWV<. = (q0,q1,---,qk—1), We

It follows that if W¢ . does not satisfy Conditionis4, the prove that the next move is unique and result in a rigid
application ofREDUCTION; results in a rigid configuration. exclusive configuration.
Otherwise, if applyingREDUCTION, does not create any If ¢o > 0, the algorithm performsREDUCTIONy. This
symmetry, it is applied. The following Lemma 4 shows thatvolves a unique robot and the resulting configurationggri
actually, when Condition$—4 hold, REDUCTION, can create by Lemma 2.
symmetries only for some specific configurations. If go = 0, a unique robot executeBREDUCTION; if the

For the next lemmata, we need further notationp#tern resulting configuration is rigid. Otherwise, by Lemma 3,
is the set of possible configurations admitting a view thavC,. satisfies Conditiond—4. In that case, a unique robot
fulfills some rules defined by a string of integer humbemxecutesREDUCTION, if the resulting configuration is rigid.
and the following symbols. Let be an integer number:*  Otherwise, by Lemma 4W¢<. € (0,1,1F,2) or WS, €
denotes the repetition af zero or more timest* denotes the (011}, 1, {0t 1}+ 0{4=2} 1), In this case, a unique
repetition ofz one or more timesz{™} denotes the repetition robot executelREDUCTION_;. By Lemma 5, as the initial



configuration is different fromC?®, this results in a rigid by a robot when it traverses it or if both its ends are
configuration. simultaneously occupied by some robots. However, a clear
Since configuratio@* is the configuration with the smallestedge is instantaneoustgcontaminatedf there is a path from
supermin configuration view, it only remains to show thateaone of its end to the end of a contaminated edge and no node
movement reduces the supermin. Hence, in the following, wé this path is occupied by some robot. This variant of graph
show that each movement (or each two movements)lo6N  searching is classically referredmsxed graph searchinf27].
reduces the supermin. Motivated by physical constraints and following [17], we
Let us denote byV = (¢(,4q1,-..,q,_,) the view of the moreover impose thexclusivity constrainti.e., a node can
configurationC’ obtained after the movemeril/ is the view be occupied by at most one robot.
of ¢’ at the same node and in the same directioligs;, . A search strategysingl < k < n robots consists of a
Let W<, be the supermin configuration view 6f. If the set ofk nodes, thenitial positions and a sequence of moves
movement iISREDUCTIONy, then ¢} = ¢o — 1 and hence of the robots, sliding the robots along the edges to empty
W, < W < WE, . If the movement iSREDUCTION;, i € neighbors, that eventually clear all edges. For instarieret
{1,2} thenW = (qo,q1,---,q¢; — 1,qe,41 + 1,...,qx—1) < IS nO search strategy that clears-®ode ring using one robot.
W¢. and thereforaVC, < W < WC, . If the movement On the other hand, a possible strategy using two robots is the
is REDUCTION_; it follows that W¢. € (0,1,1,1%,2) following: first place two robots at adjacent nodesand v,
or W¢, e (ott 1 {ota-1 13+ 0l6=2} 1), In the lat- then slide the robot at along the empty nodes of the ring
ter case,W e (0ta+1} 1 {ol&i=1} 13+ 0t4-3} 1) and until it reaches the other neighbar of v.
hencew¢S, < W < W¢, . In the former case}V e In this section, we consider the graph searching problem in
(0,1,1,1*,2,1) and henceW > WC¢. . However,C’' is n-node rings in the discrete CORDA model. More precisely,
rigid and does not satisfy Conditions4 and hence the we aim at designing algorithms that allow robots to clear a
movement performed i€’ is REDUCTION;. Therefore, the n-node ring starting from any rigid exclusive configuration.
configurationC” obtained after performing@epucTion; on  As our algorithms ensure that all met configurations aredrigi
C'isW" €(0,0,2,1%,2,1). Therefore W” < W¢, . and exclusive, and as the robots are oblivious of the cleared
Let us now assume that the initial configurationds. edges, the resulting strategies clear the fegpetually i.e.,
Note that, this is the only initial configuration with = 4 the whole ring is cleared infinitely often. Moreover, we stud
andn = 8 which is rigid and different fronC*. From C*, the exclusive perpetual exploration. Perpetual graphchesy
REDUCTION; is performed and the symmetric configuratdn and perpetual exploration are not equivalent. For instance
such thatV¢, = (0,0,2,2) is achieved. The next movementone robot always moving clockwise will perpetually explare
performed is againREDUCTION; which leads toC* (i.e. ring without clearing it. On the other hand, the above search
W<, = (0,0,1,3)) independently from the supermin view.strategy using two robots perpetually clears a ring (on@tob
In fact, even if configurationC is symmetric, robotb is is atv and the other one alternate its move franto w and
unequivocally identified as the single robot on the axis a@fien fromw to u) but does not perpetually explore it since
symmetry andREDUCTION; corresponds to moving in an the robot aty never moves. The algorithms we propose in the

arbitrary direction. In any casé* is achieved. B sequel both perpetually explore and clear the rings.

IV. CLEARING A RING B. Impossibility results

In this section, we study the exclusive perpetual graph In this section, we show that fére {1,2,3,n—2,n—1} or
searching problem of an-node ring ¢ > 3) by a team of for n <9, no algorithm in the discrete CORDA model allows
1 < k < n robots in the discrete CORDA model, starting fronto clear ann-node graph using robots. For these results we
any rigid exclusive configuration. In the case< k <n — 3 do not assume that the initial configurations are rigid, that
andn > 10 (or n > 10 if k = 5), we propose an algorithm the impossibility results hold on a stronger model. We start
that makes use of Algorithm IAGN presented in previous with a simple result.
section. We then propose a specific algorithm for the caseLemma 6:For anyn > 2 and for any exclusive configura-

k =mn—3 andn > 10. On the other hand, we show thation C, there is no algorithm that solves the exclusive perpetual
for k € {1,2,3,n—2,n—1} andn > 3, or for2 < n <9 graph searching problem inanode ring using: — 1 robots
and & < n, there is no algorithm that solves the problenstarting fromC.

even if the initial configuration is given. The cades- 4 and Let us consider the case of two robots in a ring with at least

(k =5,n=10) are left as open problems. three nodes. Two nodesandwv of ann-node ring are called
. ] diametralif either n is even and there are two shortest paths
A. Perpetual exclusive graph searching betweenu andv; or n is odd and the length of the two paths

Given an-node graphG where all edges areontaminated from « to v differ by one. We say that two robots occupy a
the graph searching problem consists in coordinating a teallmmetral configuration if they occupy two diametral nodes.
of robots to eventuallglear all edges. The robots occupy the We show that any algorithm for perpetual searching with
nodes of G and a robot can move along an edge from itsvo robots needs to reach a configuration where the two robots
current position to a neighboring node. An edgeclisared occupy two diametral nodes. Then, we show that when the two



robots reach occupy two diametral nodes they cannot break /\
the symmetry and hence they cannot search the ring. The next
theorem follows.

Theorem 2:For anyn > 2 and for any initial configuration N - .
C, there is no algorithm that solves the exclusive perpetu

graph searching problem inranode ring usings < 2 robots

starting fromcC.

Let us now consider the case of three robots in a ring
with at least four nodes. For ease of presentation, we give
identifiers to the robots. Of course, the robots are anongmo
in the sense that they are not aware of these identifiers al
that no algorithm for searching the ring can make use of them
However, the adversarial scheduler will use them. Hentesle
call the three robots byl, B andC'. At any steps, we denote
by dist,(X,Y’) the distance (i.e., the number of consecutive [—3 sequence of adjacent robots —+—  single robot
edges) between the nodes occupied by robosndY at this ——  sequence of empty nodes —o—  single empty node
step (if rPO amplgwty, the subscript will be omitted). L&t be. Fig. 1. Second phase of theiNRs SEARCH algorithm. The arrows close to
the configuration where throbots occupy three CONSECUtVEhe ropots indicate the robot that is moving and its directio
nodes. Given any algorithid for perpetually clearing a ring
with 3 robots, we say that a configuratiah is bad if, in
this configurationdist(A, B) < dist(B,C) and there exists C. AlgorithmRING SEARCH
a robot such that, if this robot executgk in configuration

C, then the configuration reached after its move is such tl"t%tNG SEARCH, to search a fing ofr > 10 nodes with
dist(4, B) > dist(B, C). 5 < k < n — 3 robots (except forn = 10 andk = 5) starting
In what follows, we show that any algorithm for perpetuallyyom any rigid configuration.

clearing a ring with3 robots must always avoid the configura- - Algorithm RING SEARCH works in two phases. In the first
tion C... Then, we show that such an algorithm cannot avoid ghase, Algorithm AIGN is executed until one configuration
reach a bad configuration. Finally, we show that from any bagl the set of configurations4 (described below and that
configuration, it is possible to schedule the three roboth sucontaingc*) is reached. Then, the robots execute the algorithm
that either they reach the configurati6n, or (1) each robot jjystrated in Fig. 1. The assumption of initial rigidity sures

is scheduled at least once; and (2) this reaches a configarathat, in the entire algorithm, only one robot is allowed tov@o
such thatdist(A, B) < dist(B,C) and B has been adjacentat one time. Moreover, the set of configurations in the two

to C'in the meantime; and (3) if the new configuration is Ng¥hases are disjoint and hence the robots can always dimgu
Cc, then from this new configuratiod will reach another bad which phase is performing.

N

In this section, we give an algorithm, called Algorithm

configuration beforeB is adjacent taC'. We denote asd the set of the following configurations:

Since any algorithm for perpetually clear the ring musf-a: Those withk — 2 adjacent robots and two adjacent
ensure thatB is |nf|n|te|y many times adjacent t@’, this robots Separated by one empty node from the first2
proves that such an algorithm cannot exist. (Fig. 1a).

Theorem 3:For anyn > 3 and for any initial configuration A-b: Those withk — 2 adjacent robots, one robot separated
C, there is no algorithm that solves the exclusive perpetual by an empty node from the firét— 2, and another robot

graph searching problem in a-node ring using3 robots not adjacent to any other one (Fig. 1b).

starting fromcC. A-c: Those withk —2 adjacent robots, one robot separated by
By using similar argument as Theorem 2 the next theorem ©ne empty node from the firdt — 2, and another robot

can be shown. separated by two empty nodes from the fikst 2 on

the other side of the first robot. (Fig. 1c).

Vét-d: Those withk — 3 adjacent robots, two adjacent robots
separated by one empty node from the first3 on one
side, and another robot separated by two empty nodes

i ) from the firstk — 3 on the other side (Fig. 1d).

Th_e next ”.‘eore'ff‘ is proven by an exhaustive study of tr)@-e: Those withk — 3 adjacent robots, two adjacent robots
possible configurations. separated by one empty node from the first3 on one

Theorem 5:For any2 < k£ < n < 9 and for any initial side, and another robot separated by one empty node
configurationC, there is no algorithm that solves the exclusive from the firstk — 3 on the other side (Fig. 1e).

perpetual graph searching problem in-@ode using: robots  A-f: Asymmetric configurations with — 1 adjacent robots

starting fromc. and one single robot (Fig. 1f).

Theorem 4:For anyn > 2 and for any exclusive initial
configurationC, there is no algorithm that solves the exclusi
perpetual graph searching problem in-aode ring using: —2
robots starting front.



Note that the configuratio6* belongs to the setl-f. two edges betweert and.S\ {r”’}. The obtained configuration
The algorithm perpetually cycles among configuratiods is of type .A-d, where the only edges which are not searched
a — A-e as depicted in Fig. 1. The next theorem shows thate those between and S. Therefore, the algorithm moves
it perpetually clears the ring. r towardsS obtaining first a configuration of typel-e and
Theorem 6:Starting from any exclusive and rigid config-again a configuration of typgl-a. Note that, in all the above
uration, Algorithm RNG SEARCH solves both the perpetualconfiguration, it is always possible to distinguish robets
exclusive graph searching and exploration problems usingr’ andr”. Moreover, the direction of the movements can be
robots in anyn-node ring,n > 10 and5 < k < n — 3 (but identified by the robots thanks to the position of robats’
for n = 10 andk = 5). and r” themselves. Summarizing, the algorithm perpetually
Proof: By Theorem 1, Algorithm AIGN eventually cycles among configurationd-a — . A-e. |
achieves configuratiod* € A-f. If the configuration is in
A-f, let us denote as the single robot and by’ the robot on ) i - )
the border of the sequence fof- 1 robots which is the closest I this section, we propose a specific algorithm to clear any
to r. Note that, as the initial configuration is assumed to ggnode ring,n > 10 usingn — 3 robots. Together with the
rigid, then we can always distinguish robdt The algorithm Previous algorithm and the impossibility results, thissels all

moves’ towards the only direction allowed. The obtained® cases, but fon =10 andk = 5.
configuration is eitherd-a or A-b. In any exclusive configuration with = n— 3 robots, all the

In the following, we show that if a configuration is in any?0des of the rings but three are occupied. In other words, the
of the configurations ind, the algorithm perpetually cycles"ng IS made of at most three sequences of adjacent occupied
among them in the sequencel-f, A-b, A-c, A-d, A-e). nodes. We denote byl, B and C' the number of nodes in
Hence the algorithm never goes back to a configuration $/Ch three sequences. If two empty nodes are adjacent, the
A-f and without loss of generality, we can assume that tf@rresponding sequence between them has (si2¢ote that,
first configuration is of typed-a. as the configuration is rigid, such three sequences are all

In this case, we calf the sequence df—2 adjacent robots different and then, we can assume w.l.o.g. tHat B < C.
andr ands the robot at distance 3 and 2 frash respectively. " the following, we denote a configuration @4, B, C'). We
The algorithm identifies robotin a configuration ind-a. The ¢l final configurations the three configuratioris; 2, k —2),
view read byr is (o, q1, - - -, qe—1) = (0,1,0,0,...,0,qs_1), (0,3,k—3), and(1,2,k—3). Note that, sincdk =n—3 > 7,
wheregz_1 > 2. In a configuration of typed-a, the edges the final configurations are well defined and distinguishable
which are searched are the internal edges aind the edge that is B is always strictly sma_ller tharj_l'. Our algorithm is
between- andr. The algorithm first searches the edges in tHé€noted as NINUSTHREE. and it works in two phases: In the
sequence of empty nodes. To this aim, it moves reliowards first phase, it creates a final configuration and in the second
the direction opposite te’. Note that as the configuration isOn€ it performs the perpetual searching. o _
rigid, only » can read such a configuration. The first phase is performed if the configuration is not final

The configuration obtained is of typé-b where the distance @nd it is accomplished by performing the following rules in
between the two single robots is 2. In particular, robaan the Priority given by the following ordering.
read the configuration in two directions, depending on the si R1.1 If A > 0, move toward<”' the robot on the border

D. Clearing ann-node ring using» — 3 robots

of the its adjacent intervals. of A which is closer toC;

In this way,r searched the edge where it passed through.R1.2 If B =1, move towardsB the robot on the border
The algorithm keeps on moving in the same direction of C which is closer toB;
until it reaches a configuration of typd-c, in this way the ~ R1.3 If B > 3, move towards”' the robot on the border
configuration is still.A-b and all the edges betweenand r’ of B which is closer toC'.

where r passed through are searched. Note that, the robBigle R1.1is executed forA steps untilA = 0. Afterwards,
are always able to identify the correct direction thanks ®@ither RuleR1.2 or Rule R1.3 is executed. IfA = 0 and
the position of robot’. More precisely, robot can read the B = 1, thenC' = &k — 1. It follows that, after one step of
configuration in two directions, depending on the size ofithe Rule R1.2, the final configuratior{0, 2, £ — 2) is achieved. If
adjacent intervals. If it reads in clockwise order with resp A = 0 and B > 3, then the configuration i$0, B,k — B)

to Fig. 1, then the configuration read (i, q1,...,q.—1) = and the final configuratio(0, 3, ¥ — 3) is achieved afte3 — 3
(90,0,0,...,0,1,q5_1), Whereqgy > 2 andqx_; > 0 andr steps or RulR1.3. If A =0 and eitherB = 2 or B = 3, the
has to move towardg,. Otherwise, the configuration read isconfiguration is final. The following lemma follows.
(go,q1s---5q6—1) = (90,1,0,0,...,0,qx—1), Wheregy > 0 Lemma 7:The first phase of the algorithm eventually
andgy,—1 > 2 andr has to move towardg,_; . achieves a final configuration if > 10 andk = n — 3.

When the configuration is of typd-c, the only edges which The second phase of the algorithm performs the searching. It
are not searched are the two edges betwéemd S and the starts from any final configuration and performs the follagvin
three edges betweerandS. Lets” be the robot on the borderrules.
of S which is the closest te’. If the configuration is of type  R2.1: If (A, B,C) = (0,2,k — 2), move towardsB the
A-c, the algorithm moves robat’ towardsr’, searching the robot on the border of' which is closer toB;



R2.2 If (A,B,C) = (0,3,k — 3), move towardsA the
robot on the border o which is closer toA4;
R2.3 If (4,B,C) = (1,2,k — 3), move the robot ofA
towardsC.
The next theorem states the correctness of the algorith
Theorem 7:Starting from any exclusive and rigid config-
uration, Algorithm NMINUSTHREE solves both the perpetual
exclusive graph searching and exploration problems using)
robots in anyn-node ring,n > 10.

V. GATHERING IN A RING

V1. CONCLUSION

In this work, we provided a unified strategy for solving
three tasks in the discrete CORDA model on ring topologies
when the initial configuration is rigid. Namely we solved the

Mbxclusive perpetual search, the exclusive perpetual exipbo

and the gathering with local multiplicity detection cafipi
Moreover, the given algorithms solve some open problems and
the impossibility results provided for the exclusive pduaé
search problem fully characterize any initial configuratio
Our work opens two main research direction: use theci

In this section, we devise a strategy to accomplish tfdgorithm to solve other problems in rigid configurationsian

gatheringtask on a ring under the discrete CORDA modef

evise similar algorithms to handle symmetric or periodic

The problem requires the robots to reach a common node &fifigurations.

remain in there. Hence, more than one robot must be allowed
to occupy a node, i.e. multiplicity occurs. We assume that
the robots have thiecal multiplicity detection capability. This  [1]
is necessary as proven in [19].

In accordance to the other tasks previously shown, we make
use of procedure AGN in order to achieve configuratiaf  [2]
starting from any (exclusive) rigid configuration on rings o
n > k4 2 nodes and: > 2 robots. In fact, any configuration
with n =2, n = k+ 1, orn = k+ 2 nodes is symmetric.
Hence, the next algorithm provides a full characterizatibn
rigid configurations where the gathering can be accomplishe
Before providing the algorithm, we need some more notation.

A configuration is said to be of typ€* if it is composed [4]
by an ordered sequence ¢f— 2 intervals of length0, one
interval of lengthl and one interval of length — j — 1, with
3 < j < k. Consequently, also the nodes of the ring can be
considered ordered according to the intervals’ order. enc [5]
the first two nodes of the sequence will constitute interval
go = 0 in the current configuration. Clearlg* is a C*-type
configuration.

Rule GCONTRACTION allows to move any robot occupying
the first node of aC*-type configuration towards the second [g]
one. Possibly, such nodes can be occupied by many robots.

From C*-type configurations, the algorithm simply applies
CONTRACTION until only two nodes are occupied. Note that,
at each intermediate step, the current configuration isy&wa [7]
aC*-type, and the algorithm allows to move the robot(s) from
the first node of the current interv@ towards the second one.
Eventually, the number of intervals of lengthis reduced by
one. This is repeated until only two nodes at distahcemain
occupied. Note that, in such a configuratidn,— 1 robots

(3]

(8]
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