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Abstract—A set of autonomous robots have to collaborate in
order to accomplish a common task in a ring-topology where
neither nodes nor edges are labeled. We present a unified ap-
proach to solve three important problems: the exclusive perpetual
exploration, the exclusive perpetual search and the gathering
problems. In the first problem, each robot aims at visiting each
node infinitely often; in perpetual graph searching, the team of
robots aims at clearing the whole network infinitely often; and
in the gathering problem, all robots must eventually occupythe
same node. We investigate these tasks in the Look-Compute-
Move distributed computing model where the robots cannot
communicate but can perceive the positions of other robots.Each
robot is equipped with visibility sensors and motion actuators,
and it operates in asynchronous cycles. In each cycle, a robot
takes a snapshot of the current global configuration (Look),then,
based on the perceived configuration, takes a decision to stay idle
or to move to one of its adjacent nodes (Compute), and in the
latter case it eventually moves to this neighbor (Move). Moreover,
robots are endowed with very weak capabilities. Namely, they are
anonymous, oblivious, uniform (execute the same algorithm) and
have no common sense of orientation. In this setting, we devise
algorithms that, starting from an exclusive rigid (i.e. aperiodic
and asymmetric) configuration, solve the three above problems
in anonymous ring-topologies.

I. I NTRODUCTION

In the field of robot-based computing systems, we consider
k ≥ 1 robots placed on the nodes of an input graph. Robots
are equipped with visibility sensors and motion actuators,and
operate inLook-Compute-Movecycles in order to achieve a
common task (see [1]).

The Look-Compute-Move model considers that in each cy-
cle a robot takes a snapshot of the current global configuration
(Look), then, based on the perceived configuration, takes a
decision to stay idle or to move to one of its adjacent nodes
(Compute), and in the latter case it moves to this neighbor
(Move). Cycles are performed asynchronously, i.e., the time
between Look, Compute, and Move operations is finite but
unbounded, and it is decided by the adversary for each robot.
Hence, robots that cannot communicate may move based on
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outdated perceptions. From the practical viewpoint, the Look-
Compute-Move model faithfully describes the behavior of
some real robots.

In the continuous plane, this model is referred in the
literature also as theCORDA model [2]. The inaccuracy of
the sensors used by robots to scan the surrounding environ-
ment motivates its discretization. Moreover, robots can model
software agents moving on a computer network.

Various problems have been studied in this setting such
as pattern formation(in Euclidean metric spaces),graph ex-
ploration with stop, exclusive perpetual exploration, exclusive
perpetual graph searchingand gathering. Recently, several
algorithms have been proposed to solve these problems in
particular topologies such as lines, rings, trees and grids. Here,
we propose a unified approach to solve the last three problems
in rings. The relevance of the ring topology is motivated by
its completely symmetrical structure. It means that algorithms
for rings are more difficult to devise as they cannot exploit
any topological structure, as all nodes look the same. In fact,
our algorithms are only based on robots’ disposal and not on
topology.

We consider a minimalist variant of the Look-Compute-
Move model which has very weak hypothesis. Neither nodes
nor edges of the graph are labeled and no local memory is
available on nodes. Robots areanonymous, uniform (i.e. they
all execute the same algorithm),oblivious (memoryless) and
have no common sense of orientation. Guided by physical
constraints, the robots may also satisfy theexclusivity property,
according to which at most a node can be occupied by at
most one robot [3]. In contrast to the CORDA model in the
continuous plane, we assume that moves are instantaneous,
and hence any robot performing a Look operation sees all
other robots at nodes and not on edges. Note that, in a discrete
asynchronous environment this does not constitute a limitation
to the model. In fact, an algorithm cannot take advantages
from seeing robots on the edges as the adversary can decide
to perform the Look operations only when the robots are on
the nodes. On the other hand, if an algorithm takes advantage
from the assumption that the robots always occupy nodes, the
same algorithm can be applied by adding the rule that if a
robot sees another robot on an edge, it just don’t move (i.e. it



waits until all the robots occupy only nodes). In the following,
we denote such model as thediscrete CORDA model.

The discrete CORDA model received a lot of attention in the
recent years. Most of the proposed algorithms consider thatthe
starting configuration isexclusive, i.e., any node is occupied
by at most one robot, andrigid, i.e., asymmetric and aperiodic.
In the following, we review the literature concerning on graph
topologies focusing on rings. For the literature about the three
problems under study in different settings, the interest reader
can refer to [4–10].
Related work. In the problem of graph exploration with
stop [11–13], it is required that each node (or each edge) of
the input graph is visited a finite number of times by at least
one robot and, eventually, all the robots have to stop. Whereas,
the exclusive perpetual graph exploration [3, 14–16] requires
that each robot visits each node of the graph infinitely many
times. Moreover, it adds the exclusivity constraint. In [15],
first results onn-node rings are given. In detail, the paper
gives algorithms fork = 3 and n ≥ 10, for k = n − 5 (if
n mod k 6= 0), and shows that the problem is infeasible for
k = 3 and n ≤ 9, and for some symmetric configurations
wherek ≥ n− 4.

Graph searching has been widely studied in centralized [8]
and distributed setting (e.g., [9]). The aim is to make the
robots clear all the edges of a contaminated graph. An edge
is cleared if it is traversed by a robot or if both its ends
are occupied. However, a clear edge can be recontaminated
if there is a path without robots from a contaminated edge
to it. The study of graph searching in the discrete CORDA
model when the exclusivity property must be always satisfied
is introduced in [17] where a characterization of the perpetual
exclusive graph searching on tree topologies is given. As far
as we know, no results have been proposed in ring topologies
for the perpetual exclusive graph searching problem in the
discrete CORDA model.

The gathering problem consists in moving all the robots in
the same node and remain there. In [18], a full characterization
of the gathering on grid topologies without any multiplicity
detection is given. On rings, it has been proven that the
gathering is unsolvable if the robots are not empowered by
the so-calledmultiplicity detectioncapability [19], either in its
global or local version. In the former type, a robot is able to
perceive whether any node of the graph is occupied by a single
robot or more than one (i.e., amultiplicity occurs). In the latter
type, a robot is able to perceive the multiplicity only if it is part
of it. Using the global multiplicity detection capability,in [19],
some impossibility results have been proven. Then, several
algorithms have been proposed for different kinds of exclusive
initial configurations in [19–21]. These papers left open some
cases which have been closed in [22] where a unified strategy
for all the gatherable configurations has been provided. With
local multiplicity detection capability, an algorithm starting
from rigid configurations where the number of robotsk is
strictly smaller than
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has been designed in [23]. In [24],
the case wherek is odd and strictly smaller thann−3 has been
solved. In [25], the authors provide an algorithm for the case

wheren is odd,k is even, and10 ≤ k ≤ n − 5. Papers [24]
and [25] do not assume that the initial configuration is rigid.
The remaining cases with local multiplicity detection are left
open and a the design of a unified algorithm for all the cases
is still not known.
Contribution. In this work, we provide a unified approach
for solving different tasks in the discrete CORDA model
on ring topologies. Namely, we present an algorithm that,
starting from any rigid configuration, solves: the exclusive
perpetual exploration, the exclusive perpetual search, and the
gathering with local multiplicity detection capability. Our main
algorithms consist of two phases. The first phase is common
to all problems and allowsk > 2 robots to achieve a particular
rigid exclusive configuration, denoted below byC∗, in an n-
node ring,k < n − 2. The second phase depends on the
task. On the one hand, we design an algorithm that, starting
from configurationC∗, solves the gathering problem with local
multiplicity detection for any team ofk robots in n-node
rings, 2 < k < n − 2 (note that, ifn = 2 or k ≥ n − 2,
no rigid configuration exists). On the other hand, we present
an algorithm that, starting from configurationC∗, solves both
the perpetual exclusive graph exploration and the perpetual
exclusive search problems, for any team ofk robots inn-node
rings, n ≥ 10, 5 ≤ k < n − 3 (but for k = 5 andn = 10).
Moreover, we design a specific algorithm that, starting from
any rigid configuration, solves the perpetual exclusive graph
searching problem usingn − 3 robots in anyn-node ring,
n ≥ 10. Finally, we provide some impossibility results for the
perpetual exclusive graph searching problem, showing thatfor
2 < n ≤ 9 and k < n, or k ∈ {1, 2, 3, n − 2, n − 1} and
n > 4, the problem cannot be solved in an-node ring withk
robots. All together, we obtain an almost full characterization
of exclusive perpetual graph searching in rings, leaving only
open the cases(k = 4, n > 9) and(k = 5, n = 10). Moreover,
for the exclusive perpetual exploration and for the gathering
problem, besides being a unified approach, we solve some
open cases.
Outline. In the next section we define the notation used in the
paper and describe the discrete CORDA model. In Section III,
we propose an algorithm to achieve the special configuration
C∗. Perpetual exclusive graph searching is formally defined
and studied in Section IV. We note that the algorithms given
in this section also solve the perpetual exclusive exploration
problem. The gathering problem is considered in Section V.
We then conclude with some possible future research direc-
tions. Due to space constraints, some of the proofs of the
lemmata and theorems and the pseudo-codes of each algorithm
are given in the full paper [26].

II. M ODEL AND NOTATIONS

We consider a team ofk ≥ 1 robots spread in ann-node
ring,n ≥ 3. The ring isanonymous, that is its nodes and edges
are undistinguishable, and no orientation is provided.

A configurationconsists of the set of nodes that are oc-
cupied by a robot. Note that, it does not take into account
the number of robots in each node. A configuration is said



exclusiveif each node is occupied by at most one robot. For
2 ≤ k < n − 2, we denote byC∗ the configuration that
consists ofk−1 consecutive occupied nodes, one empty node,
one occupied node, and remaining≥ 2 consecutive empty
nodes. Aninterval in a configuration is an inclusion-maximal
(possibly empty) subset of consecutive empty nodes, i.e., a
subpath of empty nodes that stands between two occupied
nodes. For instance, inC∗, there arek−2 intervals of length0,
one interval of length1 and one interval of lengthn−k−1 > 1.

In a configurationC, a view at some occupied noder ∈ C
is a sequence of integersW (r) = (q0, q1, . . . , qj), j < k,
that represents the sequence of the lengths of the intervals
met when traversing the ring in one direction (clockwise or
anti-clockwise) starting fromr. Abusing the notation, for any
i ≤ j, we refer toqi as the corresponding interval. Note that,
if C is exclusive, thenj = k − 1 and

∑

0≤i<j qj = n − k.
Note also that, a noder may have2 distinct views, depending
on the direction. Unless differently specified, we refer to
W (r) = (q0, q1, . . . , qj) as the view atr that is minimum
in the lexicographical order.

Let W (C) be the set of the at most2k views (at most
two views per occupied node) in the configurationC. The
supermin configuration viewW C

min of the configurationC is
the minimal view inW (C) in the lexicographical order. Note
that, in W C

min, no interval has length strictly smaller than
q0, and, moreover, ifk < n, then qk−1 > 0. For instance,
W C∗

min = (q0, . . . , qk−2, qk−1) with q0 = . . . = qk−3 = 0,
qk−2 = 1 andqk−1 = n− k − 1.

For any view W = (q0, q1, . . . , qj) in a configura-
tion C, we set W = (q0, qj, qj−1, . . . , q1), and Wi =
(qi, q(i+1) mod (j+1), . . . , q(i+j) mod (j+1)) denotes the view
obtained by readingW starting fromqi as first interval. Note
that W (C) = {Wi, Wi, | 0 ≤ i ≤ j}. Let IC be the set
of intervalsqi such thatWi or Wi are equal toW C

min. The
intervals inIC are thesuperminsof C. E.g., |IC∗ | = 1.

An exclusive configuration is calledsymmetricif the ring
admits a geometricalaxis of symmetry, dividing the ring
into two specular halves. An exclusive configuration is called
periodicif it is invariable under non-trivial (i.e., non-complete)
rotations. A configuration which is aperiodic and asymmetric
is calledrigid.

We now give some useful properties that are proved in [22].
In particular, Lemma 1 is used to detect possible symmetry or
periodicity of a configuration.

Property 1 ([22]): Given a viewW of a configurationC, (i)
there exists0 < i ≤ j such thatW = Wi iff C is periodic; (ii)
there exists0 ≤ i ≤ j such thatW = Wi iff C is symmetric;
(iii) C is aperiodic and symmetric iff there exists one unique
axis of symmetry.

It follows that if a configuration is rigid, then each occupied
node has a view which is different from any other occupied
node.

Lemma 1 ([22]): Given a configurationC, (i) |IC | = 1 iff
C is either rigid or it admits only one axis of symmetry passing
through the supermin; (ii)|IC | = 2 iff C is either aperiodic and
symmetric with the axis not passing through any supermin or

it is periodic with periodn
2 ; (iii) |IC | > 2 iff C is periodic,

with period at mostn3 .
We consider a discrete variant of the CORDA model

introduced in [2] where the robots have no explicit way
of communicate to each other (e.g., they cannot exchange
messages). However, they are endowed with visibility sensors
allowing each robot to perceive their own position in the graph
and the positions of all the other robots.

The robots proceed by cycles of three phasesLook-
Compute-Move. In the Look-phase, a robot at some node
r accesses asnapshotof the network that consists of the
view W (r). In the Compute-phase, the robot decides its
action based on the information it received during the Look-
phase. Finally, during the Move-phase, the robot executes its
action, i.e., it moves to a neighboring node or stays idle. The
environment is fully asynchronous which, in particular, means
that the Compute-phase may be executed based on an out-
dated view of the network.

We consider a minimalist variant of the model, where the
robots have very weak abilities. Robots are anonymous, i.e.,
they do not have identifiers, and areuniform, i.e., they all
run the same algorithm. Robots areoblivious (memoryless).
The robots have nosense of direction, i.e., they do not
agree on a common orientation of the ring. Unless differently
specified, two or more robots cannot occupy the same node
(exclusivity property). When the exclusivity property is not
imposed (e.g. for solving the gathering problem), the robots
have the so calledlocal multiplicity detectioncapability that
is, a robot is able to detect whether the node where it resides
is occupied by more than one robot or only by itself, but it is
not able to detect the exact number of robots occupying the
node. Note that this is the weakest assumption that has to be
made to solve the gathering since it has been shown that the
gathering is impossible if no multiplicity detection capability
is allowed [19].

In contrast to the CORDA model in the continuous plane,
we assume that moves are instantaneous, and hence any robot
performing a Look operation sees all other robots at nodes
and not on edges. We remark that, in a discrete asynchronous
environment this does not constitute a limitation to the model.
We call such model thediscrete CORDA model.

Our goal is to investigate the feasibility of several collabo-
rative tasks with these weak hypothesis. We assume that the
starting configuration is rigid and exclusive.

III. R EACHING CONFIGURATIONC∗

In this section, we propose an algorithm, called ALIGN,
in the discrete CORDA model that allows to reach config-
uration C∗ starting from any exclusive rigid configuration.
Algorithm ALIGN will be used in next sections to achieve the
configurations suitable for the graph exploration, searching, or
gathering problems. We first describe the algorithm allowing
to reach configurationC∗. In the second subsection, we prove
its correctness.



A. AlgorithmALIGN

The assumption of initial rigidity and exclusivity ensures
that one single robot moves at time. The moves performed
aim to reduce the unique supermin of a rigid configuration
in a way that the obtained configuration is again rigid and
exclusive, until configurationC∗ is achieved.

By rigidity and exclusivity, the starting configuration hasa
unique supermin interval and each node has a unique supermin
configuration view. Therefore, the snapshots provided to the
robot allow to agree on a common view (the unique minimum
one) where each robot can identify its position. This ensures
that a single robot will move and that the next configuration
is still exclusive. Given a configurationC, four rules, called
REDUCTIONi(C), i ∈ {−1, 0, 1, 2}, are defined below where,
for each rule, a single robot is asked to move to an empty node.
REDUCTION0(C) is executed only if the supermin has length
at least one. If the supermin has null length,REDUCTION1(C)
is executed if the corresponding move does not create any
symmetry. Otherwise,REDUCTION2(C) is executed if it does
not create any symmetry, andREDUCTION−1(C) is executed
otherwise. We prove that, starting from any rigid configuration,
the move resulting from this algorithm achieves a new rigid
configuration. The only exception is configurationCs such
that W Cs

min = (0, 1, 1, 2). In fact, from such a configura-
tion, any single move would generate either a symmetric
configuration or configurationCs itself. In this case, we first
perform REDUCTION1(C

s), obtaining the symmetric config-
uration C′ such thatW C′

min = (0, 0, 2, 2), then we perform
REDUCTION1(C

′) which leads toC∗. In any case, in the entire
algorithm, only one robot is allowed to move at one time.
Moreover, we prove thatREDUCTIONi(C), i ∈ {0, 1, 2} strictly
decreases the supermin. Finally, from some configurationC,
applying REDUCTION−1(C) may lead to a configurationC′

with a greater supermin configuration view. However, we
prove that, in this case, the next move will reach a new config-
uration whose supermin configuration view is strictly smaller
that the one ofC. Since, clearly,C∗ is the rigid configuration
with smallest supermin configuration view, this will prove that
executing Algorithm ALIGN eventually achievesC∗.

We now formally define the four rules mentioned above.
Let C be any exclusive rigid configuration and letW C

min =
(q0, q1, . . . , qk−1) be its unique supermin configuration view.
Let ℓ1 be the smallest integer such thatqℓ1 > 0 and
let ℓ2 be the second smallest integer such thatqℓ2 >

0. That is, if 0 < ℓ1 and ℓ1 + 1 < ℓ2, W C
min =

(0, . . . , 0, qℓ1 , 0, . . . , 0, qℓ2 , qℓ2+1, . . . , qk−1). Let a, b, c andd

be the nodes between the intervalsq0 andqk−1, qℓ1 andqℓ1+1,
qℓ2 andqℓ2+1, andqk−2 andqk−1 respectively.

• REDUCTION 0(C): The robot ata moves to its neighbor
in the intervalq0 > 0. Then, the new configuration is
(q0 − 1, q1, . . . , qk−2, qk−1 + 1);

• REDUCTION 1(C): The robot atb moves to its neighbor
in the intervalqℓ1 > 0. Then, the new configuration is
(q0, q1, . . . , qℓ1−1, qℓ1 − 1, qℓ1+1 + 1, . . . , qk−1);

• REDUCTION 2(C): The robot atc moves to its neighbor

in the intervalqℓ2 > 0. Then, the new configuration is
(q0, q1, . . . , qℓ2−1, qℓ2 − 1, qℓ2+1 + 1, . . . , qk−1);

• REDUCTION −1(C): The robot atd moves to its neighbor
in the intervalqk−1 > 0. Then, the new configuration is
(q0, q1, . . . , qk−2 + 1, qk−1 − 1).

It is clear from the definition of the rules that, from an exclu-
sive rigid configuration, only one robot can execute a move and
that the reached configuration is still exclusive. Note that, in
the case that the configuration isCs (i.e.W Cs

min = (0, 1, 1, 2)),
any REDUCTION move creates a symmetric configuration.
In this case, we performREDUCTION1 which produces the
symmetric configurationC such thatW C

min = (0, 0, 2, 2).
After this, REDUCTION1 is again performed and it leads to
C∗ (i.e W C∗

min = (0, 0, 1, 3)). As C is symmetric, the supermin
configuration view can be obtained by reading the ring in both
possible direction (i.e.W C

min = (W C
min)). However robotb

is unequivocally identified as the single robot on the axis
of symmetry andREDUCTION1 corresponds to movingb in
an arbitrary direction. In any caseC∗ is achieved. In next
subsection, we formally prove thatC∗ is eventually achieved
and that, except for the case ofCs, the obtained intermediate
configurations are always rigid.

B. Correctness

We consider a rigid exclusive configurationC with unique
(by Lemma 1) supermin configuration viewW C

min =
(q0, q1, . . . , qk−1). We prove that, when one of the four rules
is applied by Algorithm ALIGN, the resulting configuration
C′ is still rigid. Moreover, in the case of the first three rules,
the supermin configuration view ofC′ is strictly smaller than
W C

min. In the case ofREDUCTION−1, we must consider the
next move to strictly reduce the supermin configuration view.

Since W C
min = (q0, q1, . . . , qk−1) is the supermin con-

figuration view, no interval has length smaller thanq0 and
q1 ≤ qk−1. Therefore, ifq0 > 0 and REDUCTION0 is applied,
the view(q0 − 1, q1, . . . , qk−2, qk−1 +1) is clearly the unique
supermin configuration view of the resulting configurationC′.
By Lemma 1, we obtain:

Lemma 2 ([22]): The configurationC′ obtained by apply-
ing REDUCTION0 in the rigid exclusive configurationC with
q0 > 0 is rigid. Moreover,W C

min > W C′

min (in lexicographical
order).

Algorithm ALIGN performsREDUCTION0 until it reaches
a rigid exclusive configurationC with supermin configuration
view W C

min = (0, q1, . . . , qk−1) (i.e., q0 = 0). In this case,
REDUCTION0 cannot be applied as otherwise there would
be a collision. ThereforeREDUCTION1, REDUCTION2 or
REDUCTION−1 are applied depending on the configurationC.
In particular,REDUCTION1 is applied if it does not create any
symmetry. Ifq0 = 0, by performingREDUCTION1 we cannot
obtain a symmetry except for some particular configurations
given in the next lemma.

Lemma 3:Let C be a rigid exclusive configuration with
supermin configuration viewW C

min = (q0, q1, . . . , qk−1),
q0 = 0 and ℓ1 > 0 be the smallest integer such thatqℓ1 > 0.
Then, the configurationC′ resulting from the application of



REDUCTION1 is aperiodic. Moreover,C′ is symmetric if and
only if the following conditions hold:

qi = 0, for eachi = 0, 1, . . . , ℓ1 − 1; (1)

qℓ1 = 1; (2)

qℓ1+1 + 1 = qk−1; (3)

the sequenceqℓ1+2, qℓ1+3, . . . qk−2 is symmetric. (4)

Proof: By rigidity of C, only one robot can perform
REDUCTION1 and then C′ is well defined and admits a
view W = (q′0, q

′
1, . . . , q

′
k−1) = (q0, q1, . . . , qℓ1 − 1, qℓ1+1 +

1, . . . , qk−1).
If C′ is periodic, by Property 1, there must existj > 0

such that(q′j mod k, q
′
(j+1) mod k

, . . . , q′(j+ℓ1) mod k
) = (q0, q1,

. . . , qℓ1 − 1) = (0, . . . , 0, qℓ1 − 1). Note that, asq′ℓ1+1 >

0, then j > ℓ1 + 1. Hence, in that case, the view
(qj , . . . , qk−1, q0, . . . , qj−1) is a view ofC strictly smaller than
W C

min, a contradiction. Therefore,C′ is aperiodic.
If equations 1–4 hold, then C′ has a view W =

(0, . . . , 0, qℓ1+1 + 1, qℓ1+2, qℓ1+3, . . . qk−2, qℓ1+1 + 1) which
is symmetric with the axis of symmetry passing through
the middle of the sequencesq0, q1, . . . , qℓ1 − 1 and
qℓ1+2, qℓ1+3, . . . qk−2.

We now show the only if statement. Note that Condition
1 is always satisfied by the hypothesis thatq0 = 0 and the
definition of ℓ1. Let us assume thatC′ is symmetric and
let W = (q0, q1, . . . , qℓ1−1, qℓ1 − 1, qℓ1+1 + 1, . . . , qk−1) =
(0, 0, . . . , 0, qℓ1 − 1, qℓ1+1 + 1, . . . , qk−1).

For the sake of contradiction, let us assume thatqℓ1 > 1.
Then, becauseqℓ1 ≤ qk−1 and qℓ1 − 1 > 0, it is easy to
check thatW is the supermin configuration view ofC′, and
W < W C

min. Hence,q0 must be the unique supermin ofC′

since otherwise, a supermin interval different fromq0 would
have been a supermin interval inC, contradicting the fact that
W C

min is the supermin minimum view ofC. By Lemma 1, since
|IC′ | = 1 andC′ is symmetric, the (unique) axis of symmetry
of W passes through the edge corresponding toq0. However,
since qℓ1 − 1 < qk−1, C′ is not symmetric, a contradiction.
It follows that qℓ1 = 1. In this case, the firstℓ1 elements
of W are 0 and, as before, this sequence is unique and the
possible axis of symmetry ofC′ passes through the middle of
such unique sequence. This implies thatC′ is symmetric only if
qℓ1+1+1 = qk−1 and that the sequenceqℓ1+2, qℓ1+3, . . . , qk−2

is symmetric.
It follows that if W C

min does not satisfy Conditions1–4, the
application ofREDUCTION1 results in a rigid configuration.
Otherwise, if applyingREDUCTION2 does not create any
symmetry, it is applied. The following Lemma 4 shows that
actually, when Conditions1–4 hold, REDUCTION2 can create
symmetries only for some specific configurations.

For the next lemmata, we need further notation. Apattern
is the set of possible configurations admitting a view that
fulfills some rules defined by a string of integer numbers
and the following symbols. Letx be an integer number:x∗

denotes the repetition ofx zero or more times;x+ denotes the
repetition ofx one or more times;x{n} denotes the repetition

of x exactlyn times. Given a configurationC we say thatC
belongs to a patternP if it has a viewW that matches the
rules of the pattern. We denote it byW ∈ P . As an example,
the configurationC with a view (0, 0, 0, 1, . . . , 1, 2, 2, . . . , 2)
belongs to(0{3}, 1∗, 2+).

Lemma 4:Let C be a rigid exclusive configuration with
supermin configuration viewW C

min = (q0, q1, . . . , qk−1), with
3 ≤ k < n − 2, q0 = 0, ℓ1 be the smallest integer such that
qℓ1 > 0 and Conditions1–4 hold. Then, the configurationC′

resulting from the application ofREDUCTION2 is aperiodic.
Moreover,C′ is symmetric if and only if one of the following
conditions hold:

W C
min ∈ (0, 1, 1+, 2); (5)

W C
min ∈ (0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1). (6)

It follows that we can useREDUCTION2 in all the configu-
rations which satisfy Conditions1–4 but not Conditions5–6.
The next lemma shows that in the remaining cases we can use
REDUCTION−1, the resulting configuration being rigid.

Lemma 5:Let C be a rigid exclusive config-
uration with supermin configuration view W C

min.
If either W C

min ∈ (0, 1, 1, 1+, 2) or W C
min ∈

(0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1), then, the configuration
C′ resulting from the application ofREDUCTION−1 is rigid.

By the above lemma, it follows that if we apply
REDUCTION−1 to a supermin configuration viewW C

min ful-
filling Condition 5 or 6, the only case in which the obtained
configuration can be symmetric is whenW C

min = (0, 1, 1, 2).
The correctness of ALIGN then follows from next theorem.

Theorem 1:Let 3 ≤ k < n−2 robots standing in ann-node
ring and forming a rigid exclusive configuration, Algorithm
ALIGN eventually terminates achieving configurationC∗ and
all intermediate configurations obtained are exclusive and
either rigid or such that the supermin view is(0, 0, 2, 2).

Proof: As ALIGN starts from a rigid exclusive con-
figuration, by Lemma 1, there exists a unique supermin in
the initial configuration. Hence exactly one robot moves at
one time. Moreover, all the performed movements reduce an
interval which is strictly greater than 0 and hence the obtained
configuration is exclusive.

First, we assume that the initial configuration is notCs.
In a current rigid exclusive configurationC with unique

supermin configuration viewW C
min = (q0, q1, . . . , qk−1), we

prove that the next move is unique and result in a rigid
exclusive configuration.

If q0 > 0, the algorithm performsREDUCTION0. This
involves a unique robot and the resulting configuration is rigid
by Lemma 2.

If q0 = 0, a unique robot executesREDUCTION1 if the
resulting configuration is rigid. Otherwise, by Lemma 3,
W C

min satisfies Conditions1–4. In that case, a unique robot
executesREDUCTION2 if the resulting configuration is rigid.
Otherwise, by Lemma 4,W C

min ∈ (0, 1, 1+, 2) or W C
min ∈

(0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1). In this case, a unique
robot executesREDUCTION−1. By Lemma 5, as the initial



configuration is different fromCs, this results in a rigid
configuration.

Since configurationC∗ is the configuration with the smallest
supermin configuration view, it only remains to show that each
movement reduces the supermin. Hence, in the following, we
show that each movement (or each two movements) of ALIGN

reduces the supermin.
Let us denote byW = (q′0, q

′
1, . . . , q

′
k−1) the view of the

configurationC′ obtained after the movement.W is the view
of C′ at the same node and in the same direction asW C

min.
Let W C′

min be the supermin configuration view ofC′. If the
movement isREDUCTION0, then q′0 = q0 − 1 and hence
W C′

min ≤ W < W C
min. If the movement isREDUCTIONi, i ∈

{1, 2} thenW = (q0, q1, . . . , qℓi − 1, qℓi+1 + 1, . . . , qk−1) <
W C

min and thereforeW C′

min ≤ W < W C
min. If the movement

is REDUCTION−1 it follows that W C
min ∈ (0, 1, 1, 1+, 2)

or W C
min ∈ (0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1). In the lat-

ter case,W ∈ (0{ℓ1+1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−3}, 1) and
henceW C′

min ≤ W < W C
min. In the former case,W ∈

(0, 1, 1, 1∗, 2, 1) and henceW > W C
min. However, C′ is

rigid and does not satisfy Conditions1–4 and hence the
movement performed inC′ is REDUCTION1. Therefore, the
configurationC′′ obtained after performingREDUCTION1 on
C′ is W ′′ ∈ (0, 0, 2, 1∗, 2, 1). Therefore,W ′′ < W C

min.
Let us now assume that the initial configuration isCs.

Note that, this is the only initial configuration withk = 4
and n = 8 which is rigid and different fromC∗. From Cs,
REDUCTION1 is performed and the symmetric configurationC
such thatW C

min = (0, 0, 2, 2) is achieved. The next movement
performed is againREDUCTION1 which leads toC∗ (i.e.
W C∗

min = (0, 0, 1, 3)) independently from the supermin view.
In fact, even if configurationC is symmetric, robotb is
unequivocally identified as the single robot on the axis of
symmetry andREDUCTION1 corresponds to movingb in an
arbitrary direction. In any caseC∗ is achieved.

IV. CLEARING A RING

In this section, we study the exclusive perpetual graph
searching problem of ann-node ring (n ≥ 3) by a team of
1 ≤ k ≤ n robots in the discrete CORDA model, starting from
any rigid exclusive configuration. In the case,5 ≤ k < n− 3
andn ≥ 10 (or n > 10 if k = 5), we propose an algorithm
that makes use of Algorithm ALIGN presented in previous
section. We then propose a specific algorithm for the case
k = n − 3 and n ≥ 10. On the other hand, we show that
for k ∈ {1, 2, 3, n− 2, n − 1} andn > 3, or for 2 < n ≤ 9
and k < n, there is no algorithm that solves the problem,
even if the initial configuration is given. The casesk = 4 and
(k = 5, n = 10) are left as open problems.

A. Perpetual exclusive graph searching

Given an-node graphG where all edges arecontaminated,
the graph searching problem consists in coordinating a team
of robots to eventuallyclear all edges. The robots occupy the
nodes ofG and a robot can move along an edge from its
current position to a neighboring node. An edge iscleared

by a robot when it traverses it or if both its ends are
simultaneously occupied by some robots. However, a clear
edge is instantaneouslyrecontaminatedif there is a path from
one of its end to the end of a contaminated edge and no node
of this path is occupied by some robot. This variant of graph
searching is classically referred asmixed graph searching[27].
Motivated by physical constraints and following [17], we
moreover impose theexclusivity constraint, i.e., a node can
be occupied by at most one robot.

A search strategyusing 1 ≤ k ≤ n robots consists of a
set ofk nodes, theinitial positions, and a sequence of moves
of the robots, sliding the robots along the edges to empty
neighbors, that eventually clear all edges. For instance, there
is no search strategy that clears an-node ring using one robot.
On the other hand, a possible strategy using two robots is the
following: first place two robots at adjacent nodesu and v,
then slide the robot atu along the empty nodes of the ring
until it reaches the other neighborw of v.

In this section, we consider the graph searching problem in
n-node rings in the discrete CORDA model. More precisely,
we aim at designing algorithms that allow robots to clear a
n-node ring starting from any rigid exclusive configuration.
As our algorithms ensure that all met configurations are rigid
and exclusive, and as the robots are oblivious of the cleared
edges, the resulting strategies clear the ringperpetually, i.e.,
the whole ring is cleared infinitely often. Moreover, we study
the exclusive perpetual exploration. Perpetual graph searching
and perpetual exploration are not equivalent. For instance,
one robot always moving clockwise will perpetually explorea
ring without clearing it. On the other hand, the above search
strategy using two robots perpetually clears a ring (one robot
is at v and the other one alternate its move fromu to w and
then fromw to u) but does not perpetually explore it since
the robot atv never moves. The algorithms we propose in the
sequel both perpetually explore and clear the rings.

B. Impossibility results

In this section, we show that fork ∈ {1, 2, 3, n−2, n−1} or
for n ≤ 9, no algorithm in the discrete CORDA model allows
to clear ann-node graph usingk robots. For these results we
do not assume that the initial configurations are rigid, thatis
the impossibility results hold on a stronger model. We start
with a simple result.

Lemma 6:For anyn > 2 and for any exclusive configura-
tion C, there is no algorithm that solves the exclusive perpetual
graph searching problem in an-node ring usingn− 1 robots
starting fromC.
Let us consider the case of two robots in a ring with at least
three nodes. Two nodesu andv of ann-node ring are called
diametral if either n is even and there are two shortest paths
betweenu andv; or n is odd and the length of the two paths
from u to v differ by one. We say that two robots occupy a
diametral configuration if they occupy two diametral nodes.

We show that any algorithm for perpetual searching with
two robots needs to reach a configuration where the two robots
occupy two diametral nodes. Then, we show that when the two



robots reach occupy two diametral nodes they cannot break
the symmetry and hence they cannot search the ring. The next
theorem follows.

Theorem 2:For anyn > 2 and for any initial configuration
C, there is no algorithm that solves the exclusive perpetual
graph searching problem in an-node ring usingk ≤ 2 robots
starting fromC.

Let us now consider the case of three robots in a ring
with at least four nodes. For ease of presentation, we give
identifiers to the robots. Of course, the robots are anonymous
in the sense that they are not aware of these identifiers and
that no algorithm for searching the ring can make use of them.
However, the adversarial scheduler will use them. Hence, let us
call the three robots byA,B andC. At any steps, we denote
by dists(X,Y ) the distance (i.e., the number of consecutive
edges) between the nodes occupied by robotsX andY at this
step (if no ambiguity, the subscript will be omitted). LetCc be
the configuration where the3 robots occupy three consecutive
nodes. Given any algorithmA for perpetually clearing a ring
with 3 robots, we say that a configurationC is bad if, in
this configuration,dist(A,B) ≤ dist(B,C) and there exists
a robot such that, if this robot executesA in configuration
C, then the configuration reached after its move is such that
dist(A,B) > dist(B,C).

In what follows, we show that any algorithm for perpetually
clearing a ring with3 robots must always avoid the configura-
tion Cc. Then, we show that such an algorithm cannot avoid to
reach a bad configuration. Finally, we show that from any bad
configuration, it is possible to schedule the three robots such
that either they reach the configurationCc, or (1) each robot
is scheduled at least once; and (2) this reaches a configuration
such thatdist(A,B) ≤ dist(B,C) andB has been adjacent
to C in the meantime; and (3) if the new configuration is not
Cc, then from this new configuration,A will reach another bad
configuration beforeB is adjacent toC.

Since any algorithm for perpetually clear the ring must
ensure thatB is infinitely many times adjacent toC, this
proves that such an algorithm cannot exist.

Theorem 3:For anyn > 3 and for any initial configuration
C, there is no algorithm that solves the exclusive perpetual
graph searching problem in an-node ring using3 robots
starting fromC.

By using similar argument as Theorem 2 the next theorem
can be shown.

Theorem 4:For any n > 2 and for any exclusive initial
configurationC, there is no algorithm that solves the exclusive
perpetual graph searching problem in an-node ring usingn−2
robots starting fromC.

The next theorem is proven by an exhaustive study of the
possible configurations.

Theorem 5:For any2 ≤ k < n ≤ 9 and for any initial
configurationC, there is no algorithm that solves the exclusive
perpetual graph searching problem in an-node usingk robots
starting fromC.

single empty node

single robot

sequence of empty nodes

sequence of adjacent robots

f) a) b)

e) d) c)

Fig. 1. Second phase of the RING SEARCH algorithm. The arrows close to
the robots indicate the robot that is moving and its direction.

C. AlgorithmRING SEARCH

In this section, we give an algorithm, called Algorithm
RING SEARCH, to search a ring ofn ≥ 10 nodes with
5 ≤ k < n− 3 robots (except forn = 10 andk = 5) starting
from any rigid configuration.

Algorithm RING SEARCH works in two phases. In the first
phase, Algorithm ALIGN is executed until one configuration
in the set of configurationsA (described below and that
containsC∗) is reached. Then, the robots execute the algorithm
illustrated in Fig. 1. The assumption of initial rigidity ensures
that, in the entire algorithm, only one robot is allowed to move
at one time. Moreover, the set of configurations in the two
phases are disjoint and hence the robots can always distinguish
which phase is performing.

We denote asA the set of the following configurations:

A-a: Those withk − 2 adjacent robots and two adjacent
robots separated by one empty node from the firstk− 2
(Fig. 1a).

A-b: Those withk − 2 adjacent robots, one robot separated
by an empty node from the firstk−2, and another robot
not adjacent to any other one (Fig. 1b).

A-c: Those withk−2 adjacent robots, one robot separated by
one empty node from the firstk − 2, and another robot
separated by two empty nodes from the firstk − 2 on
the other side of the first robot. (Fig. 1c).

A-d: Those withk − 3 adjacent robots, two adjacent robots
separated by one empty node from the firstk−3 on one
side, and another robot separated by two empty nodes
from the firstk − 3 on the other side (Fig. 1d).

A-e: Those withk − 3 adjacent robots, two adjacent robots
separated by one empty node from the firstk−3 on one
side, and another robot separated by one empty node
from the firstk − 3 on the other side (Fig. 1e).

A-f: Asymmetric configurations withk − 1 adjacent robots
and one single robot (Fig. 1f).



Note that the configurationC∗ belongs to the setA-f.
The algorithm perpetually cycles among configurationsA-

a — A-e as depicted in Fig. 1. The next theorem shows that
it perpetually clears the ring.

Theorem 6:Starting from any exclusive and rigid config-
uration, Algorithm RING SEARCH solves both the perpetual
exclusive graph searching and exploration problems usingk

robots in anyn-node ring,n ≥ 10 and 5 ≤ k < n − 3 (but
for n = 10 andk = 5).

Proof: By Theorem 1, Algorithm ALIGN eventually
achieves configurationC∗ ∈ A-f. If the configuration is in
A-f, let us denote asr the single robot and byr′ the robot on
the border of the sequence ofk−1 robots which is the closest
to r. Note that, as the initial configuration is assumed to be
rigid, then we can always distinguish robotr′. The algorithm
movesr′ towards the only direction allowed. The obtained
configuration is eitherA-a orA-b.

In the following, we show that if a configuration is in any
of the configurations inA, the algorithm perpetually cycles
among them in the sequence (A-a, A-b, A-c, A-d, A-e).
Hence the algorithm never goes back to a configuration in
A-f and without loss of generality, we can assume that the
first configuration is of typeA-a.

In this case, we callS the sequence ofk−2 adjacent robots
andr andr′ the robot at distance 3 and 2 fromS, respectively.
The algorithm identifies robotr in a configuration inA-a. The
view read byr is (q0, q1, . . . , qk−1) = (0, 1, 0, 0, . . . , 0, qk−1),
where qk−1 > 2. In a configuration of typeA-a, the edges
which are searched are the internal edges ofS and the edge
betweenr andr′. The algorithm first searches the edges in the
sequence of empty nodes. To this aim, it moves robotr towards
the direction opposite tor′. Note that as the configuration is
rigid, only r can read such a configuration.

The configuration obtained is of typeA-b where the distance
between the two single robots is 2. In particular, robotr can
read the configuration in two directions, depending on the size
of the its adjacent intervals.

In this way, r searched the edge where it passed through.
The algorithm keeps on movingr in the same direction
until it reaches a configuration of typeA-c, in this way the
configuration is stillA-b and all the edges betweenr and r′

where r passed through are searched. Note that, the robots
are always able to identify the correct direction thanks to
the position of robotr′. More precisely, robotr can read the
configuration in two directions, depending on the size of theits
adjacent intervals. If it reads in clockwise order with respect
to Fig. 1, then the configuration read is(q0, q1, . . . , qk−1) =
(q0, 0, 0, . . . , 0, 1, qk−1), whereq0 > 2 and qk−1 > 0 and r

has to move towardsq0. Otherwise, the configuration read is
(q0, q1, . . . , qk−1) = (q0, 1, 0, 0, . . . , 0, qk−1), whereq0 > 0
andqk−1 > 2 andr has to move towardsqk−1.

When the configuration is of typeA-c, the only edges which
are not searched are the two edges betweenr′ andS and the
three edges betweenr andS. Let r′′ be the robot on the border
of S which is the closest tor′. If the configuration is of type
A-c, the algorithm moves robotr′′ towardsr′, searching the

two edges betweenr′ andS\{r′′}. The obtained configuration
is of typeA-d, where the only edges which are not searched
are those betweenr and S. Therefore, the algorithm moves
r towardsS obtaining first a configuration of typeA-e and
again a configuration of typeA-a. Note that, in all the above
configuration, it is always possible to distinguish robotsr,
r′ and r′′. Moreover, the direction of the movements can be
identified by the robots thanks to the position of robotsr, r′

and r′′ themselves. Summarizing, the algorithm perpetually
cycles among configurationsA-a –A-e.

D. Clearing ann-node ring usingn− 3 robots

In this section, we propose a specific algorithm to clear any
n-node ring,n ≥ 10 using n − 3 robots. Together with the
previous algorithm and the impossibility results, this closes all
the cases, but forn = 10 andk = 5.

In any exclusive configuration withk = n−3 robots, all the
nodes of the rings but three are occupied. In other words, the
ring is made of at most three sequences of adjacent occupied
nodes. We denote byA, B and C the number of nodes in
such three sequences. If two empty nodes are adjacent, the
corresponding sequence between them has size0. Note that,
as the configuration is rigid, such three sequences are all
different and then, we can assume w.l.o.g. thatA < B < C.
In the following, we denote a configuration as(A,B,C). We
call final configurations the three configurations:(0, 2, k− 2),
(0, 3, k− 3), and(1, 2, k− 3). Note that, sincek = n− 3 ≥ 7,
the final configurations are well defined and distinguishable,
that isB is always strictly smaller thanC. Our algorithm is
denoted as NMINUSTHREE. and it works in two phases: In the
first phase, it creates a final configuration and in the second
one it performs the perpetual searching.

The first phase is performed if the configuration is not final
and it is accomplished by performing the following rules in
the priority given by the following ordering.

R1.1: If A > 0, move towardsC the robot on the border
of A which is closer toC;

R1.2: If B = 1, move towardsB the robot on the border
of C which is closer toB;

R1.3: If B > 3, move towardsC the robot on the border
of B which is closer toC.

Rule R1.1 is executed forA steps untilA = 0. Afterwards,
either RuleR1.2 or Rule R1.3 is executed. IfA = 0 and
B = 1, thenC = k − 1. It follows that, after one step of
Rule R1.2, the final configuration(0, 2, k − 2) is achieved. If
A = 0 and B > 3, then the configuration is(0, B, k − B)
and the final configuration(0, 3, k−3) is achieved afterB−3
steps or RuleR1.3. If A = 0 and eitherB = 2 or B = 3, the
configuration is final. The following lemma follows.

Lemma 7:The first phase of the algorithm eventually
achieves a final configuration ifn ≥ 10 andk = n− 3.
The second phase of the algorithm performs the searching. It
starts from any final configuration and performs the following
rules.

R2.1: If (A,B,C) = (0, 2, k − 2), move towardsB the
robot on the border ofC which is closer toB;



R2.2: If (A,B,C) = (0, 3, k − 3), move towardsA the
robot on the border ofB which is closer toA;

R2.3: If (A,B,C) = (1, 2, k − 3), move the robot ofA
towardsC.

The next theorem states the correctness of the algorithm.
Theorem 7:Starting from any exclusive and rigid config-

uration, Algorithm NMINUSTHREE solves both the perpetual
exclusive graph searching and exploration problems usingn−3
robots in anyn-node ring,n ≥ 10.

V. GATHERING IN A RING

In this section, we devise a strategy to accomplish the
gathering task on a ring under the discrete CORDA model.
The problem requires the robots to reach a common node and
remain in there. Hence, more than one robot must be allowed
to occupy a node, i.e. amultiplicity occurs. We assume that
the robots have thelocal multiplicity detection capability. This
is necessary as proven in [19].

In accordance to the other tasks previously shown, we make
use of procedure ALIGN in order to achieve configurationC∗

starting from any (exclusive) rigid configuration on rings of
n > k + 2 nodes andk > 2 robots. In fact, any configuration
with n = 2, n = k + 1, or n = k + 2 nodes is symmetric.
Hence, the next algorithm provides a full characterizationof
rigid configurations where the gathering can be accomplished.
Before providing the algorithm, we need some more notation.

A configuration is said to be of typeC∗ if it is composed
by an ordered sequence ofj − 2 intervals of length0, one
interval of length1 and one interval of lengthn− j− 1, with
3 ≤ j ≤ k. Consequently, also the nodes of the ring can be
considered ordered according to the intervals’ order. Hence,
the first two nodes of the sequence will constitute interval
q0 = 0 in the current configuration. Clearly,C∗ is a C∗-type
configuration.

Rule CONTRACTION allows to move any robot occupying
the first node of aC∗-type configuration towards the second
one. Possibly, such nodes can be occupied by many robots.

From C∗-type configurations, the algorithm simply applies
CONTRACTION until only two nodes are occupied. Note that,
at each intermediate step, the current configuration is always
a C∗-type, and the algorithm allows to move the robot(s) from
the first node of the current intervalq0 towards the second one.
Eventually, the number of intervals of length0 is reduced by
one. This is repeated until only two nodes at distance2 remain
occupied. Note that, in such a configuration,k − 1 robots
are gathered on the same node and the other occupied node
contains a single robot. From this configuration the robots
can distinguish which is the node occupied by a single robot
by using the local multiplicity detection. Therefore, onlythe
single robot is allowed to move towards the other occupied
node until joining it, while robots composing the multiplicity
do not move. We can now state the next theorem.

Theorem 8:There exists an algorithm performing the gath-
ering of k > 2 robots on rings ofn > k + 2 nodes when the
initial configuration is exclusive and rigid, and the robotsare
empowered with the local multiplicity detection.

VI. CONCLUSION

In this work, we provided a unified strategy for solving
three tasks in the discrete CORDA model on ring topologies
when the initial configuration is rigid. Namely we solved the
exclusive perpetual search, the exclusive perpetual exploration
and the gathering with local multiplicity detection capability.
Moreover, the given algorithms solve some open problems and
the impossibility results provided for the exclusive perpetual
search problem fully characterize any initial configuration.
Our work opens two main research direction: use the ALIGN

algorithm to solve other problems in rigid configurations and
devise similar algorithms to handle symmetric or periodic
configurations.
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