
HAL Id: hal-00845536
https://hal.science/hal-00845536v1

Submitted on 17 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maintaining Balanced Trees For Structured Distributed
Streaming Systems

Frédéric Giroire, Remigiusz Modrzejewski, Nicolas Nisse, Stéphane Pérennes

To cite this version:
Frédéric Giroire, Remigiusz Modrzejewski, Nicolas Nisse, Stéphane Pérennes. Maintaining Balanced
Trees For Structured Distributed Streaming Systems. 20th Colloquium on Structural Information
and Communication Complexity (SIROCCO), Jul 2013, Ischia, Italy. pp.177-188, �10.1007/978-3-319-
03578-9_15�. �hal-00845536�

https://hal.science/hal-00845536v1
https://hal.archives-ouvertes.fr

Maintaining Balanced Trees For Structured
Distributed Streaming Systems ?

F. Giroire, R. Modrzejewski, N. Nisse, and S. Pérennes

COATI, joint project I3S (CNRS & UNS) and INRIA, Sophia Antipolis, France.
{frederic.giroire, remigiusz.modrzejewski, stephane.perennes, nicolas.nisse} @inria.fr

Abstract. In this paper, we propose and analyze a simple localized
algorithm to balance a tree. The motivation comes from live distributed
streaming systems in which a source diffuses a content to peers via a tree,
a node forwarding the data to its children. Such systems are subject
to a high churn, peers frequently joining and leaving the system. It is
thus crucial to be able to repair the diffusion tree to allow an efficient
data distribution. In particular, due to bandwidth limitations, an efficient
diffusion tree must ensure that node degrees are bounded. Moreover,
to minimize the delay of the streaming, the depth of the diffusion tree
must also be controlled. We propose here a simple distributed repair
algorithm in which each node carries out local operations based on its
degree and on the subtree sizes of its children. In a synchronous setting,
we first prove that starting from any n-node tree our process converges
to a balanced tree in O(n2) turns. We then describe a more restrictive
model, adding a small extra information to each node, under which we
adopt our algorithm to converge in Θ(n logn) turns. We then exhibit by
simulation that the convergence is much faster (logarithmic number of
turns in average) for a random tree.

Keywords: Distributed algorithms, tree balancing, live streaming, peer-to-peer.

1 Introduction

Trees are inherent structures for data dissemination in general and particularly
in peer-to-peer live streaming networks. Fundamentally, from the perspective
of a peer, each atomic piece of content has to be received from some source
and forwarded towards some receivers. Moreover, most of the actual streaming
mechanisms ensure that a piece of information is not transmitted again to a
peer that already possesses it. Therefore, this implies that dissemination of a
single fragment defines a tree structure. Even in unstructured networks, whose
main characteristic is lack of defined structure, many systems look into perpet-
uating such underlying trees, e.g. the second incarnation of Coolstreaming [7] or
PRIME [9].

? The research leading to these results has received funding from the European Project
FP7 EULER, ANR CEDRE, ANR AGAPE, Associated Team AlDyNet, project
ECOS-Sud Chile and région PACA.

2 F. Giroire, R. Modrzejewski, N. Nisse, and S. Pérennes

Unsurprisingly, early efforts into designing peer-to-peer video streaming con-
centrated on defining tree-based structures for data dissemination. These have
been quickly deemed inadequate, due to fragility and unused bandwidth at the
leaves of the tree. One possible fix to these weaknesses was introduced in Split-
Stream [3]. The proposed system maintains multiple concurrent trees to tolerate
failures, and internal nodes in a tree are leaf nodes in all other trees to opti-
mize bandwidth. The construction of intertwined trees can be simplified by a
randomized process, as proposed in Chunkyspread [11], leading to a streaming
algorithm performing better over a range of scenarios.

As found in [7], node churn is the main difficulty for live streaming networks,
especially those trying to preserve structure. On the other hand, in [12] au-
thors embrace change. Their stochastic optimization approach relies on constant
random creating and breaking of relationships. To ensure network connectivity,
nodes are said to keep open connections with hundreds of potential neighbours.
Another approach, displayed in [8], is churn-resiliency by maintaining redun-
dancy within the network structure. Although concentrating on a different field,
authors of [10] face a similar to our own problem of maintaining balanced trees,
needed for connecting wireless sensors. However, their solution is periodical re-
building the whole tree from scratch. Our solution aims at minimizing the dis-
turbance of nodes, whose ancestors were not affected by recent failures, as well
as minimizing the redundancy in the network.

The analysis of these systems focus on the feasibility, construction time and
properties of the established overlay network, see for example [3, 11] and [4] for
a theoretical analysis. But these works usually abstract over the issue of tree
maintenance. Generally, in these works, when some elements (nodes or links)
of the networks fail, the nodes disconnected from the root execute the same
procedure as for initial connection. To the best of our knowledge, there are no
theoretical analysis on the efficiency of tree maintenance in streaming systems,
reliability is estimated by simulations or experiments as in [3].

In this paper, we tackle this issue by designing an efficient maintenance
scheme for trees. Our distributed algorithm ensures that the tree recovers fast
to a “good shape” after one or multiple failures occur. We give analytic upper
bounds of the convergence time. To the best of our knowledge, this is the first
theoretical analysis of a repair process for live streaming systems. While the
O(n2) worst case bound seems high, simulations shown in Section 5 suggest that
the average case is closer to O(log n), which is lower than the conceivable time
of rebuilding a tree from scratch.

The problem setting is as follows. A single source provides live media to some
nodes in the network. This source is the single reliable node of the network, all
other peers may be subject to failure. Each node may relay the content to further
nodes. Due to limited bandwidth, both source and any other node can provide
media to a limited number k ≥ 2 of nodes. The network is organized into a logical
tree, rooted at the source of media. If node x forwards the stream towards node
y, then x is the parent of y in the logical tree. Note that the delay between
broadcasting a piece of media by the source and receiving by a peer is given by

Maintaining Balanced Trees For Structured Distributed Streaming Systems 3

its distance from the root in the logical tree. Hence our goal is to minimize the
tree depth, while following degree constraints.

As shown in [7], networks of this kind experience high rate of node joins
and leaves. Leaves can be both graceful, where a node informs about imminent
departure and network rearranges itself before it stops providing to the children,
or abrupt (e.g. due to connection or hardware failure). In this work, we assume
a reconnection process: when a node leaves, its children reattach to its parent.
This can be done locally if each node stores the address of its grandfather in
the tree. Note that this process is performed independently of the bandwidth
constraint, hence after multiple failures, a node may become the parent of many
nodes. The case of concurrent failures of father and grandfather can be handled
by reattaching to the root of the tree. Other more sophisticated reconnection
processes have been proposed, see for example [6].

This process can leave the tree in a state where either the bandwidth con-
straints are violated (the degree of a node is larger than k) or the tree depth
is not optimal. Thus, we propose a distributed balancing process, where based
on information about its degree and the subtree sizes of its children, a node
may perform a local operation at each turn. We show that this balancing pro-
cess, starting from any tree, converges to a balanced tree and we evaluate the
convergence time.

Related Work. Construction of spanning trees has been studied in the context
of self-stabilizing algorithms. Herault et al. propose in [6] a new analytic model
for large scale systems. They assume that any pair of processes can communi-
cate directly, under condition of knowing receiver’s identifier, what is the case
in Internet Protocol. They additionally assume a discovery service and a failure
detection service. Under this model they propose and prove correctness of an
algorithm constructing a spanning tree over a set of processes. Similar assump-
tions have been used by Caron et al. in [2] to construct a distributed prefix tree
and by Bosilca et al. in [1] to construct a binomial graph (Chord-like) overlay.

In this paper we assume the results of these earlier works: nodes can reliably
communicate, form connections and detect failures. We do not analyze these
operations at message level. Furthermore, we analyze the overlay assuming it
is already a spanning tree. However, it may have an arbitrary shape, e.g. be a
path or a star (all nodes connected directly to the root). This can be regarded as
maintaining the tree after connection or failure of an arbitrary number of nodes.

Our results. In Section 2, we provide a formal definition of the problem and
propose a distributed algorithm for the balancing process. The process works in
a synchronous setting. At each turn, all nodes are sequentially scheduled by an
adversary and must execute the process. In Section 3, we show that the balancing
process always succeeds in O(n2) turns. Then, in Section 4, we study a restricted
version of the algorithm in which a node performs an operation only when the
subtrees of its children are balanced. In this case, we succeeded in obtaining a
tight bound of Θ(n log n) on the number of turns for the worst tree. Finally, we
show that the convergence is in fact a lot faster in average for a random tree
and takes a logarithmic number of turns.

4 F. Giroire, R. Modrzejewski, N. Nisse, and S. Pérennes

Due to space limitations, only intuitions of some proofs are presented here.
The full proofs can be found in [5].

2 Problem and Balancing Process

In this section, we present the main definitions and settings used throughout the
paper, then we present our algorithm and prove some simple properties of it.

2.1 Notations

This section is devoted to some basic notations.
Let n ∈ N∗. Let T = (V,E) be a n-node tree rooted in r ∈ V . Let v ∈ V

be any node. The subtree Tv rooted at v is the subtree consisting of v and all its
descendants. In other words, if v = r, then Tv = T and, otherwise, let e be the
edge between v and its parent, Tv is the subtree of T \e = (V,E \{e}) containing
v. Let nv = |V (Tv)|.

Let k ≥ 2 be an integer. A node v ∈ V (T) is underloaded if it has at most
k−1 children and at least one of these children is not a leaf. v is said overloaded
if it has at least k+ 1 children. Finally, a node v with k children is imbalanced if
there are two children x and y of v such that |nx − ny| > 1. A node is balanced
if it is neither underloaded, nor overloaded nor imbalanced. Note that a leaf is
always balanced.

A tree is a k-ary tree if it has no nodes that are underloaded or overloaded,
i.e., all nodes have at most k children and a node with < k children has only
leaf-children. A rooted k-ary tree T is k-balanced if, for each node v ∈ V (T), the
sizes of the subtrees rooted in the children of v differ by at most one. In other
words, a rooted tree is k-balanced if and only if all its nodes are balanced.

As formalized by the next claim, k-balanced trees are good for our live stream-
ing purpose since such overlay networks (k being small compared with n) ensure
a low dissemination delay while preserving bandwidth constraints.

Claim 1 Let T be a n-node rooted tree. If T is k-balanced, then each node of T
is at distance at most blogk nc from r.

2.2 Distributed Model and Problem

Nodes are autonomous entities running the same algorithm. Each node v has a
local memory where it stores the size nv of its subtree, the size of the subtrees of
its children and the size of the subtrees of its grand-children, i.e., for any child
x of v and for any child y of x, v knows nx and ny.

Computations performed by the nodes are based only on the local knowledge,
i.e., the information present in the local memory and that concerns only nodes
at distance at most 2. We consider a synchronous setting. That is, the time
is slotted in turns. At each turn, any node may run the algorithm based on
its knowledge and, depending on the computation, may do one of the following

Maintaining Balanced Trees For Structured Distributed Streaming Systems 5

v

v1

a

v

a v1

(a) pull(a)

v

v1 vk vk+1

v

v1 vk

vk+1

(b) push(vk+1, vk)

v

v1

a

vk

b

v

v1

b

vk

a

(c) swap(a, b)

v

v1

a

vk

v

v1 vk

a

(d) swap(a, ∅)

Fig. 1: Operations performed by node v in the balancing process

operations. In the algorithm we present, each operation done by a node v consists
of rewiring at most two edges at distance at most 2 from v. More precisely, let
v1, vk and vk+1 be children of v, a be a child of v1 and b be a child of vk (if any).
The node v may

– replace the edge {v1, a} by the edge {v, a}. A grand-child a of v then be-
comes a child of v. This operation is denoted by pull(a) and illustrated in
Figure 1a;

– replace the edge {v, vk+1} by the edge {vk, vk+1}. A child vk+1 of v then
becomes a child of another child vk of v. This operation is denoted by push
(vk+1,vk), see Figure 1b;

– replace the edges {v1, a} and {vk, b} by the edges {v1, b} and {vk, a}. The
children v1 and vk of v exchange two of their own children a and b. This
operation is denoted by swap(a,b) and an example is given in Figure 1c.
Here, a or b may not exist, in which case, one of v1 and vk “wins” a new
child while the other one “looses” a child. This case is illustrated in Figure 1d.

In all cases, the local memory of the at most k2 + 1, including the parent
of v, nodes that are concerned are updated. Note that each of these operations
may be done using a constant number of messages of size O(log n).

In this setting, at every turn, all nodes sequentially run the algorithm. In
order to consider the worst case scenario, the order in which all nodes are sched-
uled during one turn is given by an adversary. The algorithm must ensure that
after a finite number of turns, the resulting tree is k-balanced. We are interested
in time complexity of the worst case scenario of the repair. That is, the per-
formance of the algorithm is measured by the maximum number of turns after
which the tree becomes k-balanced, starting from any n-node tree.

6 F. Giroire, R. Modrzejewski, N. Nisse, and S. Pérennes

2.3 The Balancing Process

In this section, we present our algorithm, called balancing process. We prove
some basic properties of it. In particular, while the tree is not k-balanced, the
balancing process ensures that at least one node performs an operation. In the
next sections, we prove that the balancing process actually allows to reach a
k-balanced tree after a finite number of steps.

At each turn, a node v executes the algorithm described on Figure 2. To sum-

Algorithm executed by a node v in a tree T . If v is not a leaf, let (v1, v2, · · · , vd) be
the d ≥ 1 children of v ordered by subtree-size, i.e., nv1 ≥ nv2 ≥ · · · ≥ nvd .

1. If v is underloaded (then d < k), let a be a child of v1 with biggest subtree size.
Then node v executes pull(a). // That is, a becomes a child of v.

2. Else if v is overloaded (then d > k ≥ 2), then node v executes push(vk+1, vk).
// That is, vk+1 becomes a child of vk.

3. Else if v is imbalanced (then d = k) and if v1 and vk are not overloaded, let a and
b be two children of v1 and vk respectively such that |nv1−na+nb−(nvk−nb+na)|
is minimum (a (resp. b) may be not defined, i.e., na = 0 (resp., nb = 0), if v1
(resp v2) is underloaded).
Then node v execute swap(a, b). // That is, a and b exchange their parent.

Fig. 2: Balancing Process

marize, an underloaded node does a pull, an overloaded node does a push and
an imbalanced node (whose children are not overloaded) does a swap operation.
Note that a swap operation may exchange a subtree with an empty subtree,
but cannot create an overloaded node. Intuitively, the children affected by push
and pull are chosen to get probably the least imbalance (reduce the biggest or
merge the two small). It is important to emphasise that the balancing process
requires no memory of the past operations.

Note that if the tree if k-balanced, no operation are performed, and that, if
the tree is not, at least one operation is performed.

Claim 2 If T is not k-balanced, and all nodes execute the balancing process,
then at least one node will do an operation.

In the next section, we prove that, starting from any tree, the number of op-
erations done by the nodes executing the balancing process is bounded. Together
with the previous claim, it allows to prove

Theorem 1. Starting from any tree T where each node executes the balancing
process, after a finite number of steps, T eventually becomes k-balanced.

Before proving the above result in next Section, we give a simple lower bound
on the number of turns required by the Balancing Process. A star is a rooted
tree where any non root-node is a leaf.

Maintaining Balanced Trees For Structured Distributed Streaming Systems 7

Lemma 1. If the initial tree is a n-node star, then at least Ω(n) turns are needed
before the resulting tree is k-balanced.

3 Worst case analysis

In this Section we obtain an upper bound of O(n2) turns needed to balance
the tree. We prove it using a potential function, whose initial value is bounded,
integral and positive, may rise in a bounded number of turns and, otherwise,
strictly decreases. For clarity of presentation we assume we want to obtain a
2-balanced tree. The proofs can be extended to larger k. Due to lack of space,
most of them are only sketched here and can be found in [5].

Lemma 2. Starting from any n-node rooted tree T , after having executed the
Balancing Process during O(n) turns, no node will do a push operation anymore.

This lemma is proved by tracking a potential function Φ(T) =
∑

v∈V (T) max

{0, dv − 3}, where dv is the number of children of node v. Note that any node
who started a turn with degree at least three, will perform a push and receive at
least one new child, thus finishing the turn with degree not greater than in the
beginning. Thus, no operation can increase Φ. In each turn, either Φ decreases,
or a node with no overloaded ancestors performs its last push. As the value of
Φ is bounded by the number of nodes, the lemma holds.

Let Q be the sum over all nodes u ∈ T of the distance between u and the
root.

Lemma 3. Starting from any n-node rooted tree T , there are at most O(n2) dis-
tinct (not necessarily consecutive) turns with a pull operation. More precisely,
the sum of the sizes of the subtrees that are pulled during the whole process does
not exceed n2.

Proof. First, by Lemma 2, there are no push operations after O(n) turns. Note
that a swap operation does not change Q. Moreover, a pull operation of a
subtree Tv makes Q decrease by nv. Since Q =

∑
u∈V (T) d(u, r) ≤ n2, the sum

of the sizes of the subtrees that are pulled during the whole process does not
exceed n2. ut

Potential function. To prove the main result of this section, we define a po-
tential function and show that: (1) the initial value of the potential function is
bounded; (2) its value may raise due to pull operations, but in a limited number
of turns and by a bounded amount; (3) a swap operation may not increase its
value; (4) if no push nor pull operation are done, there exists at least one node
doing a swap operation, strictly decreasing the potential function.

We tried simple potential functions first. However, they led either to an
unbounded number of turns with non-decreasing value, or to a larger upper
bound. For example, it would be natural to define the potential of a node as
the difference between its subtree sizes. For this potential function, (1) (2) and

8 F. Giroire, R. Modrzejewski, N. Nisse, and S. Pérennes

(3) are true, but, unfortunately, for some trees the potential function does not
decrease during a turn. This function can be patched so that each operation
makes the potential decrease: multiplying the potential of a node by its distance
to the root. However, the potential in this case can reach O(n3).

The potential function giving the O(n2) bound is defined as follows. Recall
that we consider a n-node tree T rooted in r such that all nodes have at most two
children. Let E0 = n and, for any 0 ≤ i ≤ dlog(n+ 1)e, let Ei = 2Ei+1 + 1. Note
that (Ei)i≤dlog(n+1)e is strictly decreasing, and 0 < Edlog(n+1)e ≤ 1. Intuitively,
Ei is the mean-size of a subtree rooted in a node at distance i from the root in
a balanced tree with n nodes.

Let Ki be the set of nodes of T at distance exactly i ≥ 0 from the root and
|Ki| = ki, and, for any 0 ≤ i ≤ dlog(n + 1)e, let mi = 2i − ki. Intuitively, mi

represents the number of nodes, at distance i from the root, missing compared
to a complete binary tree.

For any v ∈ V (T) at distance 0 ≤ i ≤ dlog(n+ 1)e from the root, the default
of v, denoted by µ(v), equals nv−dEie if nv > Ei and bEic−nv otherwise. Note
that µ(v) ≥ 0 since nv is an integer.

Let the potential at distance i from r , 0 ≤ i ≤ dlog(n+ 1)e, be Pi = mi ·
bEic+

∑
u∈Ki

µ(u). Finally, let us define the potential P =
∑

0≤i≤dlog(n+1)e Pi.

Since µ(u) ≤ n for any u ∈ V (T), and
∑

0≤i≤dlog(n+1)emi + ki ≤ 2n, then

P(T) = O(n2).

Lemma 4. For any n-node rooted tree T , a pull operation of a subtree Tv may
increase the potential P by at most 2nv.

This lemma is proved by case analysis. Let u be the node performing the
operation, x its unique child and v the node being pulled. We show that the
default increases by at most nv for x, bEj−1c − bEjc for nodes below it whose
distance j from the root is j ≤ dlog(n+ 1)e and by at most nw for every node
whose distance from root is dlog(n+ 1)e+1. Calculating the new potential, using
all those inequations, the lemma holds.

Let v be a node at distance dlog(n+ 1)e > i ≥ 0 from the root r of T . v
is called i-median if it has one or two children a and b and na > Ei+1 > nb
(possibly v has exactly one child and nb = 0).

Lemma 5. For any n-node rooted tree T , a swap operation executed by any
node v does not increase the potential P. Moreover, if v is (i − 1)-median then
P strictly decreases by at least one.

This lemma is proved by calculating the new potential, in all the possible
cases of relative sizes of the children and Ei before and after the operation.

Let v be a node at distance 0 ≤ i < dlog(n+ 1)e − 1 from the root r of T . v
is called i-switchable if it has one or two children a and b and na > Ei+1 > nb

(possibly v has only exactly child, and nb = 0), na − nb ≥ 2 and none of its
ancestors can execute a swap operation. Note that, if a node is i-switchable,
then it is i-median.

Maintaining Balanced Trees For Structured Distributed Streaming Systems 9

Lemma 6. Let T be a tree where no push nor pull operation is possible. If
a node v is i-switchable, then either v can do a swap operation, or 0 ≤ i <
dlog(n+ 1)e − 2 and it has a (i+ 1)-switchable child.

To prove this lemma we first take care of nodes at distance dlog(n+ 1)e
from r, showing that in all the possible cases of its children sizes a swap can
be performed. Then, for nodes at smaller distances to r, if an i-switchable node
can not perform a swap, then in all possible cases one of its children is (i+ 1)-
switchable.

Lemma 7. At each turn when no pull nor push operations are done, if the
tree is not balanced, then there is a i-switchable node, 0 ≤ i < dlog(n+ 1)e − 1.

To prove this lemma, we define a Si-situation: for any j < i, all nodes at
distance j from the root cannot do a swap operation, and for any j ≤ i, kj = 2j

and, f or any node v at distance i from the root, nv ∈ {dEie, bEic}. If the tree
is in a Sdlog(n+1)e−1-situation, then it is balanced. Let j be the smallest integer
such that T is not in a Sj-situation. Then there is a node at distance j − 1 from
the root, which in all possible cases is (j − 1)-switchable.

Theorem 2. Starting from any n-node rooted tree, the balancing process reaches
a 2-balanced tree in O(n2) turns.

Proof. By Lemma 2, after O(n) turns, no push operations are executed anymore
and all nodes have at most two children. From then, there may have only pull
or swap operations. Moreover, by Claim 2, there is at least one operation per
turn while T is not balanced. From Lemma 3, there are at most O(n2) turns
with a pull operation. Once no push operations are executed anymore, from
Lemmata 3, 4 and 5, potential P can increase by at most O(n2) in total (over all
turns). Moreover, by Lemma 5, if a i-median node executes a swap operation,
the potential P strictly decreases by at least one.

By Lemma 7, at each turn when no pull nor push operations are done, there
is an i-switchable node, 0 ≤ i < dlog(n + 1)e − 1. Thus, by Lemma 6, at each
such turn, there is an i-switchable that can execute a swap operation. Since
a i-switchable node is i-median (0 ≤ i < dlog(n + 1)e − 1), by Lemma 5, the
potential P strictly decreases by at least one.

The result then follows from the fact that P ≤ n2. ut

4 Adding an extra global knowledge to the nodes

In this section, we assume an extra global knowledge: each node knows whether
it has a descendant that is not balanced. This extra information is updated after
each operation. Then, our algorithm is modified by adding the condition that
any node v executing the balancing process can do a pull or swap operation
only if all its descendants are balanced. Adding this property allows to prove
better upper bounds on the number of steps, by avoiding conflict between an
operation performed by a node and an operation performed by one of its not

10 F. Giroire, R. Modrzejewski, N. Nisse, and S. Pérennes

balanced descendant. We moreover prove that this upper bound for our algo-
rithm is asymptotically tight, reached when input tree is a path. The approach
presented in this section is specific for k = 2. I.e., the objective of the Balancing
Process is to reach a 2-balanced tree.

First, we define a function f used to bound the number of turns needed to
balance a tree consisting of two balanced subtrees and a common ancestor. Let
f : N× N→ N be the function defined recursively as follows.

∀a ≥ 0, f(a, a) = 0
∀a ≥ 1, f(a, a− 1) = 0
∀a ≥ 2, f(a, 0) = 1 + f(

⌊
a−1
2

⌋
, 0)

∀a > 2,∀1 ≤ b < a− 1, f(a, b) = 1 + max
(
f(
⌈
a−1
2

⌉
,
⌊
b−1
2

⌋
), f(

⌊
a−1
2

⌋
,
⌈
b−1
2

⌉
)
)

Lemma 8. For any a ≥ 0, a ≥ b ≥ 0, f(a, b) ≤ max{0, log2 a}.

This lemma is proved by a simple induction on a. Now, we give a function
bounding the number of turns needed to balance any tree of a given size. Let
g : N→ N be the function defined recursively as follows.

∀n ∈ {0, 1}, g(n) = 0
∀n > 1, g(n) = maxa≥b≥0,a+b=n−1(max{g(a), g(b)}+ f(a, b))

Using a simple induction on n, we obtain that:

Lemma 9. For any n ≥ 0, g(n) ≤ max{0, n log2 n}.

We now state our main results:

Theorem 3. Starting from any n-node rooted tree, the balancing process with
global knowledge reaches a 2-balanced tree in O(n log n) turns.

Note first that Lemma 2 still holds with the new balancing process, that is:
no node is overloaded after O(n) turns. Let now x be a node with all descendants
balanced. Let y and z be the children of x. We show by induction on ny that x
becomes balanced in at most f(ny, nz) turns. Then, by induction on n, we show
that T can be balanced in at most g(n) turns.

Next theorem shows that there are trees starting from which the balancing
process actually uses a number of turns of the order of the above upper bound.

Theorem 4. Starting from an n-node path rooted in one of its ends, the balanc-
ing process with global knowledge reaches a 2-balanced tree in Ω(n log n) turns.

The proof is done by an induction on the tree size.

5 Simulations

In the previous sections we obtained upper and lower bounds for the maximum
number of turns needed to balance a tree of a given size. A significant gap

Maintaining Balanced Trees For Structured Distributed Streaming Systems 11

0 500 1000 1500 2000 2500

N

0

5

10

15

20

25

30

35

40

T
u

rn
s

Fig. 3: Balancing a random tree

between those bounds raises the question: which bound is closer to what happens
for random instances? We investigate the performance of the algorithm running
an implementation under a discrete event simulation. Scheduling of nodes within
a turn is given by a simple adversary algorithm. First, it detects which nodes can
perform no operation. It schedules them to move first, to ensure that they do
not perform operations enabled by operations of other nodes. Then, it schedules
the remaining nodes in a random order.

The process starts in a random tree. It is obtained by assigning random
weights to a complete graph and building a minimum weight spanning tree over
it. Figure 3 displays the number of turns it took to balance trees of progressing
sizes. For each size the numbers are aggregated over 10000 different starting
trees. The solid line marks the average, dotted lines the minimum and maximum
numbers of turns and error bars show the standard deviation.

What can be seen from this figure, is that the number of turns spent to
balance a random tree progresses logarithmically in regard to the tree size. This
holds true both for average and the worst cases encountered. This is significantly
less even than the lower bound on maximum time. This is because that comes
from the particular case of star as the starting tree, which is randomly obtained
with probability 1

n! and did not occur in our experiments for bigger values of n.

6 Conclusions and future research

We have proposed a distributed tree balancing algorithm and shown following
properties. The algorithm does stop only when the tree is balanced. After at
most Ω(n) turns there are no overloaded nodes in the tree, what corresponds to
a broadcast tree where every node receives content. This bound is reached when
the starting tree is a star. Balancing process after there are no overloaded nodes
lasts at most O(n2) turns. With the additional restriction that a node acts only

12 F. Giroire, R. Modrzejewski, N. Nisse, and S. Pérennes

if all of its descendants are balanced, the number of turns to balance any tree is
O(n log n). This bound is reached when the starting tree is a path.

An obvious, but probably hard, open problem is closing the gap between
the O(n2) upper bound and the Ω(n) lower bound on balancing time. Another
possibility is examination of the algorithm’s average behaviour, which as hinted
by simulations should yield O(log n) bound on balancing time.

The algorithm itself can be extended to handle well the case of trees that
are not regular. Furthermore, in order to approach a practical system, moving
to multiple trees would be highly beneficial. Allowing the algorithm to stop with
more imbalance, where children are allowed to differ by a given threshold instead
of one, could lead to a faster convergence.

References

1. G. Bosilca, C. Coti, T. Herault, P. Lemarinier, and J. Dongarra. Constructing
resiliant communication infrastructure for runtime environments. In International
Conference in Parallel Computing, 2009.

2. E. Caron, A. Datta, F. Petit, and C. Tedeschi. Self-stabilization in tree-structured
peer-to-peer service discovery systems. In IEEE Symposium on Reliable Distributed
Systems, pages 207–216, 2008.

3. M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Split-
Stream: high-bandwidth multicast in cooperative environments. In Proceedings of
the nineteenth ACM symposium on Operating systems principles, page 313, 2003.

4. G. Dan, V. Fodor, and I. Chatzidrossos. On the performance of multiple-tree-based
peer-to-peer live streaming. In 26th IEEE International Conference on Computer
Communications, pages 2556–2560, 2007.

5. F. Giroire, M. Remigiusz, N. Nisse, and S. Pérennes. Maintaining Balanced Trees
For Structured Distributed Streaming Systems. Research Report RR-8309, INRIA,
May 2013.

6. T. Herault, P. Lemarinier, O. Peres, L. Pilard, and J. Beauquier. A model for large
scale self-stabilization. In IEEE Parallel and Distributed Processing Symposium,
pages 1–10, 2007.

7. B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang. Inside the new
coolstreaming: Principles, measurements and performance implications. In 27th
IEEE International Conference on Computer Communications, 2008.

8. Z. Li, G. Xie, K. Hwang, and Z. Li. Churn-resilient protocol for massive data
dissemination in p2p networks. IEEE Parallel and Distributed Systems, 22(8):1342–
1349, 2011.

9. N. Magharei and R. Rejaie. Prime: Peer-to-peer receiver-driven mesh-based
streaming. IEEE/ACM Transactions on Networking, 17(4):1052–1065, 2009.

10. M.-S. Pan, C.-H. Tsai, and Y.-C. Tseng. The orphan problem in zigbee wireless
networks. IEEE Transactions on Mobile Computing, 8(11):1573–1584, 2009.

11. V. Venkataraman, K. Yoshida, and P. Francis. Chunkyspread: Heterogeneous un-
structured tree-based peer-to-peer multicast. In 14th IEEE International Confer-
ence on Network Protocols, pages 2–11, 2006.

12. S. Zhang, Z. Shao, and M. Chen. Optimal distributed p2p streaming under node
degree bounds. In 18th IEEE International Conference on Network Protocols, pages
253–262, 2010.

