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Connected Surveillance Game?
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Abstract. The surveillance game [Fomin et al., 2012] models the prob-
lem of web-page prefetching as a pursuit evasion game played on a graph.
This two-player game is played turn-by-turn. The first player, called the
observer, can mark a fixed amount of vertices at each turn. The sec-
ond one controls a surfer that stands at vertices of the graph and can
slide along edges. The surfer starts at some initially marked vertex of
the graph, her objective is to reach an unmarked node The surveillance
number sn(G) of a graph G is the minimum amount of nodes that the
observer has to mark at each turn ensuring it wins against any surfer
in G. Fomin et al. also defined the connected surveillance game where
the marked nodes must always induce a connected subgraph. They ask
if there is a constant c > 0 such that csn(G)

sn(G)
≤ c for any graph G. It has

been shown that there are graphs G for which csn(G) = sn(G) + 1. In
this paper, we investigate this question.
We present a family of graphs G such that csn(G) > sn(G)+1. Moreover,
we prove that csn(G) ≤ sn(G)

√
n for any n-node graph G. While the

gap between these bounds remains huge, it seems difficult to reduce
it. We then define the online surveillance game where the observer has
no a priori knowledge of the graph topology and discovers it little-by-
little. Unfortunately, we show that no algorithm for solving the online
surveillance game has competitive ratio better than Ω(∆).
Keywords: Surveillance game, Cops and robber games, Cost of connec-
tivity, Online strategy, Competitive ratio, Prefetching.

1 Introduction

In this paper, we study two variants of the surveillance game introduced in [1].
This two-player game involves one Player moving a mobile agent, called surfer,
along the edges of a graph, while a second Player, called observer, marks the
vertices of the graph. The surfer wins if it manages to reach an unmarked vertex.
The observer wins otherwise.

Surveillance game. More formally, let G = (V,E) be an undirected simple
n-node graph, v0 ∈ V , and k ∈ N∗. Initially, the surfer stands at v0 which is
marked and all other nodes are not marked. Then, turn-by-turn, the observer
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first marks k unmarked vertices and then the surfer may move to a neighbor
of her current position. Once a node has been marked, it remains marked.The
surfer wins if, at some step, she reaches an unmarked vertex; and the observer
wins otherwise. Note that the game lasts at most dnk e turns. When the game is
played on a directed graph, the surfer has to follow arcs when it moves [1]. A
k-strategy for the observer from v0, or simply a k-strategy from v0, is a function
σ : V ×2V → 2V that assigns the set σ(v,M) ⊆ V of vertices, |σ(v,M)| ≤ k, that
the observer should mark in the configuration (v,M), where M ⊆ V , v0 ∈ M ,
is the set of already marked vertices and v ∈ M is the current position of the
surfer. We emphasis that σ depends implicitly on the graph G, i.e., it is based
on the full knowledge of G. A k-strategy from v0 is winning if it allows the
observer to win whatever be the sequence of moves of the surfer starting in v0.
The surveillance number of a graph G with initial node v0, denoted by sn(G, v0),
is the smallest k such that there exists a winning k-strategy starting from v0.

Let us define some notations used in the paper. Let ∆ be the maximum degree
of the nodes in G and, for any v ∈ V , let N(v) be the set of neighbors of v. More
generally, the neighborhood N(F ) of a set F ⊆ V is the subset of vertices of V
which have a neighbor in F . Moreover, we define the closed neighborhood of a
set F as N [F ] = N(F ) ∪ F .

As an example, let us consider the following basic strategy : let σB be the
strategy defined by σB(v,M) = N(v) \M for any M ⊆ V , v0 ∈ M , and v ∈
M . Intuitively, the basic strategy σB asks the observer to mark all unmarked
neighbors of the current position of the surfer. It is straightforward, and it was
already shown in [1], that σB is a winning strategy for any v0 ∈ V and it easily
implies that sn(G, v0) ≤ max{|N(v0)|, ∆− 1}.

Web-page prefetching, connected and online variants. The surveillance
game has been introduced because it models the web-page prefetching problem.
This problem can be stated as follows. A web-surfer is following the hyperlinks
in the digraph of the web. The web-browser aims at downloading the web-pages
before the web-surfer accesses it. The number of web-pages that the browser
may download before the web-surfer accesses another web-page is limited due to
bandwidth constraints. Therefore, designing efficient strategies for the surveil-
lance game would allow to preserve bandwidth while, at the same time, avoiding
the waiting time for the download of the web-page the web-surfer wants to access.

By nature of the web-page prefetching problem, in particular because of
the huge size of the web digraph, it is not realistic to assume that a strategy
may mark any node of the network, even nodes that are “far” from the current
position of the surfer. For this reason, [1] defines the connected variant of the
surveillance game. A strategy σ is said connected if σ(v,M) ∪ M induces a
connected subgraph of G for any M , v0 ∈ M ⊆ V (G). Note that the basic
strategy σB is connected. The connected surveillance number of a graph G with
initial node v0, denoted by csn(G, v0), is the smallest k such that there exists
a winning connected k-strategy starting from v0. By definition, csn(G, v0) ≥
sn(G, v0) for any graph G and v0 ∈ V (G). In [1], it is shown that there are
graphs G and v0 ∈ V (G) such that csn(G, v0) = sn(G, v0) + 1. Only the trivial
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upper bound csn(G, v0) ≤ ∆ sn(G, v0) is known and a natural question is how
big the gap between csn(G, v0) and sn(G, v0) may be [1]. This paper provides a
partial answer to this question.

Still the connected surveillance game seems unrealistic since the web-browser
cannot be asked to have the full knowledge of the web digraph. For this reason,
we define the online surveillance game. In this game, the observer discovers the
considered graph while marking its nodes. That is, initially, the observer only
knows the starting node v0 and its neighbors. After the observer has marked
the subset M of nodes, it knows M and the vertices that have a neighbor in
M and the next set of vertices to be marked depends only on this knowledge,
i.e., the nodes at distance at least two from M are unknown. In other words, an
online strategy is based on the current position of the surfer, the set of already
marked nodes and knowing only the subgraph H of the marked nodes and their
neighbors (a more formal definition is postponed to Section 3). By definition, the
next nodes marked by such a strategy must be known, i.e., adjacent to an already
marked vertex. Therefore, an online strategy is connected. We are interested in
the competitive ratio of winning online strategies. The competitive ratio ρ(S) of

a winning online strategy S is defined as ρ(S) = maxG,v0∈V (G)
S(G,v0)
sn(G,v0)

, where

S(G, v0) denotes the maximum number of vertices marked by S in G at each
turn, when the surfer starts in v0. Note that, because any online winning strategy
S is connected, csn(G, v0) ≤ ρ(S) sn(G, v0) for any graph G and v0 ∈ V (G).

1.1 Related work

The surveillance game has mainly been studied in the computational complex-
ity point of view. It is shown that the problem of computing the surveillance
number is NP-hard in split graphs [1]. Moreover, deciding whether the surveil-
lance number is at most 2 is NP-hard in chordal graphs and deciding whether
the surveillance number is at most 4 is PSPACE-complete. Polynomial-time al-
gorithms that compute the surveillance number in trees and interval graphs
are designed in [1]. All previous results also hold for the connected surveil-
lance number. Finally, it is shown that, for any graph G and v0 ∈ V (G),

maxd |N [S]|−1
|S| e ≤ sn(G, v0) ≤ csn(G, v0) where the maximum is taken over every

subset S ⊆ V (G) inducing a connected subgraph with v0 ∈ S. Moreover, both
previous inequalities turn into an equality in case of trees. [1] asks for an example
where the inequalities are strict.

In the literature, there are mainly three types of prefetching: server based
hints prefetching [2–4], local prefetching [5] and proxy based prefetching [6]. In
local prefetching, the client has no aid from the server when deciding which
documents to prefetch. In the server based hints prefetching, the server can aid
the client to decide which pages to prefetch. Lastly, in the proxy based prefetch-
ing, a proxy that connects its clients with the server decides which pages to
prefetch. Moreover, some studies consider that the prefetching mechanism has
perfect knowledge of the web-surfer’s behaviour [7, 8]. In these studies, the ob-
jective is to minimize the waiting time of the web-surfer with a given bandwidth,
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by designing good prediction strategies for which pages to prefetch. In the con-
text of prefetching web-pages, the surveillance game is a model to study a local
prefetching scheme to guarantee that a websurfer never has to wait a web-page
to be downloaded, whilst minimizing the bandwidth necessary to achieve this.

1.2 Our results

In this paper, we study both the connected and online variants of the surveillance
game. First, we try to evaluate the gap between non-connected and connected
surveillance number of graphs. We give a new upper bound, independent from
the maximum degree, for the ratio csn / sn. More precisely, we show that, for
any n-node graph G and any v0 ∈ V (G), csn(G, v0) ≤ sn(G, v0)

√
n. Then, we

describe a family of graphs G such that csn(G, v0) = sn(G, v0) + 2. Note that,
contrary to the simple example that shows that connected and not connected
surveillance number may differ by one, a larger difference seems much more
difficult to obtain.

As mentioned above, the online variant of the surveillance game is a more
constraint version of the connected game. We prove that any online strategy has
competitive ratio at least Ω(∆). More formally, we describe a familly of trees
with constant surveillance number such that, for any online winning strategy,
there is a step when the strategy has to mark at least ∆

4 vertices.Unfortunately,
this shows that the best (up to constant ratio) online strategy is the basic one.

2 Cost of connectedness

In this section, we investigate the cost of the connectivity constraint. We first
prove the first non-trivial upper bound for the ratio csn / sn. More precisely,
we show that for any n-node graph G, csn(G, v0) ≤ sn(G, v0)

√
n. Then, we

improve the lower bound of [1]. That is, we show a family of graphs where
csn(G, v0) > sn(G, v0) + 1. Finally, we disprove a conjecture in [1].

2.1 Upper bound

In this section, we give the first non-trivial upper bound (independent from the
degree) of the cost of the connectivity in the surveillance game.

Theorem 1. Let G be any connected n-node graph and v0 ∈ V (G), then

csn(G, v0) ≤ sn(G, v0)
√
n.

Proof. sn(G, v0) = 1 if and only if G is a path with v0 as an end. In this case,
csn(G, v0) = sn(G, v0) and the result holds.

Let us assume that k = sn(G, v0) > 1. We describe a connected strategy σ
marking at most k

√
n nodes per turn. Let M0 = {v0} and let M t be the set of

vertices marked after t ≥ 1 turns. Assume moreover that M t induces a connected
graph of G containing v0. Finally, let vt be the vertex occupied by the surfer after
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turn t. The set σ(vt,M
t) of nodes marked by the observer at step t+1 is defined

as follows. If |V (G) \M t| ≤ k
√
n, then let σ(vt,M

t) = V (G) \M t. Otherwise,
let H ⊆ V (G)\M t such that |H| = k

√
n, H ∪M t induces a connected subgraph

and |H∩N(vt)| is maximum. Then, σ(vt,M
t) = H, i.e., the strategy marks k

√
n

new nodes in a connected way and, moreover, mark as many unmarked nodes as
possible among the neighbors of vt. In particular, if |N(vt) \M t| ≤ k

√
n, then

all neighbors of vt are marked after turn t+ 1.
By definition, σ is connected and marks at most k

√
n nodes per turn. We

need to show σ is winning.
For purpose of contradiction, let us assume that the surfer wins against σ by

following the path P = (v0, . . . , vt, vt+1). At its t + 1th turn, the surfer moves
from a marked vertex vt to an unmarked vertex vt+1.

Therefore, n > tk
√
n, otherwise the observer marking k

√
n nodes at each

turn would have already marked every vertex on the graph by the end of turn
t. Moreover, by definition of sigma, |N(vt) \M t| > k

√
n

Since, sn(G, v0) = k, let S be any k-winning (non necessarily connected)
strategy for the observer. Assume that the observer follows S against the surfer
following P \ {vt+1}. Since, S is winning, all vertices of N(vt) must be marked
after turn t, otherwise the surfer would win by moving to an unmarked neighbor
of vt. Therefore, since S can mark at most k vertices each turn, |N(vt)| ≤ kt.

Taking both inequalities, we have that k 2
√
n < |N(vt)| ≤ kt. Hence, 2

√
n < t.

Therefore, n > tk 2
√
n > nk, a contradiction. ut

2.2 Lower Bound

This section is devoted to proving the following theorem.

Theorem 2. There exists a family of graphs G and v0 ∈ V (G) such that

csn(G, v0) > sn(G, v0) + 1.

We use the following result proved in [1]. For any graph G = (V,E) and any
vertex v0 ∈ V , a k-strategy for G with initial vertex v0 is winning if and only if
it is winning against a surfer that is constrained to follow induced paths on G.
In other words, the walk of the surfer is contrained to be an induced path.

In the following theorem, by adding a path P = (v1, · · · , vr) between two
vertices u and v of G, we mean that the induced path P is added as an induced
subgraph of G and the edges {u, v1} and {vr, v} are added.

Let x, α, β and γ be four strictly positive integers satisfying the following:

(1) max{β, β
2

+ γ + 1} < α < min{β + γ + 1, 2γ + 2} (2) β < 2γ + 2

(3) 3x ≥ α+β+ 2γ+ 12 (4) x >
4

5
(α+β+γ) + 10 (5) 2α ≥ 73 +β+ 2γ.

For instance, x = 250, α = 146, β = γ = 73 satisfy all the above inequalities.
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For proving the main theorem in this section we mainly rely in the family of
graphs built in the following the procedure described below.

Let G = (V,E) be a graph with 10 isolated vertices {v0, w0, w1, w2, w
′
0, w

′
1, w

′
2,

s0, s1, s2}. Then, for all i ∈ {0, 1, 2} do the following:

1. 4x− 9 vertices of degree one are added and made adjacent to si;
2. 3x−2 vertices of degree one are added and made adjacent to wi, respectively

3x− 2 neighbors of degree one are added to w′i;
3. two disjoint paths Ai = (ai1, · · · , aiα) and A′i = (a′i1 , · · · , a′iα) are added

between v0 and si;
4. a path Bi = (bi1, · · · , biβ) is added between v0 and wi, and a path B′i =

(b′i1 , · · · , b′iβ) is added between v0 and w′i;

5. for any j ∈ {i, i + 1 mod 3} a path Ci,j = (ci,j1 , · · · , ci,jγ ) is added between

sj and wi, and a path C ′i,j = (c′i,j1 , · · · , c′i,jγ ) is added between sj and w′i;
6. for any 1 ≤ j ≤ α, 3x−1 vertices of degree one are added and made adjacent

to aij , respectively 3x− 1 neighbors of degree one are added to a′ij ;
7. for any 1 ≤ j ≤ β, 3x−1 vertices of degree one are added and made adjacent

to bij , respectively 3x− 1 neighbors of degree one are added to b′ij ;
8. for any 1 ≤ j ≤ γ, ` ∈ {i, i + 1 mod 3}, 3x − 1 vertices of degree one are

added and made adjacent to ci,`j , respectively 3x−1 neighbors of degree one

are added to c′i,`j .

The shape of G is depicted in Figure 1. G has (30 + 18(α + β) + 36γ)x− 29
vertices. For any i ∈ {0, 1, 2}, the node si has 4x − 3 neighbors, v0 has 12
neighbors, and any other non-leaf node has degree 3x+ 1.

Claim. [9] If max{β, β2 + γ + 1} < α < min{β + γ + 1, 2γ + 2} and β < 2γ + 2,
the unique (up to symmetries) minimum Steiner-tree for S = N [v0]∪{s0, s1, s2}
in G has 15 + α + β + 2γ vertices and consists of the vertices of the paths
A0, B1, C1,1, C1,2 and the vertices in S ∪ {w1}.

In Fig. 1, the scheme of a minimum Steiner-tree for S = N [v0] ∪ {s0, s1, s2}
is depicted with dashed lines.

For any i ∈ {0, 1, 2}, let Ai = N [v0] ∪ N [Ai] ∪ N [si] (resp., A′i = N [v0] ∪
N [A′i] ∪N [si]). Note that |Ai| = |A′i| = (3α+ 4)x+ 9 and that the Ai and Aj ,
i 6= j, pairwise intersect only in N [v0].

For any i ∈ {0, 1, 2}, let Bi = N [v0]∪N [Bi]∪N [wi]∪N [Ci,i]∪N [Ci,i+1 mod 3]∪
N [si]∪N [si+1 mod 3] and B′i is defined similarly. |Bi| = |B′i| = (3β+6γ+11)x+5.
Finally, for any i ∈ {0, 1, 2} and j ∈ {i, i+ 1 mod 3}, let Bi,j = N [v0]∪N [Bi]∪
N [wi] ∪N [Ci,j ] ∪N [sj ] and B′i,j = N [v0] ∪N [B′i] ∪N [w′i] ∪N [C ′i,j ] ∪N [sj ].

Lemma 1. For any i ∈ {0, 1, 2} and j ∈ {i, i+ 1 mod 3}, during its first step,
any winning (3x+ y)-strategy for G must mark at least

– x+ 8− y(α+ 1) nodes in Ai (resp., in A′i), and
– x+ 8− y(β + γ + 2) nodes in Bi,j (resp., in B′i,j), and
– 2x+ 4− y(β + 2γ + 3) nodes in Bi (resp., in B′i).
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v0

s0

w0

s1

w1

s2

w2α

α α

β

β

β

γ

γ

γ γ

γ

γ

Fig. 1. Graph Family Scheme. Here we show only one “layer” of the graph.

The proof can be found in [9].

Lemma 2. sn(G, v0) ≤ 3x.

Proof. To show that sn(G, v0) ≤ 3x, consider the following strategy for the ob-
server. For any i ∈ {0, 1, 2}, in the first step, it marks x−4 one-degree neighbots
of si and the 12 neighbors of v0. Then, at subsequent step, marks all unmarked
neighbors of the current position of the surfer. It is easy to see (see details in [9]),
by induction on the number of steps that, each time that the surfer arrives at a
new node, this node is marked and has at most 3x unmarked neighbors. ut

Lemma 3. csn(G, v0) > 3x+ 1.

Proof. For purpose of contradiction, let us assume that there is a winning con-
nected 3x + 1-strategy. Let F be the set of vertices marked by this strategy
during the first step. Clearly, N(v0) ⊆ F and |F | ≤ 3x+ 1.

For any 0 ≤ i ≤ 2, let fi = |F ∩N [si]| and let fmin = mini fi. Without loss
of generality, fmin = f0. We first show that fmin > 3.

By Lemma 1, for any i ∈ {0, 1, 2}, |F ∩ (Ai \ N [v0])| ≥ x − 5 − α and, for
any i ∈ {0, 2}, |F ∩ (Bi,0 \N [v0])| ≥ x − 6 − (β + γ) and |F ∩ (B′i,0 \N [v0])| ≥
x− 6− (β + γ). Therefore,

3x+ 1 ≥ |F ∩ (A0 ∪ A′0 ∪ A1 ∪ A2 ∪ B0,0 ∪ B2,0 ∪ B′0,0 ∪ B′2,0)|
≥ 12 + 4(x− 5− α) + 4(x− 6− (β + γ))− 5|F ∩N [s0]|
≥ 8x− 4(α+ β + γ)− 32− 5fmin

Hence, 5fmin ≥ 5x− 4(α+β+ γ)− 33, and fmin ≥ x− 4
5 (α+β+ γ)− 7 > 3

by the above inequality.
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Therefore, by definition of fmin, |F ∩ N [si]| ≥ 4 for any i ∈ {0, 1, 2}. By
connectivity of the strategy, si ∈ F ∩N [si] for any i ∈ {0, 1, 2}. Hence, F must
contain a subset of vertices inducing a subtree spanning S = N [v0]∪{s0, s1, s2}.
Let T be an inclusion-minimal subset of F that induces a subtree spanning S.
By Claim 2.2, |T | ≥ α+β+ 2γ+ 15. Let T ′ = T \ (N [v0]∪

⋃
0≤i≤2N [si]). Then,

|T ′| ≥ α + β + 2γ − 4. Moreover, because of the symmetries, we may assume
w.l.o.g., that T ′ ⊆

⋃
0≤i≤2(Ai ∪ Bi).

By Lemma 1 and because N(v0) ⊆ F , for any 0 ≤ i ≤ 2, |F ∩ (A′i ∪
B′i+1 mod 3)| ≥ x+8−(α+1)+2x+4−(β+2γ+3)−12 = 3x−(α+β+2γ)−4.
Hence, |T ′|+|F∩(A′i∪B′i+1 mod 3)| ≥ 3x−8. Let Wi = F \(A′i∪B′i+1 mod 3∪T ′).
Since |F | ≤ 3x+ 1, it follows that |Wi| ≤ 9.

Let fmax = maxi fi and assume w.l.o.g. that fmax = f2. Since
∑

0≤i≤2 fi ≤
|F \ T ′|, we get that f0 + f1 ≤ b 23 (5 + 3x− (α+ β + 2γ)c.

To conclude, |F∩B′0| = |N(v0)|+f0+f1+|W0| ≤ 21+b 23 (5+3x−(α+β+2γ)c.
On the other hand, Lemma 1 implies that |F ∩B′0| ≥ 2x+1−(β+2γ). Therefore,
22 + 2

3 (5 + 3x− (α+β+ 2γ) > 2x+ 1− (β+ 2γ) and it follows 73 > 2α−β−2γ.
This contradicts the inequalities. ut

Lemmas 2 and 3 are sufficient to prove Theorem 2. More precisely, it shows
that there exists a family of graphs G and v0 ∈ V (G) such that csn(G, v0) ≥
sn(G, v0) + 2. However, the family of graphs we described does not allow to
increase further the cost of connectivity. Indeed, csn(G, v0) ≤ 3x+ 2 [9].

To conclude this section, we answer negatively a question in [1]. We show that

there is a graph G such that sn(G, s) = k and maxS⊆V (G)d{ |N [S]|−1
|S| }e < k [9].

3 Online Surveillance Number

In this section, we study the online variant of the surveillance game motivated
by the web-page prefetching problem where the observer (the web-browser) dis-
covers new nodes through hyperlinks in already marked nodes. In this variant,
the observer does not know a priori the graph in which it is playing. That is,
initially, the observer only knows v0 and the identifiers of its neighbors. Then,
when a new node is marked, the observer discovers all its neighbors that are not
yet marked. Note that the degree of a node is not known before it is marked.

Another property of an online strategy that must be defined concerns the
moment when the observer discovers the unmarked neighbors of a node that it
has decided to mark. There are two natural models. Assume that the set M of
nodes have been marked and this is the turn of the observer, and let N(M) be
the set of nodes with a neighbor in M . Either it first chooses the k nodes that
will be marked among the set N(M)\M of the unmarked neighbors of the nodes
that were already marked and then the observer marks each of these k nodes and
discover their unknown neighbors simultaneously. Or, the observer first chooses
one node x in N(M) \M , marks it and discovers its unmarked neighbors, then
it chooses a new node to be marked in N(M ∪ {x}) \ (M ∪ {x}) and so on until
the observer finishes its turn after marking k nodes. We choose to consider the
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second model because it is less restricted, i.e., the observer has more power, and,
even in this case, our result is pessimistic since we show that the basic strategy
is the best one with respect to the competitive ratio.

Formal definition of online strategy. Now we are ready to formally define
an online strategy. Let k ≥ 1, let G = (V,E) be a graph, v0 ∈ V , and let G be
the set of subgraphs of G.

Given M ⊆ V be a subset of nodes inducing a connected subgraph containing
v0 in G. Let GM ∈ G be the subgraph of G known by the observer when M
is the set of marked nodes. That is, GM = (M ∪ N(M), EM ) where EM =
{(u, v) ∈ E | u ∈ M}. For any u, v ∈ N(M) \M , let us set u ∼M v if and
only if N(u) ∩M = N(v) ∩M . Let χM be the set of equivalent classes, called
modules, of N(M) \M with respect to ∼M . The intuition is that two nodes in
the same module of χM are known by the observer but cannot be distinguished.
For instance, χ{v0} = {N(v0)}.

A k-online strategy for the observer starting from v0 is a function σ : G ×
V × 2V ×{1, · · · , k} → 2V such that, for any subset M ⊆ V of nodes inducing a
connected subgraph containing v0 in G, for any v ∈ M , and for any 1 ≤ i ≤ k,
then σ(GM , v,M, i) ∈ χM . This means that, if M is the set of nodes already
marked and thus the observer only knows the subgraph GM , if v is the position
of the surfer and it remains k− i+ 1 nodes to be marked by the observer before
the surfer moves, then the observer will mark one node in σ(GM , v,M, i).

More precisely, we say that the observer follows the k-online strategy σ if the
game proceeds as follows. Let M = M0 be the set of marked nodes just after the
surfer has moved to v ∈M . Initially, M0 = {v0} and v = v0. Then, the strategy
proceeds sequentially in k steps for i = 1 to k. First, the observer marks an
arbitrary node x1 ∈ σ(GM0 , v,M0, 1). Let M1 = M0 ∪ {x1}. Sequentially, after
having marked 1 < i < k nodes at this turn, the observer marks one arbitrary
node xi+1 ∈ σ(GMi , v,M i, i+ 1) and M i+1 = M i ∪ {xi+1}. When the observer
has marked k nodes, that is after choosing xk ∈ σ(GMk−1 , v,Mk−1, k), it is the
turn of the surfer, when it may move to a node adjacent to its current position
and then a new turn for the observer starts. Note that because we are interested
in the worst case for the observer, each marked node xi ∈ σ(GMi−1 , v,M i−1, i)
is chosen by an adversary.

The online surveillance number of a graph G with initial node v0, denoted
by on(G, v0), is the smallest k such that there exists a winning k-online strategy
starting from v0. In other words, there is a winning k-online strategy σ starting
from v0 such that an observer following σ wins whatever be the trajectory of the
surfer and the choices done by the adversary at each step. Note that, since we
consider the worst scenario for the observer, we may assume that the surfer has
full knowledge of G.

Theorem 3. There exists an infinite family of rooted trees such that, for any T
with root v0 ∈ V (T ) in this family, sn(T, v0) = 2 and on(T, v0) = Ω(∆) where
∆ is the maximum degree of T .

Proof. We first define the family (Tk)k≥1 of rooted trees as follows.
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Fig. 2. Tree Tk described in the proof of Theorem 3.

Let k ≥ 4 be a power of two and let i = 2k and d = 2k

k .
Let us consider a path P = (v0, v1, . . . , vi−1) with i nodes Let B be a complete

binary tree of height h = 3k+1 and rooted at some vertex vi, i.e., B has 2h+1−1
vertices. Let w0 be any leaf of B. Finally, let Q = (w1, . . . , wk) be a path on k
nodes. Note that, P,B and Q depend on k.

The tree Tk is obtained from P,B and Q by adding an edge between vi−1
and vi, an edge between w0 and w1. Finally, for any 1 ≤ j ≤ k, let us add an
independent set, Sj , with d vertices and an edge between each vertex of Sj and
wj (i.e., each node in Sj is a leaf). Tk is then rooted in v0.

Let Q+ denote the union of vertices of Q and
⋃k
j=1 Sj . The maximum degree

∆ of Tk is reached by any node wj , 1 ≤ j < k, and ∆ = d+ 2 = 2k

k + 2.

Clearly, sn(Tk, v0) > 1. We show that sn(Tk, v0) = 2.
Consider the following (offline) strategy for the observer. At each turn j ≤ i,

the surfer marks the vertex vj and one unmarked vertex of Q+ that is closest
to the surfer. For each turn j > i and while the surfer does not occupy a node
in Q+ ∪ {w0}, the observer marks the neighbors of the current position of the
surfer if they are not already marked. Finally, if the surfer occupies a node in
Q+ ∪ {w0}, the observer marks two unmarked nodes of Q+ that are closest to
the surfer. It is easy to see, by induction on the number of steps that, each time
that the surfer arrives at a new node, this node is marked and has at most 2
unmarked neighbors. Hence, sn(Tk, v0) = 2.

Now it remains to show that on(Tk, v0) = Ω(∆). Let γ be any online strategy

for Tk and marking at most d
4 = 2k−2

k nodes per turn. We show that γ fails.
For this purpose, we model the fact that the observer does not know the

graph by “building” the tree during the game. More precisely, each time the
observer marks a node v, then the adversary may add new nodes adjacent to v
or decide that v is a leaf. Of course, the adversary must satisfy the constraint
that eventually the graph is Tk. Initially, the observer only knows v0 that has
one neighbor v1. Now, for any 1 ≤ j < i, when the observer marks the node vj of
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P , then the adversary “adds” a new node vj+1 adjacent to vj , i.e., the observer
discovers its single unmarked neighbor vj+1. Now, let v be any node of B. Recall
that h is the height of B. When the observer marks v, there are three cases to
be considered: if v is at distance at most h− 1 from vi, then the adversary adds
two new nodes adjacent to v; if v is at distance h from vi and not all nodes of B
have been marked then the adversary decides that v is a leaf; finally, if all nodes
of B have been marked (v is the last marked node of B, i.e., B is a complete
binary tree of height h), the adversary decides that v = w0 and add one new
neighbor w1 adjacent to it. Note that we can ensure that the last node of B to
be marked is at distance h of vi by connectivity of any online strategy.

Now, let consider the following execution of the game. During the first i steps,
the surfer goes from v0 to vi. Just after the surfer arrives in vi, the observer
has marked at most (di)/4 nodes and all nodes of P ∪ {vi} must be marked
since otherwise the surfer would have won. Therefore, at most i(d/4− 1) + 1 =
22k−2/k − 2k + 1 nodes of B are marked when it is the turn of the surfer at vi.
Since B has 2h+1 − 1 = 23k+2 − 1 nodes, at least one node of B is not marked.

From vi, the surfer always goes toward w0. Note that the observer may guess
this strategy but it does not know where is w0 while all nodes of B have not
been marked.

Then let 0 ≤ t ≤ h and let v′t ∈ V (B) be the position of the surfer at step i+t
and Bt the subtree of B rooted at v′t. Note that, at step i, v′0 = vi and B0 = B.
Let Btl and Btr be the subtrees of B rooted at the children of v′t. W.l.o.g., let us
assume that the number of marked nodes in Btl is at most the number of marked
nodes in Btr, when it is the turn of the surfer standing at v′t. Then, the surfer
moves to the root of Btl . That is, v′t+1 is the child of vt whose subtree contains
the minimum number of marked nodes.

Let mt be the number of marks in the subtree of B rooted at v′t when it
is the turn of the surfer at v′t. Since, at beginning of step i there are at most
22k−2/k−2k+1 nodes of B that are marked and k ≥ 4, m0 ≤ 22k−2/k−2k+1 ≤
22k−2/k. Note that, for any t > 0, mt ≤ (mt−1−1+ d

4 )/2 ≤ (mt−1+ d
4 )/2. Simply

expanding this expression we get that, for any t > 0,

mt ≤
m0

2t
+

2k

k

t+2∑
j=3

2−j ≤ 22k−(t+2)

k
+

2k

k

t+2∑
j=3

2−j .

Therefore, for any t ≥ 2k:

mt ≤
1

k
+

2k

k

t+2∑
j=3

2−j ≤ 2k + 1

k
.

In particular, at step i + 2k (when it is the turn of the surfer), the surfer is
at v′2k which is at distance k + 1 from w0. Hence, |B2k| ≥ 2k+1 − 1 and at most
2k+1
k < 2k+1 − 1 of its nodes are marked. Hence, w0 neither no nodes in Q+ are

marked.
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From this step, the surfer directly goes to wk unless she meets an unmarked
node, in which case, she goes to it and wins. When the surfer is at wk and it is her

turn, the observer may have marked at most (2k+ 2)d4 ≤
kd
2 + d

2 ≤ 2k−1 + 2k−1

k
nodes in Q+. Since |Q+| = (d + 1)k = 2k + k and k ≥ 4, at least one neighbor
of wk is not marked yet and the surfer wins. ut

Theorem 3 implies that, for any online strategy S, ρ(S) = Ω(∆). Recall that
the basic strategy B, that marks all unmarked neighbors of the surfer at each
step, is an online strategy. B has trivially competitive ratio ρ(B) = O(∆). Hence,
no online winning strategy has better competitive ratio than the basic strategy
up to a constant factor. In other words:

Corollary 1. The best competitive ratio of online winning strategies is Θ(∆),
with ∆ the maximum degree.

As mentioned in the introduction, any online strategy is connected and there-
fore, for any graph G and v0 ∈ V (G), csn(G, v0) ≤ on(G, v0). Moreover, we recall
that, for any tree T and for any v0 ∈ V (T ), csn(T, v0) = sn(T, v0) [1]. Hence,
there might be an arbitrary gap between csn(G, v0) and on(G, v0).

4 Conclusion

Despite our results, the main question remains open. Can the difference or the
ratio between the connected surveillance number of a graph and its surveillance
number be bounded by some constant?
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