HAL
open science

Connected Surveillance Game

Frédéric Giroire, Dorian Mazauric, Nicolas Nisse, Stéphane Pérennes, Ronan
Soares

- To cite this version:

Frédéric Giroire, Dorian Mazauric, Nicolas Nisse, Stéphane Pérennes, Ronan Soares. Connected Surveillance Game. 20th Colloquium on Structural Information and Communication Complexity (SIROCCO), Jul 2013, Ischia, Italy. pp.68-79. hal-00845531

HAL Id: hal-00845531

https://hal.science/hal-00845531

Submitted on 17 Jul 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Connected Surveillance Game*

F. Giroire ${ }^{1}$, D. Mazauric ${ }^{2}$, N. Nisse ${ }^{1}$, S. Pérennes ${ }^{1}$, and R. Soares ${ }^{1,3}$
${ }^{1}$ COATI, INRIA, I3S(CNRS/UNS), Sophia Antipolis, France
${ }^{2}$ ACRO, Laboratoire d'Informatique Fondamentale de Marseille, France
${ }^{3}$ ParGO Research Group, UFC, Fortaleza, Brazil

Abstract

The surveillance game [Fomin et al., 2012] models the problem of web-page prefetching as a pursuit evasion game played on a graph. This two-player game is played turn-by-turn. The first player, called the observer, can mark a fixed amount of vertices at each turn. The second one controls a surfer that stands at vertices of the graph and can slide along edges. The surfer starts at some initially marked vertex of the graph, her objective is to reach an unmarked node The surveillance number $\operatorname{sn}(G)$ of a graph G is the minimum amount of nodes that the observer has to mark at each turn ensuring it wins against any surfer in G. Fomin et al. also defined the connected surveillance game where the marked nodes must always induce a connected subgraph. They ask if there is a constant $c>0$ such that $\frac{\operatorname{csn}(G)}{\operatorname{sn}(G)} \leq c$ for any graph G. It has been shown that there are graphs G for which $\operatorname{csn}(G)=\operatorname{sn}(G)+1$. In this paper, we investigate this question. We present a family of graphs G such that $\operatorname{csn}(G)>\operatorname{sn}(G)+1$. Moreover, we prove that $\operatorname{csn}(G) \leq \operatorname{sn}(G) \sqrt{n}$ for any n-node graph G. While the gap between these bounds remains huge, it seems difficult to reduce it. We then define the online surveillance game where the observer has no a priori knowledge of the graph topology and discovers it little-bylittle. Unfortunately, we show that no algorithm for solving the online surveillance game has competitive ratio better than $\Omega(\Delta)$.

Keywords: Surveillance game, Cops and robber games, Cost of connectivity, Online strategy, Competitive ratio, Prefetching.

1 Introduction

In this paper, we study two variants of the surveillance game introduced in [1]. This two-player game involves one Player moving a mobile agent, called surfer, along the edges of a graph, while a second Player, called observer, marks the vertices of the graph. The surfer wins if it manages to reach an unmarked vertex. The observer wins otherwise.
Surveillance game. More formally, let $G=(V, E)$ be an undirected simple n-node graph, $v_{0} \in V$, and $k \in \mathbb{N}^{*}$. Initially, the surfer stands at v_{0} which is marked and all other nodes are not marked. Then, turn-by-turn, the observer

[^0]first marks k unmarked vertices and then the surfer may move to a neighbor of her current position. Once a node has been marked, it remains marked.The surfer wins if, at some step, she reaches an unmarked vertex; and the observer wins otherwise. Note that the game lasts at most $\left\lceil\frac{n}{k}\right\rceil$ turns. When the game is played on a directed graph, the surfer has to follow arcs when it moves [1]. A k-strategy for the observer from v_{0}, or simply a k-strategy from v_{0}, is a function $\sigma: V \times 2^{V} \rightarrow 2^{V}$ that assigns the set $\sigma(v, M) \subseteq V$ of vertices, $|\sigma(v, M)| \leq k$, that the observer should mark in the configuration (v, M), where $M \subseteq V, v_{0} \in M$, is the set of already marked vertices and $v \in M$ is the current position of the surfer. We emphasis that σ depends implicitly on the graph G, i.e., it is based on the full knowledge of G. A k-strategy from v_{0} is winning if it allows the observer to win whatever be the sequence of moves of the surfer starting in v_{0}. The surveillance number of a graph G with initial node v_{0}, denoted by $\operatorname{sn}\left(G, v_{0}\right)$, is the smallest k such that there exists a winning k-strategy starting from v_{0}.

Let us define some notations used in the paper. Let Δ be the maximum degree of the nodes in G and, for any $v \in V$, let $N(v)$ be the set of neighbors of v. More generally, the neighborhood $N(F)$ of a set $F \subseteq V$ is the subset of vertices of V which have a neighbor in F. Moreover, we define the closed neighborhood of a set F as $N[F]=N(F) \cup F$.

As an example, let us consider the following basic strategy: let $\sigma_{\mathcal{B}}$ be the strategy defined by $\sigma_{\mathcal{B}}(v, M)=N(v) \backslash M$ for any $M \subseteq V, v_{0} \in M$, and $v \in$ M. Intuitively, the basic strategy $\sigma_{\mathcal{B}}$ asks the observer to mark all unmarked neighbors of the current position of the surfer. It is straightforward, and it was already shown in [1], that $\sigma_{\mathcal{B}}$ is a winning strategy for any $v_{0} \in V$ and it easily implies that $\operatorname{sn}\left(G, v_{0}\right) \leq \max \left\{\left|N\left(v_{0}\right)\right|, \Delta-1\right\}$.
Web-page prefetching, connected and online variants. The surveillance game has been introduced because it models the web-page prefetching problem. This problem can be stated as follows. A web-surfer is following the hyperlinks in the digraph of the web. The web-browser aims at downloading the web-pages before the web-surfer accesses it. The number of web-pages that the browser may download before the web-surfer accesses another web-page is limited due to bandwidth constraints. Therefore, designing efficient strategies for the surveillance game would allow to preserve bandwidth while, at the same time, avoiding the waiting time for the download of the web-page the web-surfer wants to access.

By nature of the web-page prefetching problem, in particular because of the huge size of the web digraph, it is not realistic to assume that a strategy may mark any node of the network, even nodes that are "far" from the current position of the surfer. For this reason, [1] defines the connected variant of the surveillance game. A strategy σ is said connected if $\sigma(v, M) \cup M$ induces a connected subgraph of G for any $M, v_{0} \in M \subseteq V(G)$. Note that the basic strategy $\sigma_{\mathcal{B}}$ is connected. The connected surveillance number of a graph G with initial node v_{0}, denoted by $\operatorname{csn}\left(G, v_{0}\right)$, is the smallest k such that there exists a winning connected k-strategy starting from v_{0}. By definition, $\operatorname{csn}\left(G, v_{0}\right) \geq$ $\operatorname{sn}\left(G, v_{0}\right)$ for any graph G and $v_{0} \in V(G)$. In [1], it is shown that there are graphs G and $v_{0} \in V(G)$ such that $\operatorname{csn}\left(G, v_{0}\right)=\operatorname{sn}\left(G, v_{0}\right)+1$. Only the trivial
upper bound $\operatorname{csn}\left(G, v_{0}\right) \leq \Delta \operatorname{sn}\left(G, v_{0}\right)$ is known and a natural question is how big the gap between $\operatorname{csn}\left(G, v_{0}\right)$ and $\operatorname{sn}\left(G, v_{0}\right)$ may be [1]. This paper provides a partial answer to this question.

Still the connected surveillance game seems unrealistic since the web-browser cannot be asked to have the full knowledge of the web digraph. For this reason, we define the online surveillance game. In this game, the observer discovers the considered graph while marking its nodes. That is, initially, the observer only knows the starting node v_{0} and its neighbors. After the observer has marked the subset M of nodes, it knows M and the vertices that have a neighbor in M and the next set of vertices to be marked depends only on this knowledge, i.e., the nodes at distance at least two from M are unknown. In other words, an online strategy is based on the current position of the surfer, the set of already marked nodes and knowing only the subgraph H of the marked nodes and their neighbors (a more formal definition is postponed to Section 3). By definition, the next nodes marked by such a strategy must be known, i.e., adjacent to an already marked vertex. Therefore, an online strategy is connected. We are interested in the competitive ratio of winning online strategies. The competitive ratio $\rho(\mathcal{S})$ of a winning online strategy \mathcal{S} is defined as $\rho(\mathcal{S})=\max _{G, v_{0} \in V(G)} \frac{\mathcal{S}\left(G, v_{0}\right)}{\operatorname{sn}\left(G, v_{0}\right)}$, where $\mathcal{S}\left(G, v_{0}\right)$ denotes the maximum number of vertices marked by \mathcal{S} in G at each turn, when the surfer starts in v_{0}. Note that, because any online winning strategy \mathcal{S} is connected, $\operatorname{csn}\left(G, v_{0}\right) \leq \rho(\mathcal{S}) \operatorname{sn}\left(G, v_{0}\right)$ for any graph G and $v_{0} \in V(G)$.

1.1 Related work

The surveillance game has mainly been studied in the computational complexity point of view. It is shown that the problem of computing the surveillance number is NP-hard in split graphs [1]. Moreover, deciding whether the surveillance number is at most 2 is NP-hard in chordal graphs and deciding whether the surveillance number is at most 4 is PSPACE-complete. Polynomial-time algorithms that compute the surveillance number in trees and interval graphs are designed in [1]. All previous results also hold for the connected surveillance number. Finally, it is shown that, for any graph G and $v_{0} \in V(G)$, $\max \left\lceil\frac{|N[S]|-1}{|S|}\right\rceil \leq \operatorname{sn}\left(G, v_{0}\right) \leq \operatorname{csn}\left(G, v_{0}\right)$ where the maximum is taken over every subset $S \subseteq V(G)$ inducing a connected subgraph with $v_{0} \in S$. Moreover, both previous inequalities turn into an equality in case of trees. [1] asks for an example where the inequalities are strict.

In the literature, there are mainly three types of prefetching: server based hints prefetching [2-4], local prefetching [5] and proxy based prefetching [6]. In local prefetching, the client has no aid from the server when deciding which documents to prefetch. In the server based hints prefetching, the server can aid the client to decide which pages to prefetch. Lastly, in the proxy based prefetching, a proxy that connects its clients with the server decides which pages to prefetch. Moreover, some studies consider that the prefetching mechanism has perfect knowledge of the web-surfer's behaviour $[7,8]$. In these studies, the objective is to minimize the waiting time of the web-surfer with a given bandwidth,
by designing good prediction strategies for which pages to prefetch. In the context of prefetching web-pages, the surveillance game is a model to study a local prefetching scheme to guarantee that a websurfer never has to wait a web-page to be downloaded, whilst minimizing the bandwidth necessary to achieve this.

1.2 Our results

In this paper, we study both the connected and online variants of the surveillance game. First, we try to evaluate the gap between non-connected and connected surveillance number of graphs. We give a new upper bound, independent from the maximum degree, for the ratio csn / sn. More precisely, we show that, for any n-node graph G and any $v_{0} \in V(G), \operatorname{csn}\left(G, v_{0}\right) \leq \operatorname{sn}\left(G, v_{0}\right) \sqrt{n}$. Then, we describe a family of graphs G such that $\operatorname{csn}\left(G, v_{0}\right)=\operatorname{sn}\left(G, v_{0}\right)+2$. Note that, contrary to the simple example that shows that connected and not connected surveillance number may differ by one, a larger difference seems much more difficult to obtain.

As mentioned above, the online variant of the surveillance game is a more constraint version of the connected game. We prove that any online strategy has competitive ratio at least $\Omega(\Delta)$. More formally, we describe a familly of trees with constant surveillance number such that, for any online winning strategy, there is a step when the strategy has to mark at least $\frac{\Delta}{4}$ vertices.Unfortunately, this shows that the best (up to constant ratio) online strategy is the basic one.

2 Cost of connectedness

In this section, we investigate the cost of the connectivity constraint. We first prove the first non-trivial upper bound for the ratio $\mathrm{csn} / \mathrm{sn}$. More precisely, we show that for any n-node graph $G, \operatorname{csn}\left(G, v_{0}\right) \leq \operatorname{sn}\left(G, v_{0}\right) \sqrt{n}$. Then, we improve the lower bound of [1]. That is, we show a family of graphs where $\operatorname{csn}\left(G, v_{0}\right)>\operatorname{sn}\left(G, v_{0}\right)+1$. Finally, we disprove a conjecture in [1].

2.1 Upper bound

In this section, we give the first non-trivial upper bound (independent from the degree) of the cost of the connectivity in the surveillance game.

Theorem 1. Let G be any connected n-node graph and $v_{0} \in V(G)$, then

$$
\operatorname{csn}\left(G, v_{0}\right) \leq \operatorname{sn}\left(G, v_{0}\right) \sqrt{n}
$$

Proof. $\operatorname{sn}\left(G, v_{0}\right)=1$ if and only if G is a path with v_{0} as an end. In this case, $\operatorname{csn}\left(G, v_{0}\right)=\operatorname{sn}\left(G, v_{0}\right)$ and the result holds.

Let us assume that $k=\operatorname{sn}\left(G, v_{0}\right)>1$. We describe a connected strategy σ marking at most $k \sqrt{n}$ nodes per turn. Let $M^{0}=\left\{v_{0}\right\}$ and let M^{t} be the set of vertices marked after $t \geq 1$ turns. Assume moreover that M^{t} induces a connected graph of G containing v_{0}. Finally, let v_{t} be the vertex occupied by the surfer after
turn t. The set $\sigma\left(v_{t}, M^{t}\right)$ of nodes marked by the observer at step $t+1$ is defined as follows. If $\left|V(G) \backslash M^{t}\right| \leq k \sqrt{n}$, then let $\sigma\left(v_{t}, M^{t}\right)=V(G) \backslash M^{t}$. Otherwise, let $H \subseteq V(G) \backslash M^{t}$ such that $|H|=k \sqrt{n}, H \cup M^{t}$ induces a connected subgraph and $\left|H \cap N\left(v_{t}\right)\right|$ is maximum. Then, $\sigma\left(v_{t}, M^{t}\right)=H$, i.e., the strategy marks $k \sqrt{n}$ new nodes in a connected way and, moreover, mark as many unmarked nodes as possible among the neighbors of v_{t}. In particular, if $\left|N\left(v_{t}\right) \backslash M^{t}\right| \leq k \sqrt{n}$, then all neighbors of v_{t} are marked after turn $t+1$.

By definition, σ is connected and marks at most $k \sqrt{n}$ nodes per turn. We need to show σ is winning.

For purpose of contradiction, let us assume that the surfer wins against σ by following the path $P=\left(v_{0}, \ldots, v_{t}, v_{t+1}\right)$. At its $t+1^{\text {th }}$ turn, the surfer moves from a marked vertex v_{t} to an unmarked vertex v_{t+1}.

Therefore, $n>t k \sqrt{n}$, otherwise the observer marking $k \sqrt{n}$ nodes at each turn would have already marked every vertex on the graph by the end of turn t. Moreover, by definition of sigma, $\left|N\left(v_{t}\right) \backslash M^{t}\right|>k \sqrt{n}$

Since, $\operatorname{sn}\left(G, v_{0}\right)=k$, let \mathcal{S} be any k-winning (non necessarily connected) strategy for the observer. Assume that the observer follows \mathcal{S} against the surfer following $P \backslash\left\{v_{t+1}\right\}$. Since, \mathcal{S} is winning, all vertices of $N\left(v_{t}\right)$ must be marked after turn t, otherwise the surfer would win by moving to an unmarked neighbor of v_{t}. Therefore, since \mathcal{S} can mark at most k vertices each turn, $\left|N\left(v_{t}\right)\right| \leq k t$.

Taking both inequalities, we have that $k \sqrt[2]{n}<\left|N\left(v_{t}\right)\right| \leq k t$. Hence, $\sqrt[2]{n}<t$. Therefore, $n>t k \sqrt[2]{n}>n k$, a contradiction.

2.2 Lower Bound

This section is devoted to proving the following theorem.
Theorem 2. There exists a family of graphs G and $v_{0} \in V(G)$ such that

$$
\operatorname{csn}\left(G, v_{0}\right)>\operatorname{sn}\left(G, v_{0}\right)+1
$$

We use the following result proved in [1]. For any graph $G=(V, E)$ and any vertex $v_{0} \in V$, a k-strategy for G with initial vertex v_{0} is winning if and only if it is winning against a surfer that is constrained to follow induced paths on G. In other words, the walk of the surfer is contrained to be an induced path.

In the following theorem, by adding a path $P=\left(v_{1}, \cdots, v_{r}\right)$ between two vertices u and v of G, we mean that the induced path P is added as an induced subgraph of G and the edges $\left\{u, v_{1}\right\}$ and $\left\{v_{r}, v\right\}$ are added.

Let x, α, β and γ be four strictly positive integers satisfying the following:
(1) $\max \left\{\beta, \frac{\beta}{2}+\gamma+1\right\}<\alpha<\min \{\beta+\gamma+1,2 \gamma+2\} \quad$ (2) $\beta<2 \gamma+2$
(3) $3 x \geq \alpha+\beta+2 \gamma+12$
(4) $x>\frac{4}{5}(\alpha+\beta+\gamma)+10$
(5) $2 \alpha \geq 73+\beta+2 \gamma$.

For instance, $x=250, \alpha=146, \beta=\gamma=73$ satisfy all the above inequalities.

For proving the main theorem in this section we mainly rely in the family of graphs built in the following the procedure described below.

Let $\mathcal{G}=(V, E)$ be a graph with 10 isolated vertices $\left\{v_{0}, w_{0}, w_{1}, w_{2}, w_{0}^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}\right.$, $\left.s_{0}, s_{1}, s_{2}\right\}$. Then, for all $i \in\{0,1,2\}$ do the following:

1. $4 x-9$ vertices of degree one are added and made adjacent to s_{i};
2. $3 x-2$ vertices of degree one are added and made adjacent to w_{i}, respectively $3 x-2$ neighbors of degree one are added to w_{i}^{\prime};
3. two disjoint paths $A^{i}=\left(a_{1}^{i}, \cdots, a_{\alpha}^{i}\right)$ and $A^{\prime i}=\left(a_{1}^{\prime i}, \cdots, a_{\alpha}^{\prime i}\right)$ are added between v_{0} and s_{i};
4. a path $B^{i}=\left(b_{1}^{i}, \cdots, b_{\beta}^{i}\right)$ is added between v_{0} and w_{i}, and a path $B^{i}=$ $\left(b_{1}^{\prime i}, \cdots, b_{\beta}^{\prime i}\right)$ is added between v_{0} and w_{i}^{\prime};
5. for any $j \in\{i, i+1 \bmod 3\}$ a path $C^{i, j}=\left(c_{1}^{i, j}, \cdots, c_{\gamma}^{i, j}\right)$ is added between s_{j} and w_{i}, and a path $C^{\prime i, j}=\left(c_{1}^{\prime i, j}, \cdots, c_{\gamma}^{\prime i, j}\right)$ is added between s_{j} and w_{i}^{\prime};
6 . for any $1 \leq j \leq \alpha, 3 x-1$ vertices of degree one are added and made adjacent to a_{j}^{i}, respectively $3 x-1$ neighbors of degree one are added to $a_{j}^{\prime i}$;
6. for any $1 \leq j \leq \beta, 3 x-1$ vertices of degree one are added and made adjacent to b_{j}^{i}, respectively $3 x-1$ neighbors of degree one are added to $b_{j}^{\prime i}$;
7. for any $1 \leq j \leq \gamma, \ell \in\{i, i+1 \bmod 3\}, 3 x-1$ vertices of degree one are added and made adjacent to $c_{j}^{i, \ell}$, respectively $3 x-1$ neighbors of degree one are added to $c_{j}^{\prime i, \ell}$.

The shape of \mathcal{G} is depicted in Figure 1. \mathcal{G} has $(30+18(\alpha+\beta)+36 \gamma) x-29$ vertices. For any $i \in\{0,1,2\}$, the node s_{i} has $4 x-3$ neighbors, v_{0} has 12 neighbors, and any other non-leaf node has degree $3 x+1$.

Claim. [9] If $\max \left\{\beta, \frac{\beta}{2}+\gamma+1\right\}<\alpha<\min \{\beta+\gamma+1,2 \gamma+2\}$ and $\beta<2 \gamma+2$, the unique (up to symmetries) minimum Steiner-tree for $S=N\left[v_{0}\right] \cup\left\{s_{0}, s_{1}, s_{2}\right\}$ in \mathcal{G} has $15+\alpha+\beta+2 \gamma$ vertices and consists of the vertices of the paths $A^{0}, B^{1}, C^{1,1}, C^{1,2}$ and the vertices in $S \cup\left\{w_{1}\right\}$.

In Fig. 1, the scheme of a minimum Steiner-tree for $S=N\left[v_{0}\right] \cup\left\{s_{0}, s_{1}, s_{2}\right\}$ is depicted with dashed lines.

For any $i \in\{0,1,2\}$, let $\mathcal{A}_{i}=N\left[v_{0}\right] \cup N\left[A^{i}\right] \cup N\left[s_{i}\right]$ (resp., $\mathcal{A}_{i}^{\prime}=N\left[v_{0}\right] \cup$ $\left.N\left[A^{\prime i}\right] \cup N\left[s_{i}\right]\right)$. Note that $\left|\mathcal{A}_{i}\right|=\left|\mathcal{A}_{i}^{\prime}\right|=(3 \alpha+4) x+9$ and that the \mathcal{A}_{i} and \mathcal{A}_{j}, $i \neq j$, pairwise intersect only in $N\left[v_{0}\right]$.

For any $i \in\{0,1,2\}$, let $\mathcal{B}_{i}=N\left[v_{0}\right] \cup N\left[B^{i}\right] \cup N\left[w_{i}\right] \cup N\left[C^{i, i}\right] \cup N\left[C^{i, i+1} \bmod 3\right] \cup$ $N\left[s_{i}\right] \cup N\left[s_{i+1} \bmod 3\right]$ and \mathcal{B}_{i}^{\prime} is defined similarly. $\left|\mathcal{B}_{i}\right|=\left|\mathcal{B}_{i}^{\prime}\right|=(3 \beta+6 \gamma+11) x+5$. Finally, for any $i \in\{0,1,2\}$ and $j \in\{i, i+1 \bmod 3\}$, let $\mathcal{B}_{i, j}=N\left[v_{0}\right] \cup N\left[B^{i}\right] \cup$ $N\left[w_{i}\right] \cup N\left[C^{i, j}\right] \cup N\left[s_{j}\right]$ and $\mathcal{B}_{i, j}^{\prime}=N\left[v_{0}\right] \cup N\left[B^{\prime i}\right] \cup N\left[w_{i}^{\prime}\right] \cup N\left[C^{\prime i, j}\right] \cup N\left[s_{j}\right]$.
Lemma 1. For any $i \in\{0,1,2\}$ and $j \in\{i, i+1 \bmod 3\}$, during its first step, any winning $(3 x+y)$-strategy for \mathcal{G} must mark at least
$-x+8-y(\alpha+1)$ nodes in \mathcal{A}_{i} (resp., in $\left.\mathcal{A}_{i}^{\prime}\right)$, and
$-x+8-y(\beta+\gamma+2)$ nodes in $\mathcal{B}_{i, j}$ (resp., in $\mathcal{B}_{i, j}^{\prime}$), and
$-2 x+4-y(\beta+2 \gamma+3)$ nodes in $\mathcal{B}_{i}\left(\right.$ resp., in $\left.\mathcal{B}_{i}^{\prime}\right)$.

Fig. 1. Graph Family Scheme. Here we show only one "layer" of the graph.

The proof can be found in [9].
Lemma 2. $\operatorname{sn}\left(\mathcal{G}, v_{0}\right) \leq 3 x$.
Proof. To show that $\operatorname{sn}\left(\mathcal{G}, v_{0}\right) \leq 3 x$, consider the following strategy for the observer. For any $i \in\{0,1,2\}$, in the first step, it marks $x-4$ one-degree neighbots of s_{i} and the 12 neighbors of v_{0}. Then, at subsequent step, marks all unmarked neighbors of the current position of the surfer. It is easy to see (see details in [9]), by induction on the number of steps that, each time that the surfer arrives at a new node, this node is marked and has at most $3 x$ unmarked neighbors.

Lemma 3. $\operatorname{csn}\left(\mathcal{G}, v_{0}\right)>3 x+1$.
Proof. For purpose of contradiction, let us assume that there is a winning connected $3 x+1$-strategy. Let F be the set of vertices marked by this strategy during the first step. Clearly, $N\left(v_{0}\right) \subseteq F$ and $|F| \leq 3 x+1$.

For any $0 \leq i \leq 2$, let $f_{i}=\left|F \cap N\left[s_{i}\right]\right|$ and let $f_{\text {min }}=\min _{i} f_{i}$. Without loss of generality, $f_{\text {min }}=f_{0}$. We first show that $f_{\text {min }}>3$.

By Lemma 1, for any $i \in\{0,1,2\},\left|F \cap\left(\mathcal{A}_{i} \backslash N\left[v_{0}\right]\right)\right| \geq x-5-\alpha$ and, for any $i \in\{0,2\},\left|F \cap\left(\mathcal{B}_{i, 0} \backslash N\left[v_{0}\right]\right)\right| \geq x-6-(\beta+\gamma)$ and $\left|F \cap\left(\mathcal{B}_{i, 0}^{\prime} \backslash N\left[v_{0}\right]\right)\right| \geq$ $x-6-(\beta+\gamma)$. Therefore,

$$
\begin{aligned}
3 x+1 & \geq\left|F \cap\left(\mathcal{A}_{0} \cup \mathcal{A}_{0}^{\prime} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{B}_{0,0} \cup \mathcal{B}_{2,0} \cup \mathcal{B}_{0,0}^{\prime} \cup \mathcal{B}_{2,0}^{\prime}\right)\right| \\
& \geq 12+4(x-5-\alpha)+4(x-6-(\beta+\gamma))-5\left|F \cap N\left[s_{0}\right]\right| \\
& \geq 8 x-4(\alpha+\beta+\gamma)-32-5 f_{\min }
\end{aligned}
$$

Hence, $5 f_{\text {min }} \geq 5 x-4(\alpha+\beta+\gamma)-33$, and $f_{\text {min }} \geq x-\frac{4}{5}(\alpha+\beta+\gamma)-7>3$ by the above inequality.

Therefore, by definition of $f_{\text {min }},\left|F \cap N\left[s_{i}\right]\right| \geq 4$ for any $i \in\{0,1,2\}$. By connectivity of the strategy, $s_{i} \in F \cap N\left[s_{i}\right]$ for any $i \in\{0,1,2\}$. Hence, F must contain a subset of vertices inducing a subtree spanning $S=N\left[v_{0}\right] \cup\left\{s_{0}, s_{1}, s_{2}\right\}$. Let T be an inclusion-minimal subset of F that induces a subtree spanning S. By Claim 2.2, $|T| \geq \alpha+\beta+2 \gamma+15$. Let $T^{\prime}=T \backslash\left(N\left[v_{0}\right] \cup \bigcup_{0 \leq i \leq 2} N\left[s_{i}\right]\right)$. Then, $\left|T^{\prime}\right| \geq \alpha+\beta+2 \gamma-4$. Moreover, because of the symmetries, we may assume w.l.o.g., that $T^{\prime} \subseteq \bigcup_{0 \leq i \leq 2}\left(\mathcal{A}_{i} \cup \mathcal{B}_{i}\right)$.

By Lemma 1 and because $N\left(v_{0}\right) \subseteq F$, for any $0 \leq i \leq 2, \mid F \cap\left(\mathcal{A}_{i}^{\prime} \cup\right.$ $\left.\mathcal{B}_{i+1}^{\prime} \bmod 3\right) \mid \geq x+8-(\alpha+1)+2 x+4-(\beta+2 \gamma+3)-12=3 x-(\alpha+\beta+2 \gamma)-4$. Hence, $\left|T^{\prime}\right|+\left|F \cap\left(\mathcal{A}_{i}^{\prime} \cup \mathcal{B}_{i+1}^{\prime} \bmod 3\right)\right| \geq 3 x-8$. Let $W_{i}=F \backslash\left(\mathcal{A}_{i}^{\prime} \cup \mathcal{B}_{i+1}^{\prime} \bmod 3 \cup T^{\prime}\right)$. Since $|F| \leq 3 x+1$, it follows that $\left|W_{i}\right| \leq 9$.

Let $f_{\text {max }}=\max _{i} f_{i}$ and assume w.l.o.g. that $f_{\max }=f_{2}$. Since $\sum_{0 \leq i \leq 2} f_{i} \leq$ $\left|F \backslash T^{\prime}\right|$, we get that $f_{0}+f_{1} \leq\left\lfloor\frac{2}{3}(5+3 x-(\alpha+\beta+2 \gamma)\rfloor\right.$.

To conclude, $\left|F \cap \mathcal{B}_{0}^{\prime}\right|=\left|N\left(v_{0}\right)\right|+f_{0}+f_{1}+\left|W_{0}\right| \leq 21+\left\lfloor\frac{2}{3}(5+3 x-(\alpha+\beta+2 \gamma)\rfloor\right.$. On the other hand, Lemma 1 implies that $\left|F \cap \mathcal{B}_{0}^{\prime}\right| \geq 2 x+1-(\beta+2 \gamma)$. Therefore, $22+\frac{2}{3}(5+3 x-(\alpha+\beta+2 \gamma)>2 x+1-(\beta+2 \gamma)$ and it follows $73>2 \alpha-\beta-2 \gamma$. This contradicts the inequalities.

Lemmas 2 and 3 are sufficient to prove Theorem 2. More precisely, it shows that there exists a family of graphs G and $v_{0} \in V(G)$ such that $\operatorname{csn}\left(G, v_{0}\right) \geq$ $\operatorname{sn}\left(G, v_{0}\right)+2$. However, the family of graphs we described does not allow to increase further the cost of connectivity. Indeed, $\operatorname{csn}\left(\mathcal{G}, v_{0}\right) \leq 3 x+2[9]$.

To conclude this section, we answer negatively a question in [1]. We show that there is a graph \mathcal{G} such that $\operatorname{sn}(\mathcal{G}, s)=k$ and $\max _{S \subseteq V(\mathcal{G})}\left\lceil\left\{\frac{|N[S]|-1}{|S|}\right\}\right\rceil<k[9]$.

3 Online Surveillance Number

In this section, we study the online variant of the surveillance game motivated by the web-page prefetching problem where the observer (the web-browser) discovers new nodes through hyperlinks in already marked nodes. In this variant, the observer does not know a priori the graph in which it is playing. That is, initially, the observer only knows v_{0} and the identifiers of its neighbors. Then, when a new node is marked, the observer discovers all its neighbors that are not yet marked. Note that the degree of a node is not known before it is marked.

Another property of an online strategy that must be defined concerns the moment when the observer discovers the unmarked neighbors of a node that it has decided to mark. There are two natural models. Assume that the set M of nodes have been marked and this is the turn of the observer, and let $N(M)$ be the set of nodes with a neighbor in M. Either it first chooses the k nodes that will be marked among the set $N(M) \backslash M$ of the unmarked neighbors of the nodes that were already marked and then the observer marks each of these k nodes and discover their unknown neighbors simultaneously. Or, the observer first chooses one node x in $N(M) \backslash M$, marks it and discovers its unmarked neighbors, then it chooses a new node to be marked in $N(M \cup\{x\}) \backslash(M \cup\{x\})$ and so on until the observer finishes its turn after marking k nodes. We choose to consider the
second model because it is less restricted, i.e., the observer has more power, and, even in this case, our result is pessimistic since we show that the basic strategy is the best one with respect to the competitive ratio.
Formal definition of online strategy. Now we are ready to formally define an online strategy. Let $k \geq 1$, let $G=(V, E)$ be a graph, $v_{0} \in V$, and let \mathcal{G} be the set of subgraphs of G.

Given $M \subseteq V$ be a subset of nodes inducing a connected subgraph containing v_{0} in G. Let $G_{M} \in \mathcal{G}$ be the subgraph of G known by the observer when M is the set of marked nodes. That is, $G_{M}=\left(M \cup N(M), E_{M}\right)$ where $E_{M}=$ $\{(u, v) \in E \mid u \in M\}$. For any $u, v \in N(M) \backslash M$, let us set $u \sim_{M} v$ if and only if $N(u) \cap M=N(v) \cap M$. Let χ_{M} be the set of equivalent classes, called modules, of $N(M) \backslash M$ with respect to \sim_{M}. The intuition is that two nodes in the same module of χ_{M} are known by the observer but cannot be distinguished. For instance, $\chi_{\left\{v_{0}\right\}}=\left\{N\left(v_{0}\right)\right\}$.

A k-online strategy for the observer starting from v_{0} is a function $\sigma: \mathcal{G} \times$ $V \times 2^{V} \times\{1, \cdots, k\} \rightarrow 2^{V}$ such that, for any subset $M \subseteq V$ of nodes inducing a connected subgraph containing v_{0} in G, for any $v \in M$, and for any $1 \leq i \leq k$, then $\sigma\left(G_{M}, v, M, i\right) \in \chi_{M}$. This means that, if M is the set of nodes already marked and thus the observer only knows the subgraph G_{M}, if v is the position of the surfer and it remains $k-i+1$ nodes to be marked by the observer before the surfer moves, then the observer will mark one node in $\sigma\left(G_{M}, v, M, i\right)$.

More precisely, we say that the observer follows the k-online strategy σ if the game proceeds as follows. Let $M=M^{0}$ be the set of marked nodes just after the surfer has moved to $v \in M$. Initially, $M^{0}=\left\{v_{0}\right\}$ and $v=v_{0}$. Then, the strategy proceeds sequentially in k steps for $i=1$ to k. First, the observer marks an arbitrary node $x_{1} \in \sigma\left(G_{M^{0}}, v, M^{0}, 1\right)$. Let $M^{1}=M^{0} \cup\left\{x_{1}\right\}$. Sequentially, after having marked $1<i<k$ nodes at this turn, the observer marks one arbitrary node $x_{i+1} \in \sigma\left(G_{M^{i}}, v, M^{i}, i+1\right)$ and $M^{i+1}=M^{i} \cup\left\{x_{i+1}\right\}$. When the observer has marked k nodes, that is after choosing $x_{k} \in \sigma\left(G_{M^{k-1}}, v, M^{k-1}, k\right)$, it is the turn of the surfer, when it may move to a node adjacent to its current position and then a new turn for the observer starts. Note that because we are interested in the worst case for the observer, each marked node $x_{i} \in \sigma\left(G_{M^{i-1}}, v, M^{i-1}, i\right)$ is chosen by an adversary.

The online surveillance number of a graph G with initial node v_{0}, denoted by on $\left(G, v_{0}\right)$, is the smallest k such that there exists a winning k-online strategy starting from v_{0}. In other words, there is a winning k-online strategy σ starting from v_{0} such that an observer following σ wins whatever be the trajectory of the surfer and the choices done by the adversary at each step. Note that, since we consider the worst scenario for the observer, we may assume that the surfer has full knowledge of G.

Theorem 3. There exists an infinite family of rooted trees such that, for any T with root $v_{0} \in V(T)$ in this family, $\operatorname{sn}\left(T, v_{0}\right)=2$ and $\operatorname{on}\left(T, v_{0}\right)=\Omega(\Delta)$ where Δ is the maximum degree of T.

Proof. We first define the family $\left(T_{k}\right)_{k \geq 1}$ of rooted trees as follows.

Fig. 2. Tree T_{k} described in the proof of Theorem 3.

Let $k \geq 4$ be a power of two and let $i=2^{k}$ and $d=\frac{2^{k}}{k}$.
Let us consider a path $P=\left(v_{0}, v_{1}, \ldots, v_{i-1}\right)$ with i nodes Let B be a complete binary tree of height $h=3 k+1$ and rooted at some vertex v_{i}, i.e., B has $2^{h+1}-1$ vertices. Let w_{0} be any leaf of B. Finally, let $Q=\left(w_{1}, \ldots, w_{k}\right)$ be a path on k nodes. Note that, P, B and Q depend on k.

The tree T_{k} is obtained from P, B and Q by adding an edge between v_{i-1} and v_{i}, an edge between w_{0} and w_{1}. Finally, for any $1 \leq j \leq k$, let us add an independent set, S_{j}, with d vertices and an edge between each vertex of S_{j} and w_{j} (i.e., each node in S_{j} is a leaf). T_{k} is then rooted in v_{0}.

Let Q^{+}denote the union of vertices of Q and $\bigcup_{j=1}^{k} S_{j}$. The maximum degree Δ of T_{k} is reached by any node $w_{j}, 1 \leq j<k$, and $\Delta=d+2=\frac{2^{k}}{k}+2$.

Clearly, $\operatorname{sn}\left(T_{k}, v_{0}\right)>1$. We show that $\operatorname{sn}\left(T_{k}, v_{0}\right)=2$.
Consider the following (offline) strategy for the observer. At each turn $j \leq i$, the surfer marks the vertex v_{j} and one unmarked vertex of Q^{+}that is closest to the surfer. For each turn $j>i$ and while the surfer does not occupy a node in $Q^{+} \cup\left\{w_{0}\right\}$, the observer marks the neighbors of the current position of the surfer if they are not already marked. Finally, if the surfer occupies a node in $Q^{+} \cup\left\{w_{0}\right\}$, the observer marks two unmarked nodes of Q^{+}that are closest to the surfer. It is easy to see, by induction on the number of steps that, each time that the surfer arrives at a new node, this node is marked and has at most 2 unmarked neighbors. Hence, $\operatorname{sn}\left(T_{k}, v_{0}\right)=2$.

Now it remains to show that on $\left(T_{k}, v_{0}\right)=\Omega(\Delta)$. Let γ be any online strategy for T_{k} and marking at most $\frac{d}{4}=\frac{2^{k-2}}{k}$ nodes per turn. We show that γ fails.

For this purpose, we model the fact that the observer does not know the graph by "building" the tree during the game. More precisely, each time the observer marks a node v, then the adversary may add new nodes adjacent to v or decide that v is a leaf. Of course, the adversary must satisfy the constraint that eventually the graph is T_{k}. Initially, the observer only knows v_{0} that has one neighbor v_{1}. Now, for any $1 \leq j<i$, when the observer marks the node v_{j} of
P, then the adversary "adds" a new node v_{j+1} adjacent to v_{j}, i.e., the observer discovers its single unmarked neighbor v_{j+1}. Now, let v be any node of B. Recall that h is the height of B. When the observer marks v, there are three cases to be considered: if v is at distance at most $h-1$ from v_{i}, then the adversary adds two new nodes adjacent to v; if v is at distance h from v_{i} and not all nodes of B have been marked then the adversary decides that v is a leaf; finally, if all nodes of B have been marked (v is the last marked node of B, i.e., B is a complete binary tree of height h), the adversary decides that $v=w_{0}$ and add one new neighbor w_{1} adjacent to it. Note that we can ensure that the last node of B to be marked is at distance h of v_{i} by connectivity of any online strategy.

Now, let consider the following execution of the game. During the first i steps, the surfer goes from v_{0} to v_{i}. Just after the surfer arrives in v_{i}, the observer has marked at most $(d i) / 4$ nodes and all nodes of $P \cup\left\{v_{i}\right\}$ must be marked since otherwise the surfer would have won. Therefore, at most $i(d / 4-1)+1=$ $2^{2 k-2} / k-2^{k}+1$ nodes of B are marked when it is the turn of the surfer at v_{i}. Since B has $2^{h+1}-1=2^{3 k+2}-1$ nodes, at least one node of B is not marked.

From v_{i}, the surfer always goes toward w_{0}. Note that the observer may guess this strategy but it does not know where is w_{0} while all nodes of B have not been marked.

Then let $0 \leq t \leq h$ and let $v_{t}^{\prime} \in V(B)$ be the position of the surfer at step $i+t$ and B^{t} the subtree of B rooted at v_{t}^{\prime}. Note that, at step $i, v_{0}^{\prime}=v_{i}$ and $B^{0}=B$. Let B_{l}^{t} and B_{r}^{t} be the subtrees of B rooted at the children of v_{t}^{\prime}. W.l.o.g., let us assume that the number of marked nodes in B_{l}^{t} is at most the number of marked nodes in B_{r}^{t}, when it is the turn of the surfer standing at v_{t}^{\prime}. Then, the surfer moves to the root of B_{l}^{t}. That is, v_{t+1}^{\prime} is the child of v_{t} whose subtree contains the minimum number of marked nodes.

Let m_{t} be the number of marks in the subtree of B rooted at v_{t}^{\prime} when it is the turn of the surfer at v_{t}^{\prime}. Since, at beginning of step i there are at most $2^{2 k-2} / k-2^{k}+1$ nodes of B that are marked and $k \geq 4, m_{0} \leq 2^{2 k-2} / k-2^{k}+1 \leq$ $2^{2 k-2} / k$. Note that, for any $t>0, m_{t} \leq\left(m_{t-1}-1+\frac{d}{4}\right) / 2 \leq\left(m_{t-1}+\frac{d}{4}\right) / 2$. Simply expanding this expression we get that, for any $t>0$,

$$
m_{t} \leq \frac{m_{0}}{2^{t}}+\frac{2^{k}}{k} \sum_{j=3}^{t+2} 2^{-j} \leq \frac{2^{2 k-(t+2)}}{k}+\frac{2^{k}}{k} \sum_{j=3}^{t+2} 2^{-j}
$$

Therefore, for any $t \geq 2 k$:

$$
m_{t} \leq \frac{1}{k}+\frac{2^{k}}{k} \sum_{j=3}^{t+2} 2^{-j} \leq \frac{2^{k}+1}{k}
$$

In particular, at step $i+2 k$ (when it is the turn of the surfer), the surfer is at $v_{2 k}^{\prime}$ which is at distance $k+1$ from w_{0}. Hence, $\left|B^{2 k}\right| \geq 2^{k+1}-1$ and at most $\frac{2^{k}+1}{k}<2^{k+1}-1$ of its nodes are marked. Hence, w_{0} neither no nodes in Q^{+}are marked.

From this step, the surfer directly goes to w_{k} unless she meets an unmarked node, in which case, she goes to it and wins. When the surfer is at w_{k} and it is her turn, the observer may have marked at most $(2 k+2) \frac{d}{4} \leq \frac{k d}{2}+\frac{d}{2} \leq 2^{k-1}+\frac{2^{k-1}}{k}$ nodes in Q^{+}. Since $\left|Q^{+}\right|=(d+1) k=2^{k}+k$ and $k \geq 4$, at least one neighbor of w_{k} is not marked yet and the surfer wins.

Theorem 3 implies that, for any online strategy $\mathcal{S}, \rho(\mathcal{S})=\Omega(\Delta)$. Recall that the basic strategy \mathcal{B}, that marks all unmarked neighbors of the surfer at each step, is an online strategy. \mathcal{B} has trivially competitive ratio $\rho(\mathcal{B})=O(\Delta)$. Hence, no online winning strategy has better competitive ratio than the basic strategy up to a constant factor. In other words:

Corollary 1. The best competitive ratio of online winning strategies is $\Theta(\Delta)$, with Δ the maximum degree.

As mentioned in the introduction, any online strategy is connected and therefore, for any graph G and $v_{0} \in V(G), \operatorname{csn}\left(G, v_{0}\right) \leq \operatorname{on}\left(G, v_{0}\right)$. Moreover, we recall that, for any tree T and for any $v_{0} \in V(T), \operatorname{csn}\left(T, v_{0}\right)=\operatorname{sn}\left(T, v_{0}\right)$ [1]. Hence, there might be an arbitrary gap between $\operatorname{csn}\left(G, v_{0}\right)$ and on $\left(G, v_{0}\right)$.

4 Conclusion

Despite our results, the main question remains open. Can the difference or the ratio between the connected surveillance number of a graph and its surveillance number be bounded by some constant?

References

1. Fomin, F.V., Giroire, F., Jean-Marie, A., Mazauric, D., Nisse, N.: To satisfy impatient web surfers is hard. In: FUN. (2012) 166-176
2. Aumann, Y., Etzioni, O., Feldman, R., Perkowitz, M.: Predicting event sequences: Data mining for prefetching web-pages (1998)
3. Albrecht, D., Zukerman, I., Nicholson, A.: Pre-sending documents on the www: a comparative study. In: 16th Int. Joint Conf. on Artificial Intelligence. (1999) 1274-1279
4. Mogul, J.C.: Hinted caching in the web. In: 7th workshop on ACM SIGOPS European workshop: Systems support for worldwide applications. (1996) 103-108
5. Wang, Z., Lin, F.X., Zhong, L., Chishtie, M.: How far can client-only solutions go for mobile browser speed? In: 21st Int. Conf. on World Wide Web. (2012) 31-40
6. Fan, L., Cao, P., Lin, W., Jacobson, Q.: Web prefetching between low-bandwidth clients and proxies: potential and performance. In: ACM SIGMETRICS Int. Conf. on Measurement and Modeling of Computer Systems. (1999) 178-187
7. Padmanabhan, V.N., Mogul, J.C.: Using predictive prefetching to improve world wide web latency. SIGCOMM Comput. Commun. Rev. 26(3) (1996) 22-36
8. Kroeger, T.M., Long, D.D.E., Mogul, J.C.: Exploring the bounds of web latency reduction from caching and prefetching. In: USENIX Symposium on Internet Technologies and Systems. (1997) 2-2
9. Giroire, F., Mazauric, D., Nisse, N., Pérennes, S., Pardo Soares, R.: Connected Surveillance Game. Rapport de recherche RR-8297, INRIA (2013)

[^0]: * This work has been partially supported by European Project FP7 EULER, ANR CEDRE, ANR AGAPE, Associated Team AlDyNet, and project ECOS-Sud Chile.

