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1 Université d’Evry Val d’Essonne and LIP6-CNRS, France, lelia.blin@lip6.fr
2 LRI (CNRS/UPSud), Orsay, France, janna.burman@lri.fr
3 COATI, Inria, I3S (CNRS/UNS), Sophia Antipolis, France,

nicolas.nisse@inria.fr

Abstract. This paper tackles the well known graph searching prob-
lem, where a team of searchers aims at capturing an intruder in a net-
work, modeled as a graph. All variants of this problem assume that any
node can be simultaneously occupied by several searchers. This assump-
tion may be unrealistic, e.g., in the case of searchers modeling physical
searchers, or may require each individual node to provide additional re-
sources, e.g., in the case of searchers modeling software agents. We thus
investigate exclusive graph searching, in which no two or more searchers
can occupy the same node at the same time, and, as for the classical vari-
ants of graph searching, we study the minimum number of searchers re-
quired to capture the intruder. This number is called the exclusive search
number of the considered graph. Exclusive graph searching appears to
be considerably more complex than classical graph searching, for at least
two reasons: (1) it does not satisfy the monotonicity property, and (2) it
is not closed under minor. Nevertheless, we design a polynomial-time al-
gorithm which, given any tree T , computes the exclusive search number
of T . Moreover, for any integer k, we provide a characterization of the
trees T with exclusive search number at most k. This characterization
allows us to describe a special type of exclusive search strategies, that
can be executed in a distributed environment, i.e., in a framework in
which the searchers are limited to cooperate in a distributed manner.

1 Introduction

Graph Searching was first introduced by Breisch [9,10] in the context of speleol-
ogy, for solving the problem of rescuing a lost speleologist in a network of caves.
Alternatively, graph searching can be defined as a particular type of cops-and-
robber game, as follows. Given a graph G, modeling any kind of network, design
a strategy for a team of searchers moving in G resulting in capturing an intruder.
There are no limitations on the capabilities of the intruder, who may be arbi-
trary fast, be aware of the whole structure of the network, and be perpetually
aware of the current positions of the searchers. The objective is to compute the
minimum number of searchers required to capture the intruder in G.

To be more formal regarding the behavior of the intruder, it is more conve-
nient to rephrase the problem in terms of clearing a network of pipes contami-
nated by some gas [22]. In this framework, a team of searchers aims at clearing



2 L. Blin, J. Burman, and N. Nisse

the edges of a graph, which are initially contaminated. Searchers stand on the
nodes of the graph, and can slide along its edges. Moreover, a searcher can be
removed from one node and then placed to any other node, i.e., a searcher can
“jump” from node to another. Sliding of a searcher along an edge, as well as
positioning one searcher at each extremity of an edge, results in clearing that
edge. Nevertheless, if there is a path free of searchers between a clear edge and
a contaminated edge, then the former is instantaneously recontaminated. Thus,
to actually keep an edge clear, searchers must occupy appropriate nodes for
avoiding recontamination to occur.

Informally, a search strategy is a sequence of movements executed by the
searchers, resulting in all edges being eventually clear. The main question tack-
led in the context of graph searching is, given a graph G, compute a search
strategy minimizing the number of searchers required for clearing G. This num-
ber, denoted by s(G), is called the search number of the graph G. For instance,
one searcher is sufficient to clear a line, while two searchers are necessary in a
ring: the search number of any line is 1, while the search number of any ring is 2.

The above variant of graph searching is actually called mixed-search [4].
Other classical variants of graph searching are node-search [3], edge-search [21,
22], connected-search [2], etc. All these variants suffer from two serious limita-
tions as far as practical applications are concerned.

– First, they all assume that any node can be simultaneously occupied by sev-
eral searchers. This assumption may be unrealistic in several contexts. Typically,
placing several searchers at the same node may simply be impossible in a physical
environment in which, e.g., the searchers are modeling physical robots moving
in a network of pipes. In the case of software agents deployed in a computer
network, maintaining several searchers at the same node may consume local re-
sources (e.g., memory, computation cycles, etc.). We investigate exclusive graph
searching, i.e., graph searching bounded to satisfy the exclusivity constraint stat-
ing that no two or more searchers can occupy the same node at the same time.

– Second, most variants of graph searching also suffer from another unrealistic
assumption: searcher are enabled to “jump” from one node of the graph, to
another, potentially far away, node (e.g., see the classical mixed-search, defined
above). We restrict ourselves to the more realistic internal search strategies [2],
in which searchers are limited to move along the edges of the graph, that is,
restricted to satisfy the internality constraint.

To sum up, we define exclusive-search as mixed-search with the additional ex-
clusivity and internality constraints. As for all classical variants of graph search-
ing, we study the minimum number of searchers required to clear all edges of a
graph G. This number is called the exclusive search number, denoted by xs(G).

We show that exclusive graph searching behaves very differently from clas-
sical graph searching, for at least two reasons. First, it does not satisfy the
monotonicity property That is, there are graphs (even trees) in which every ex-
clusive search strategy using the minimum number of searchers requires to let
recontamination occurring at some step of the strategy. Second, exclusive graph
searching is not closed under minor taking (not even under subgraph). That is,
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there are graphs G and H such that H is a subgraph of G, and xs(H) > xs(G).
The absence of these two properties (which will be formally established in the
paper) makes exclusive-search considerably different from classical search, and
its analysis requires introducing new techniques.

Our Results. First, in Sec. 2, we formally define exclusive graph searching and
present basic properties for general graphs. Motivated by certain positive results
for trees and inspired by the pioneering work of Parson [22] and Megiddo et
al. [21], we are then essentially focussing on trees. We observe that the exclusive
search number of a graph can differ exponentially from the values of classical
search numbers: in a tree, the former can be linear in the number of nodes n,
while all classical search numbers of trees are at most O(log n). Our main result
(Sec. 3) is a polynomial-time algorithm which, given any tree T , computes the
exclusive search number xs(T ) of T , as well as an exclusive search strategy using
xs(T ) searchers for clearing T . Our algorithm is based on a characterization of
the trees with exclusive search number at most k, for any given k ≤ n.

The above characterization allows us to describe an important type of exclu-
sive search strategies, that can be executed in a distributed environment, i.e., in
a framework in which the searchers are restricted to cooperate in a distributed
manner (Sec. 4). More specifically, we consider the classical (discrete) CORDA4

(a.k.a. Look-Compute-Move) model [16,24] for autonomous searchers moving in
a network. We prove that, for any anonymous asymmetric tree T , as well as for
any tree whose nodes are labeled with unique IDs, and for any n ≥ k ≥ xs(T ),
there exists a distributed protocol enabling k searchers to clear T .

Hence, an interesting outcome of this paper is that the minimum number of
searchers needed to clear an (anonymous asymmetric or uniquely labeled) tree
in a distributed manner is not larger than the one required when the searchers
are coordinated and scheduled by a central entity. This is particularly surpris-
ing, especially when having in mind that, in the distributed setting, symmetry
breaking becomes much more harder (even in an asymmetric network), and the
scheduling of the searchers (i.e., which searchers are activated at any point in
time) is under the full control of an adversary. Due to the lack of space, most of
the proofs are omitted or sketched. All complete proofs can be found in [6].

Related Work. Graph searching has mainly been studied in the centralized
setting for its relationship with the treewidth and pathwidth of graphs [4,18]. The
problem of computing the search number of a graph is NP-hard [21]. However,
this problem is polynomial in various graph classes [17, 19, 26]. In particular, it
has been widely studied in the class of trees [14,21–23,25].

An important property of mixed-graph searching is the monotonicity prop-
erty. A strategy is monotone if no edges are recontaminated once they have been
cleared. For any graph G, there is an optimal winning monotone (mixed-search)
strategy [4]. This enables to prove that the number of steps of an optimal strat-
egy is polynomially bounded by the number of edges. Hence, the problem to
decide the mixed-search number of a graph belongs to NP. Instead, connected
graph searching, in which the set of clear edges must always induce a connected

4 COordination of Robots in a Distributed and Asynchronous environment.
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subgraph, is not monotone in general [27] and it is not known if connected search
is in NP. Connected search is monotone in trees [2]. The connectivity constraint
may increase the search number of any graph by a factor up to 2 [13].

Graph searching has been intensively studied in various distributed settings
(see, e.g., [7,11,15,20]). Graph searching in the CORDA model has recently been
studied for rings [12]. The exclusivity constraint has been already considered in
the context of various coordination tasks for mobile entities in enhanced versions
of the CORDA model (see, e.g., [1, 8, 12]). In the context of graph searching,
the exclusivity constraint has been considered for the first time in our brief
announcement [5]. Here, we present and improve some results announced in [5].

2 Exclusive Search

In this section, we provide the formal definition of exclusive graph searching,
and present some basic general properties.

Given a connected graph G, an exclusive search strategy in G, using k ≤ n
searchers consists in (1) placing the k searchers at k different nodes of G, and
(2) performing a sequence of moves. A move consists in sliding one searcher from
one extremity u of an edge e = {u, v} to its other extremity v. Such a move can
be performed only if v is free of searchers. That is, exclusive-search limits the
strategy to place at most 1 searcher at each node, at any point in time. The
edges of graph G are supposed to be initially contaminated. An edge becomes
clear whenever either a searcher slides along it, or one searcher is placed at each
of its extremities. An edge becomes recontaminated whenever there is a path
free of searchers from that edge to a contaminated edge. A search strategy is
winning if its execution results in all edges of the graph G being simultaneously
clear. The exclusive-search number of G, denoted by xs(G) is the smallest k for
which there exists a winning search strategy in G.

Now, we state and explain the main differences between exclusive search and
all classical variants of graph searching. These differences are mainly due to the
combination of the two restrictions introduced in exclusive search: two searchers
cannot occupy the same node (exclusivity) and a searcher cannot “jump” (in-
ternality). Intuitively, the difficulty occurs when a searcher has to go from one
node u to a far away node v, and all paths from u to v contain an occupied node.

Consider a simple example of a star with central node c and n leaves. In
the classical graph searching, one searcher can occupy c, while a second searcher
will sequentially clear all leaves, either by jumping from one leaf to another, or
by sliding from one leaf to another, and therefore occupying several times the
already occupied node c. In exclusive graph searching, such strategies are not
allowed. Intuitively, if a searcher r1 has to cross a node v that is already occupied
by another searcher r2, the latter should step aside for letting r1 pass. However,
r2 may occupy v to preserve the graph from recontamination, and moving away
from v could lead to recontaminate the whole graph. To avoid this, it may be
necessary to use extra searchers (compared to the classical graph searching)
that will guard several neighbors of v to prevent from recontamination when
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r2 gives way to r1. It follows that, as opposed to all classical search numbers,
which differ by at most some constant multiplicative factor, the exclusive search
number may be arbitrary large compared to the mixed-search number, even in
trees. For instance, it is easy to check that xs(Sn) = n − 2 for any n-node star
Sn, n ≥ 3. More generally (see [6]):

Claim 1 For any tree T with maximum degree ∆ ≥ 2, xs(T ) > ∆− 2 .

This result shows an exponential increase in the number of searchers used
to clear a graph since the mixed-search number of n-node trees is at most
O(log n) [22]. On the positive side, we show that, for any graph G with maximum
degree ∆, s(G) ≤ xs(G) ≤ (∆− 1)s(G) [6]. To prove it, we consider a classical
strategy S for G using s(G) searchers. To build an exclusive strategy Sex for G,
we mimic S using a team of ∆− 1 searchers to “simulate” each searcher in S.

We now turn our attention to the monotonicity property. Indeed, another
important difference of exclusive search compared to classical graph searching is
that it is not monotone. As explained in the example of a star, when a searcher
needs to cross another one, letting the former searcher pass may lead to recon-
taminate some edges. In spite of that, the goal of the winning strategy is to
prevent an “uncontrolled” recontamination. In [6], we prove that:

Claim 2 Exclusive graph searching is not monotone, even in trees.

Last, but not least, contrary to classical graph searching, exclusive graph
searching is not closed under minor. Indeed, even taking a subgraph can decrease
the connectivity which, surprisingly, may not help the searchers (due to the
exclusivity constraint). That is, there exist a graph G and a subgraph H of
G such that xs(H) > xs(G) [6]. Nevertheless, exclusive-search is closed under
subgraph in trees (see [6]):

Lemma 1. For any tree T and any subtree T ′ of T , xs(T ′) ≤ xs(T ).

Contrary to classical graph searching, the proof of this result is not trivial be-
cause of the exclusivity property. To prove it, we have to transform an exclusive
strategy S for T into a strategy S ′ for T ′ using the same number of searchers, and
without violating the exclusivity property. The fact that S may be not mono-
tone (i.e., some recontamination may occur during S) makes the proof technical,
because one has to “control” the recontamination of T ′ in S ′.

3 Exclusive Search in Trees

This section is devoted to our main result. We present a polynomial-time algo-
rithm which, given any tree T , computes the exclusive search number xs(T ) of
T and an exclusive search strategy enabling xs(T ) searchers to clear T . Our al-
gorithm is based on a characterization of the trees with exclusive search number
at most k, for any given k. Given a node v in a tree T , a connected component
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of T \ {v} is called a branch at v. Our characterization establishes a relationship
between the exclusive-search number of T and the exclusive-search number of
some of the branches adjacent to any node in T . More precisely, we prove that:

Theorem 1. Let k ≥ 1. For any tree T , xs(T ) ≤ k if and only if, for any
node v, the following three properties hold:

1. v has degree at most k + 1;
2. for any branch B at v, xs(B) ≤ k;
3. for any even i > 1, at most i branches B at v have xs(B) ≥ k − i/2 + 1.

To prove the theorem, we first prove (Sec. 3.1) that, for any tree T and k ≥ 1,
xs(T ) ≤ k, only if the conditions of Th. 1 are satisfied. Then, we show that any
tree satisfying these conditions can be decomposed in a particular way, depending
on k (Fig. 1). Next, in Sec. 3.2, we describe an exclusive search strategy using
at most k searchers, that clears any tree decomposed in such a way.

From the characterization of Th. 1, it follows that xs(T ) can be computed
by dynamic programming on T . Moreover, such an algorithm computes the cor-
responding decomposition (see Section 3.2). Hence, the following result holds:

Theorem 2. There exists a polynomial-time algorithm that computes xs(T ) and
a corresponding exclusive search strategy for any tree T .

We now prove Theorem 1 using the following notations. For a node v ∈ T , we
denote by N(v) the set of the neighbors of v. A configuration is a set of distinct
nodes C ⊆ V (T ) that describes the positions of |C| searchers in T .

3.1 Necessary Conditions for Theorem 1

We first show that the conditions of Theorem 1 are necessary. The fact that the
first property is necessary directly follows from Claim 1. The second property is
necessary by Lemma 1.

For proving that the third property is necessary, we first have to prove that,
for any tree T , any branch B of T , and any exclusive strategy for T , there is a
step of the strategy where at least xs(B) searchers are occupying the nodes of
B (see [6]). While such a result is trivial in classical graph searching, it is not
the case anymore subject to exclusivity and internality properties. In particular,
in classical graph searching, the result is true for any subtree (not necessarily a
branch) while it is not the case for the exclusive variant (see [6]). Indeed, let us
consider a sub-tree T ′ of tree T . If T ′ is given independently of T , the movements
of searchers are more constrained because the searchers have less “space” in T ′.
On the contrary, when T ′ is inside the tree T , the searchers can use the “extra
space” provides by T to clear T ′.

Lemma 2. Let k ≥ 1. For any tree T , if there exist v ∈ V (T ) and an even
integer i > 1 such that there is a set B = {Tj : xs(Tj) ≥ k− i/2 + 1} of branches
at v and |B| > i, then xs(T ) > k.
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Proof. Let S be any exclusive strategy that clears T . By the remark above, for
any j ≤ |B|, there is a step of the strategy S such that at least k − i/2 + 1
searchers occupy simultaneously vertices in Tj . Let sj be the last such step of S
that occurs in Tj . W.l.o.g. assume that sj−1 < sj , for any 1 < j ≤ |B|, and we
may assume that, before step sj , Tj is not completely clear (this means that S
uses k− i/2 + 1 searchers in Tj only if it is really needed). Then, at step si/2+1,
at least k − i/2 + 1 searchers are in Ti/2+1, some vertices have been cleared in
Tj for any j ≤ i/2, and Tj cannot become fully contaminated anymore until
the end of the strategy (otherwise there would be another step after sj where
k − i/2 + 1 searchers are in Tj).

For the sake of contradiction, let us assume that S uses at most k searchers.
Then, at step si/2+1, at least k− i/2 + 1 searchers are in Ti/2+1 and there are at
most i/2− 1 searchers outside Ti/2+1. That is, at that moment, there is at least
one branch X ∈ {Ti/2+2, . . . , T|B|} (|B| > i) at v with still contaminated edges,
and at least one branch Y ∈ {T1, . . . , Ti/2} at v with (at least) some clear edges
that must not be recontaminated and no searchers occupy nodes in both these
branches. If there is no searcher at v, Y is fully recontaminated - a contradiction.

Otherwise, there is a searcher in v. However, since there is at least one non
cleared yet branch without any searcher in it, it has to be cleared by moving
there at least one searcher. For that, the searcher from v have to move. However,
if this searcher moves (no matter where), there will be still at most i/2 − 1
searchers outside Ti/2+1 and hence, at least one cleared and one uncleared branch
without any searcher, and no searcher in v. The cleared branch will be fully
recontaminated - a contradiction. ut

Decomposition. Figure 1 presents a particular structure that we prove to exist
for any tree T satisfying the properties of Theorem 1, for k ≥ 1. Specifically,
following [21], we prove that there is a unique path A = (u1, · · · , up) in T called
avenue such that p ≥ 1 and, for any component T ′ of T \A, there is an exclusive
strategy that clears T ′ using < k searchers, i.e., xs(T ′) < k (bold line in Fig. 1).

In the next section, we describe a strategy, called ExclusiveClear , based on
this decomposition and allowing k searchers to clear T in an exclusive way. The
strategy consists in clearing the subtrees of T \ A, starting with the subtrees
that are adjacent to u1, then the ones adjacent to u2 and so on, finishing in
up. To clear a subtree T ′ of T \ A, we proceed in a recursive way. That is, we
recursively use ExclusiveClear on T ′ using k′ < k searchers. The first difficulty
is to ensure that no subtrees that have been cleared are recontaminated. For this
purpose, when clearing T ′, the remaining k−k′ searchers that are not needed to
clear it are used to prevent recontamination. The second difficulty is to ensure
exclusivity: while these k− k′ searchers are protecting from recontamination, k′

searchers should be able to enter T ′ to clear it.

3.2 Exclusive Search Strategy to Clear Trees

Let k ≥ 1 and let T be any tree satisfying Theorem 1 and thus, given with
the decomposition of Figure 1. In this section, we informally describe a search
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Fig. 1. A tree T with avenue A = (u1, · · · , up). For any subtree X of T \A, xs(X) < k.

strategy that clears T using k searchers. By definition, the following strategy
ensures that all moves are performed along paths free of searchers, satisfying
the exclusivity and internally properties. To prove its correctness, it is sufficient
to show that it uses at most k searchers (in particular, when applying the sub-
procedures bring searchers or transfer defined below). The formal proof mainly
relies on the properties of the decomposition. The formal description of the
strategy and the complete correctness proof are provided in [6].

Strategy ExclusiveClear . For ease of description, let us assume that |V (R1)| ≥
k − 1 (see Fig. 1). Let I be a subset of u1 and k − 1 distinct nodes in R1. The
strategy starts by placing the searchers at the nodes of I. By definition of A,
xs(R1) ≤ k− 1. Then, the k− 1 searchers in R1 apply ExclusiveClear(R1) (such
a strategy exists by induction and by the definition of A). It is important to
mention that the searcher at u1 preserves R1 from being recontaminated by the
rest of T . After this sequence of moves, all edges in E(R1∪{(x, u1)}) are cleared.

Then, we aim at clearing the remaining subtrees of T \A that are adjacent to
u1 ( T 1

1 , · · · , T 1
di

, in Fig. 1). Moreover, after clearing such a subtree, we need to
preserve it from recontamination. Notice that, during the clearing of a subtree,
u1 will always be occupied. However, to ensure that exclusivity property is satis-
fied when searchers go from one subtree to another (during the bring searchers
procedure explained later), we need other nodes being occupied.

In order to use as few searchers as possible, the cleaning of the subtrees
adjacent to u1 must be done in a specific order. The order used to clear the
subtrees is built as follows. Each subtree is considered one after the other, in the
non-increasing order of xs. In this order, we assign the first subtree to a set S1,
the second one to a set S2, the third one to S1, the fourth one to S2, and we
continue to divide the subtrees until each of them is assigned to one of the two
sets. Note that the formula given in Figure 1 respects this order. The resulting
S1 = {T 1

1 , . . . , T
1
ddi/2e} and S2 = {T 1

ddi/2+1e, . . . , T
1
di
}
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The clearing of the subtrees is then divided into two phases. The subtrees in
S1 are cleared first, in the non-increasing order of their xs. Then, the subtrees in
S2 are cleared in the non-decreasing order of their xs. Each time that a subtree
T 1
j ∈ S1 has been cleared, one searcher is left on its root v1j (its node adjacent to
u1). That is, once a new subtree is cleared, we somehow lose a searcher to clear
the next one. This is balanced by the fact that the number of searchers needed
to clear the next subtree decrease, according to the order of clearing established
above, and provided by the properties of T (Th. 1).

After clearing the subtrees in S1, there are searchers currently “blocked” in
the roots of the cleared subtrees. In order to “re-use” these searchers to clear the
remaining subtrees, the strategy changes. Now, the roots of the contaminated
subtrees will be occupied to prevent recontamination of the cleared subtrees.
Procedure transfer (explained later) is used to occupy these nodes, ensuring no
recontamination of the subtrees and satisfying the exclusivity property. After
transfer , the searchers at the roots of the cleared subtrees become free, i.e., it is
possible now to use them to clear the next subtrees.

Then, the subtrees in S2 have to be cleared in the non-decreasing order of
their xs. Each time that a subtree T 1

j ∈ S2 has been cleared, the searcher on

its root v1j becomes free. That is, we somehow gain a searcher to clear the next
subtree, whose search number may increase, according to the properties of T .

Once all subtrees of T \A adjacent to u1 are cleared, the searcher at u1 goes
to u2 (unless it is already occupied). Now, all the searchers in R2 (see Fig. 1)
became free. Then, a similar strategy is applied for the subtrees of T \A adjacent
to u2, and so on, until all the subtrees adjacent to up are cleared.

We now describe more precisely two sub-procedures that are used to imple-
ment the strategy we have sketched above.

Procedure bring searchers. It remains to detail how the searchers, once a sub-
tree has been cleared, go to the next subtree, satisfying exclusivity and pre-
venting recontamination. To do so, let 1 ≤ i ≤ p and let us consider the step
of the strategy when the branch Ri (see Fig. 1) and all subtrees T i

1, · · · , T i
j0−1

(1 < j0 ≤ di) are cleared (the grey subtrees in Fig. 2(a)). There are two cases to
be considered: j0 ≤ ddi

2 e or otherwise.

Assume first that j0 ≤ ddi

2 e. As explained before, at this step, the nodes
in {ui, vi1, · · · , vij0−1} are occupied, and all other searchers are free and occupy

nodes of Ri and T i
j , for j < j0. It is ensured that also ui−1 (if i = 1, set ui−1 = x)

will be occupied. The process bring searchers(i, j0) is applied to bring xs(T i
j0

)

searchers into T i
j0

. The searchers are brought one by one, from the clear part to

T i
j0

, without recontamination and satisfying the exclusivity property.

Fig. 2(a) depicts one phase of this process. We prove that, before each phase
(but the last one, which is slightly different), there is a free searcher at some
node b, either in Ri \ui−1 or in T i

j \vij (for some j < j0). First, the searcher at ui
goes to the furthest unoccupied node in T i

j0
(dotted line 1 in Fig. 2(a)). Second,

the searcher at vij (or at ui−1) goes to ui (dotted line 2 in Fig. 2(a)). Finally, the

searcher at b goes to vij (or to ui−1) (dotted line 3 in Fig. 2(a)). Clearly, doing
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w ∈ I ij0

3
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1

T i
j
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vij0

vij
1

(a) Description of one phase of
bring searchers(i, j0).

1

Ri

T i
1

T i
j0

vij T i
di

vidi

Si
ui+1ui

vi1
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j

vij0

T i
j′

vij′

3

2

(b) Description of one phase of
transfer(i).

Fig. 2. Black nodes are occupied. Grey subtrees are cleared. Steps are depicted by
dotted arrows.

so, no recontamination occurs in the cleared subtrees (but in ui) and exclusivity
is satisfied. We apply similar techniques for j0 > ddi

2 e.
Procedure transfer . Let 1 ≤ i ≤ p and j0 = ddi/2e. Just after clearing T i

j0
,

we reach a configuration where the nodes in {ui, vi1, · · · , vij0} are occupied, T i
j0

is clear, and all other searchers are at nodes of Ri or T i
j (j ≤ j0). First, the

searcher at ui goes to ui−1 unless it is already occupied.
As explained before, the nodes in {vij0+1, · · · , vidi

} must now be occupied be-

fore clearing any subtree T i
j , for j > j0. This is the role of sub-process transfer(i).

The searchers are brought one by one, from the clear part to {vij0+1, · · · , vidi
},

without recontamination and satisfying exclusivity.
Fig. 2(b) depicts one phase of this process. We prove that, before each phase,

there is a free searcher at some node b either in Ri \ {ui−1} or in T i
j \ {vij} (for

some j ≤ j0). First, the searcher at vij (if b ∈ V (T i
j )) or at ui−1 (otherwise) goes

to ui (unless ui is occupied) (dotted line 1 in Fig. 2(b)). Second, the searcher
at b goes to vij (or ui−1) (dotted line 2 in Fig. 2(b)). Finally, the searcher at

ui goes to an unoccupied node in {vij0+1, · · · , vidi
} (dotted line 3 in Fig. 2(b)).

Once all these nodes are occupied, the searcher at ui−1 goes back to ui. Clearly,
doing so, exclusivity is satisfied and no recontamination occurs in the cleared
subtrees. This, in particular, since either all the nodes {ui−1, vi1, · · · , vij0−1}, or
ui, are always occupied during transfer(i).

4 Application to Distributed Graph Searching

In the previous section, we have described the ExclusiveClear strategy using
xs(T ) searchers controlled by central scheduler. In this section, we briefly explain
how this strategy can be adapted, and then used by the autonomous searchers
operating in an asynchronous distributed manner (see [6] for more details).

We consider a version of the classical discrete CORDA model for autonomous
mobile searchers. The searchers operate in asynchronous cycles of Look-Compute-
Move. During its Look action, a searcher (instantaneously) takes a snapshot of
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the network map together with the relative positions of all searchers. Based on
this information, during the Compute action, it computes (deterministically)
the next neighboring node where to move. During the Move action, the searcher
(instantaneously) changes its position according to its computation. There is a
finite but unbounded delay between any two actions. Moreover, the searchers are
anonymous, uniform (i.e., each searcher executes the same algorithm), oblivious
(i.e., memoryless to observations and to computations performed in previous
cycles) and have no sense of direction.

Let us consider an asymmetric tree, i.e., a tree with no non-trivial automor-
phisms. We show that in such a tree, each searcher can assign distinct labels
to the nodes such that each node of the tree is always given the same label by
all searchers during any Compute action [6]. Hence, in CORDA, an anonymous
asymmetric tree can be seen as uniquely labeled.

To clear a tree T in the distributed setting, at least xs(T ) searchers are
placed in the specified different nodes of T , forming an initial configuration I.
At each Compute action, a searcher computes a winning strategy S, starting from
I, and using xs(T ) searchers. Given any achievable configuration, S describes
the required move (of one of the searchers). S follows the same structure as
ExclusiveClear , inductively clearing the subtrees of T \A, where A is the avenue.
However, in contrast with ExclusiveClear , the main difficulty is to ensure that all
configurations in S are pairwise distinct. Otherwise, since searchers are oblivious,
they could enter in a loop of configurations, and the clearing would fail. In
particular, an attention should be paid to the case where searchers just have
cleared a subtree of T \A, and must go back towards A to clear the next subtree.
Moreover, in ExclusiveClear , it may happen that a searcher slides back and forth
along the same edge, while no other searchers have moved. This must be avoided
in S. The case of a labeled line subtree of T \ A is particularly tricky: an extra
searcher is required to clear it compared to ExclusiveClear . Nevertheless, we
succeed to use only xs(T ) searchers, even in the distributed case.

Theorem 3. For any anonymous asymmetric or any uniquely labeled n-node
tree T , and for any integer k with xs(T ) ≤ k ≤ n, there exists a distributed
protocol in the discrete CORDA model enabling k searchers to clear T .
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