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General relativistic statistical mechanics

Carlo Rovelli
Centre de Physique Théorique de Luminy, Aix-Marseille University, F-13288 Marseille, EU

Understanding thermodynamics and statistical mechanics in the full general relativistic context is an
open problem. I give tentative definitions of equilibrium state, mean values, mean geometry, entropy
and temperature, which reduce to the conventional ones in the non-relativistic limit, but remain valid
for a general covariant theory. The formalism extends to quantum theory. The construction builds
on the idea of thermal time, on a notion of locality for this time, and on the distinction between
global and local temperature. The last is the temperature measured by a local thermometer, and is
given by kT = ~ dτ/ds, with k the Boltzmann constant, ~ the Planck constant, ds proper time and
dτ the equilibrium thermal time.

I. INTRODUCTION

Thermodynamics and statistical mechanics are power-
ful and vastly general tools. But their usual formulation
works only in the non-general-relativistic limit. Can they
be extended to fully general relativistic systems?
The problem can be posed in physical terms: we do not

know the position of each molecule of a gas, or the value
of the electromagnetic field at each point in a hot cavity,
as these fluctuate thermally, but we can give a statistical
description of their properties. For the same reason, we
do not know the exact value of the gravitational field,
which is to say the exact form of the spacetime geome-
try around us, since nothing forbids it from fluctuating
like any other field to which it is coupled. Is there a
theoretical tool for describing these fluctuations?
The problem should not be confused with thermody-

namics and statistical mechanics on curved spacetime.
The difference is the same as the distinction between
the dynamics of matter on a given curved geometry ver-
sus the dynamics of geometry itself, or the dynamics of
charged particles versus dynamics of the electromagnetic
field. Thermodynamics on curved spacetime is well un-
derstood (see the classic [1]) and statistical mechanics on
curved spacetimes is an interesting domain (for a recent
intriguing perspective see [2]). The problem is also dis-
tinct from “stochastic gravity” [3, 4], where metric fluc-
tuations are generated by a Einstein-Langevin equation
and related to semiclassical effects of quantum theory.
Here, instead, the problem is the just the thermal behav-
ior of conventional gravity.1

A number of puzzling relations between gravity and
thermodynamics (or gravity, thermodynamics and quan-
tum theory) have been extensively discussed in the litera-
ture [5–14]. Among the most intriguing are probably Ja-
cobson’s celebrated derivation of the Einstein equations

1 One may ask whether equilibrium can ever be reached, given the
gravitational instabilities and long thermalization times. The
question is legitimate, but doesn’t authorize us evading the issue
of what equilibrium means: for the question itself to even make
sense, and because we are always concerned only with approxi-
mate equilibrium in nature, gravity or not.

from the entropy-area relation [15, 16], and PenroseWeil-
curvature hypothesis [17, 18]. These are very suggestive,
but perhaps their significance cannot be evaluated until
we better understand standard general covariant thermo-
dynamics.
One avenue for addressing the problem is perturbation

theory. Another is restricting to asymptotic flatness and
observables at infinity [19–21]. Although useful in spe-
cific contexts, these roads are incomplete, because they
miss the core issue: understanding if temperature has a
meaning in the bulk of spacetime in a strong field regime.
What do we mean when we say that near a cosmological
singularity temperature is high? For the moment we do
not have a definition of temperature that makes sense
where the metric might fluctuate widely.
A step towards general covariant statistical mechan-

ics was taken in [22, 23] and extended to quantum field
theory in [24]. The notion introduced in these papers
is thermal time. This is meant to address the basic dif-
ficulty of general relativistic statistical mechanics: in a
generally covariant theory, dynamics is given relationally
rather than in terms of evolution in physical time2, conse-
quently the canonical hamiltonian vanishes, and without
a hamiltonian H it is difficult to even start doing statisti-
cal physics. The idea of thermal time is to reinterpret the
relation between Gibbs states (ρ ∝ e−βH) and time flow
(generated by H): instead of viewing the Gibbs states
as determined by the time flow, observe that any generic
state generates its own time flow. The time with respect
to which a covariant state is in equilibrium can therefore
be read out from the state itself. The root of the tempo-
ral structure is thus coded in the non commutativity of
the Poisson or quantum algebra [24, 26].
Since any state is stationary with respect to its own

flow, the problem left open is characterizing the states
that are in physical equilibrium. Here we consider a so-
lution: equilibrium states are those whose thermal time is
a flow in spacetime.3 These, we suggest, are the proper
generalization of Gibbs states to the general covariant
context.

2 For a discussion of this crucial point see the Appendix and Chap-
ter 3 of [25], in particular Section 3.2.4.

3 This problem is considered also in [27–29].
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This step allows temperature to be defined, following
the intuition in [27, 30]: the temperature measured by a
local clock is the ratio between thermal time and proper
time. This yields immediately the Tolman-Ehrenfest law
[31, 32], which correctly governs equilibrium tempera-
ture in gravity. Entropy and free energy can be defined
and we obtain the full basis of generally covariant ther-
modynamics. The construction extends to the quantum
theory.

The result is a tentative set of equations that generalize
conventional thermodynamics and statistical mechanics
to classical and quantum general-covariant systems.

—

We use units where the Boltzmann constant k and the
Planck constant ~ are set to unity. We have tried to keep
the main text brief, confining background material to a
detailed Appendix. The reader is urged to start from the
Appendix unless the language and the background ideas
of the text are already familiar. Equations in the paper
are to be understood locally in phase space, namely on a
chart where suitable regularity conditions are satisfied to
avoid singular or degenerate behavior. A finer analysis
will make sense after the basic conceptual structure is
clear.

II. GENERAL COVARIANT GIBBS STATES

A. Thermal time

Let E be a symplectic space, whose physical interpre-
tation is the extended phase space of a general covariant
theory (see the Appendix for notation and details.) Let
C be a submanifold of E , representing the surface where
the constraints of the theory (which code the full dynam-
ics) are satisfied. The symplectic form σ of E induces a
presymplectic structure on C, whose null directions can
be integrated to define the gauge orbits o. The space Γ of
these gauge orbits, which is the physical phase space of
the theory, is again a symplectic space, with symplectic
form ω. It is in 1-to-1 correspondence with the space of
the solutions of the field equations, modulo gauges. A
statistical state ρ is a positive function on Γ normalized
with the respect to the Liouville measure

∫

Γ

ρ = 1. (1)

The hamiltonian vector field X defined by

ρ ω(X) = dρ (2)

generates a flow ατ in Γ called the thermal flow; its gen-
erator

h = − ln ρ (3)

is called the thermal hamiltonian and the flow parameter
τ is called thermal time4 [22].

B. Local thermal time

Consider a general covariant theory that includes gen-
eral relativity5, and assume physical 3d space Σ to be
compact, with the S3 topology. The space E can be
coordinatized by the 3d Riemann metric tensor q of Σ,
the matter fields ϕ, and their respective conjugate mo-
menta (p, π); these quantities are fields on Σ, namely
functions from Σ to a target space (q, ϕ, p, π) : Σ → V .
An orbit o determines a solution of the field equations
and therefore in particular a pseudo-riemannian mani-
fold (M, g)o. A point in o determines a spacelike Cauchy
surface φ : S3 → (M, g)o, having the given induced met-
ric q and extrinsic curvature p. In particular, a foliation
φτ : S3 → (M, g)o, τ ∈ R of (M, g)o corresponds to a line
on the orbit.
Consider now a real function T̃ on V . This deter-

mines a local function (which we indicate with the same

letter) on E , namely a map T̃ : E × Σ → R given by

T̃ ((q, p, ϕ, π),x) = T̃ (q(x), p(x), ϕ(x), π(x)),x ∈ Σ. The

coordinate T̃ (x) on E plays a role of “multi-fingered time”
in what follows. If the equation

T̃ (x) = τ, τ ∈ R (4)

defines a foliation of (M, g)o (on a given region of phase-

space) we say that T̃ (x) is a “local time”. The pa-
rameter of the foliation defines then a time coordinate
τ : (M, g)o → R on spacetime. The simplest example

is if the matter fields include a scalar field T̃ that grows
monotonically in spacetime (for the given region of phase
space): then the value of the field defines a time coordi-
nate.
If there are canonical coordinates T̃ and Qi on E , with

respective momenta PT̃ and Pi, such that

PT̃ (x) = −h(Qi(x), Pi(x)) (5)

on C, then T̃ (x) defines a deparametrization of the theory
in the following sense: the hamiltonian

h =

∫

d3x h(Qi(x), Pi(x)) (6)

4 So defined, τ has the dimensions of an action, as it is conjugate
to a dimensionless quantity. It can be made dimensionless by
multiplying the r.h.s. of (2) and (3) by ~. This is a bit artificial
in the classical theory, but will be natural in the quantum theory.

5 We systematically disregard at this stage the difficulty of defining
the Liouville measure that defines the integral (1) in the case
of field a theory. This is because the issue should properly be
addressed in the quantum context, where I will be a bit more
precise.
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evolves geometry and matter fields along the foliation φτ .
Notice that h is constant along the orbits it generates.
We can therefore associate its value to each o and obtain
in this manner a function h on Γ. (Weaker cases are also
of interest, in particular the case relevant in cosmology
where

PT̃ (x) = −f(T̃ (x)) h(Qi(x), Pi(x)); (7)

which describe a system with temperature varying in
time: see [23].)
Let us now come to the first main notion that we in-

troduce in this paper. We say that a statistical state ρ
on Γ is a “Gibbs state” if there is a local time T̃ (x) with
a local hamiltonian h of the form (6) (or (7)) satisfying
(3) up to an additive constant6.
If this is the case, the thermal time τ generated by ρ is

precisely the foliation time τ , and therefore thermal time
has a geometrical interpretation as a flow in spacetime.

C. Nonrelativistic limit

The definition above is a generalization of the conven-
tional definition of Gibbs states. To see this, recall that
for a Hamiltonian system with phase space Γ0, canon-
ical coordinates (q, p) and Hamiltonian H = H(q, p), a
Gibbs state is a state of the form ρβ = Z−1(β) e−βH with
Z(β) ≡

∫

Γ0

e−βH . The general covariant formulation of
this system is defined on the extended phase space E
with canonical coordinates (t, pt, q, p) and the constraint
C = pt + H(q, p). The constraint surface is coordina-
tized by (t, q, p) and the orbits are given by (t, q(t), p(t))
where q(t) and p(t) are the solutions of the Hamilton
equations. The space Γ of these orbits is isomorphic to
Γ0 (but not canonically so, until a t = t0 is chosen) via
(q, p) = q(t0), p(t0).
A time function on E is provided by τ = t/β, whose

conjugate momentum is pτ = βpt, which satisfies the
requirement that the constraint can be expressed in the
form (5), namely pτ = −h(q, p), where h = βH . The
hamiltonian, being constant on each orbit, is well defined
on Γ, therefore ρβ is a function on Γ, namely it is a
statistical state in the covariant sense. It is immediate
to see that it satisfies (3). In other words, the Gibbs
state picks out the coordinate t from E , where this was
confounded with the other variables.
Observe now that the temperature T ≡ 1

β is equal to

the ratio

T =
τ

t
(8)

between the thermal time τ , namely the parameter of the
evolution generated by the logarithm of the Gibbs state,
and the physical time t. This characterization of temper-
ature can be extended to general covariant systems.

6 The constant has no effect on the dynamics and we set it to zero
by redefining P

T̃
.

D. Mean values, mean geometry

and local temperature

Consider a family A of functions A on Γ. Let the mean
value of A on the state ρ be

Ā =

∫

Γ

Aρ. (9)

The thermal time flow ατ acts on these functions by
A(τ)(s) = ατ (A)(s) = A(α−τ (s)), s ∈ Γ, which satis-
fies dA/dτ = {A, h}. Since ρ is clearly invariant under
the flow, so are the mean values, but

fAB(τ) =

∫

Γ

A(τ)B ρ. (10)

is in general a non trivial function and describes temporal
correlations in the state. Define the mean geometry ḡ (if
it exists) of a state ρ for an observable family A as a
spacetime (M, ḡ) with a foliation φτ such that

Ā(τ) = A(φ−1
τ (ḡ)). (11)

Since Ā(τ) is τ independent, it follows that (M, ḡ) is
stationary under the flow defined by φτ . Therefore ξ =
∂
∂τ is a timelike Killing field on (M, ḡ). The norm of
ξ is ds/dτ namely the ratio between the local flow of
proper time and thermal time. The equivalence principle
therefore compels us to define the local temperature by
the local version of (8), namely

T (x) = |ξ(x)|−1, x ∈M (12)

from which the Tolman-Ehrenfest law [31, 32]

T (x)|ξ(x)| = constant (13)

that governs the spacetime variation of temperature at
equilibrium in gravity, follows immediately.7 In station-
ary coordinates (τ,x), the temperature is the inverse of
the Lapse function, since ds2 = N2dτ2.

E. Partition function

and global temperature

If ρ is a Gibbs state, we can obtain another Gibbs state
by exponentiating it with a constant β and multiplying it
by a β dependent factor that preserves the normalization:
ρβ = Z−1(β) ρβ . The effect of this exponentiation is to
scale the thermal time globally, and therefore to scale the
temperature globally. Therefore the global temperature
is defined with respect to a reference Gibbs state. Having

7 A suggestion in this direction was in [27]. The intriguing relation
between (8) and the Tolman law was pointed out in [30].
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a one-parameter family of Gibbs states allows us to define
the partition function

Z(β) =

∫

Γ

ρβ . (14)

The entropy of the state can be obtained as usual from

S(β) = −
∫

Γ

ρβ ln ρβ (15)

and from this we can derive in a few steps the standard
thermodynamical relation

S = −
∫

Γ

ρβ(β ln ρ− lnZ)

= βE + lnZ (16)

where E is the mean value of the energy h=− lnρ. The
global temperature β of the state should not be con-
fused with the local temperature T (x), which is space-
dependent. Also, the local temperature is defined di-
rectly by a single statistical state (if a mean geometry
exists), while the global temperature is only defined rel-
ative to another Gibbs state taken as reference.
In the following section, we extend this structure to

the quantum theory.

F. Quantum theory

Let K be the unconstrained Hilbert space of a general
covariant theory and H its physical Hilbert space (the
“space of solutions of the Wheeler-deWitt equation”).
General covariant quantum mechanics is well defined by
these structures (See the Appendix, and, more in detail,
Section 5.2 of [25].)
A quantum statistical state is a trace-class operator ρ

on H such that trρ = 1. Its entropy is S = −tr[ρ ln ρ].
Let A be an observable algebra formed by self-adjoint
operators A on H. Then ρ defines a state on this algebra
by

ρ(A) = tr[Aρ] (17)

and8 the Tomita theorem provides a flow ατ : A → A on
the observable algebra. This is the thermal-time flow in
the quantum theory [24]. If there is a local hamiltonian h
and a (now dimensionless) conjugate “time” observable
τ that in the classical theory reduces to the quantities
defined in the previous section, and generates an evolu-
tion

ατ (A) = e
i

~
hτAe−

i

~
hτ , (18)

8 Taking A to be a von Neumann algebra, namely a ∗-algebra
of bounded operators closed in the weak operator topology and
including the identity.

then we say that ρ is a Gibbs state.9 The Tomita flow of
ρ satisfies the KMS condition (see, for instance, [33])

fAB(τ) = fBA(−τ + 2πi) (19)

for any two observables A and B, where

fAB(τ) = ρ(ατ (A)B). (20)

A thermal state ρβ = Z−1(β) ρβ/2π satisfies the KMS
condition

fAB(τ) = fBA(−t+ iβ) (21)

with respect to the flow generated by ρ.
The notion of mean geometry can be extended to the

quantum theory10 by defining (M, ḡ, φτ ) (if it exists) as
the mean geometry of the state ρ with respect to a given
observable algebra A if

Ā(τ) ≡ ρ(ατ (A))) = A(φ−1
τ (ḡ)). (22)

The local temperature T (x) is defined by the norm of
the killing field of the mean geometry, and is therefore
a semiclassical concept. Restoring physical units, local
temperature is given on the mean geometry by

T (x) =
~

k

dτ

ds
, (23)

where ~ is the Planck constant and k is the Boltzmann
constant.
Notice that (23) gives the Unruh temperature [40] of a

quantum field theory on Minkowski space, if ds is the
proper time along the accelerated observer trajectory
and τ is the dimensionless parameter of the Bisognano-
Wichman flow U(τ) = eiτK/2π, where K is the boost
generator, which is the Tomita flow of the vacuum state
on the Rindler-wedge observables [33, 41].
This suggests that the Unruh effect should affect the lo-

cal temperature of an observer accelerated on a mean ge-
ometry, also in the context of the full generally-covariant
statistical mechanics of the gravitational field. If a mean
geometry has a Killing horizon, where the norm of ξ be-
comes singular, then the local temperature (23) diverges
on the horizon. The divergence of the temperature is a
high-energy, namely a short-distance phenomenon, there-
fore we can consider it in a region of spacetime small
with respect to the local curvature of the mean geome-
try, namely as a locally flat-space phenomenon. As such,
it must be determined by the Unruh temperature. An
explicit example of a statistical state where this happens
has been discussed in [42, 43]. An Unruh temperature in
the vicinity of the horizon of a black hole is red-shifted
by the Tolman relation (13) precisely to Hawking’s black
hole temperature at infinity.

9 Since space is compact, the usual difficulty of hamiltonian quan-
tum field theory with thermal states which historically gave rise
to algebraic quantum field theory, is not there, since energy does
not diverge on thermal states.

10 The idea of mean geometry is implicit in contexts where covariant
quantum states of gravity are associated to a classical geometry
[34–39].
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III. CONCLUSION

We have extended the machinery of statistical ther-
modynamics to the general covariant context. The new
concepts with respect to conventional statistical mechan-
ics are:

1. The statistical state is defined on the space of the
solution of the field equation.

2. Each statistical state defines a preferred time flow,
called thermal time.

3. A statistical state whose thermal time flow has a
geometrical interpretation, in the sense that it can
be reinterpreted as evolution with respect to a lo-
cal internal time, defines a generalized Gibbs state,
with properties similar to the conventional equilib-
rium states.

4. For such states, it is possible to define the relative
global temperature between two states.

5. A mean geometry is a stationary classical geome-
try with a timelike killing field and a time foliation,
such that the value of a suitable family of observ-
ables reproduces the statistical expectation values
of these observables in the statistical ensemble.

6. If a mean geometry exists, a local temperature is
defined. Local temperature is the ratio between
proper time and thermal time on the mean geome-
try:

T (x) =
~

k

dτ

ds
, (24)

It yields immediately the Tolman law.

This construction reduces to conventional thermodynam-
ics for conventional Hamiltonian systems rewritten in a
parametrized language.
Examples, extension of the formalism to the bound-

ary formalism [44–46], which is the natural language for
quantum field theory in the generally covariant context,
and applications to horizon thermodynamics, and in par-
ticular to the local framework defined in [47] and the
derivation of black hole entropy in loop quantum gravity
in [42], will be considered elsewhere.

—
I thank Alejandro Perez for the crucial suggestion to fo-

cus on the locality of the hamiltonian, Ed Wilson-Ewing
for pointing out the relevance for cosmology of the weaker
notion of equilibrium, captured by (7), Eugenio Bianchi
for numerous discussions on this subject, Simone Speziale
and Pierre Martinetti for several helpful comments.

APPENDIX

A. Classical theory

1. Mechanics

A conventional hamiltonian system is defined by a 2N
dimensional phase space Γ0 and a hamiltonian H . The
phase space is a symplectic space, namely a manifold
equipped by a non-singular closed symplectic two form
ω. Locally, we can always choose coordinates (qi, pi) on
Γ such that

ω = dqi ∧ dpi (25)

(summation understood). Having a symplectic two form
is the same as having Poisson brackets. H is a scalar
function on Γ. Every function f on a symplectic space
defines a vector field Xf on the space, defined by

ω(Xf ) = −df, (26)

where the l.h.s is the action of a differential two-form on
a vector, which gives a one form, and the r.h.s is the
differential of f . In turn, a vector field defines a flow
αt : Γ0 → Γ0, t ∈ R, namely a continuous one-parameter
group of automorphisms of Γ0 into itself, related to X by

dαt

dt

∣

∣

∣

∣

t=0

= Xf . (27)

The Poisson bracket between two functions A and B on
Γ0 is defined by

{A,B} = XB(A) = −XA(B). (28)

The flow of the hamiltonian is the time flow, namely the
evolution in time of each point of Γ0. Explicitly, the
hamiltonian vector field of H is easily seen to be

X =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
, (29)

so that the time flow is determined by the Hamilton equa-
tions

dqi(t)

dt
=
∂H

∂pi
,

dpi(t)

dt
= −∂H

∂qi
. (30)

which show that this geometric construction is equivalent
to hamiltonian mechanics. An observable A is a real
function on Γ0. The time evolution of an observable is
defined by A(t) = A ◦ αt and satisfies

dA(t)

dt
= {A,H}. (31)

Let Γ be the space of the solutions of the equation
of motion (qi(t), pi(t)). This is a finite dimensional space
with is isomorphic to Γ0, but not canonically isomorphic.
A specific isomorphism is obtained by choosing a value t0
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for the time parameter t. Then the isomorphism between
Γ and Γ0 is given by (qi, pi) = (qi(t0), pi(t0)). Thanks to
this isomorphism, Γ has a symplectic structure as well
(independent from t0).

For instance, the solutions of the dynamics of a
harmonic oscillator have the form (q(t) = A sin(ωt +
φ), p(t) = mωA cos(ωt + φ)). Therefore Γ is co-
ordinatized by A and φ. A map between Γ and Γ0

is obtaining choosing for instance t = 0, which gives
(q = A sinφ, p = mωA cosφ) and therefore the sym-
plectic form on Γ is

σ = −mω AdA ∧ dφ. (32)

An equivalent formulation of the dynamics, called the
presymplectic formulation, can be given on the 2N + 1
space C = Γ0 × R, with local coordinates (qi, pi, t)
equipped with the two-form

ω′ = dqi ∧ dpi − dH(qi, pi) ∧ dt. (33)

This two-form is degenerate, namely has a null direction
(since the space is odd dimensional). That is, there exist
a vector field X ′, determined up to scaling, such that

ω′(X ′) = 0. (34)

It is immediate to see that this vector field is proportional
to

X ′ =
∂

∂t
+X (35)

and its integral lines (called the orbits of ω′) are precisely
(the graphs of the) physical motions (t, qi(t), pi(t)). Let
Γ be the space of these orbits and π the projection that
sends each point of C to the orbit to which it belongs.
Γ carries a symplectic two-form σ uniquely characterized
by the fact that its pull back to C by π is ω′. (A pull
back is degenerate in the directions of the orbits.) The
symplectic space (Γ, σ) is clearly the same as the one
constructed above.

The equivalence between the conventional hamilto-
nian and the presymplectic formulation, is almost com-
plete. The reason for the “almost” is subtle, interesting,
and at the core of the problem discussed in this paper.
Given a hamiltonian system (Γ0, ω,H), we can immedi-
ately construct its corresponding presymplectic formula-
tion (C, ω′). But the opposite is not true, since we need
to know which one of the variables on C is the time vari-
able, in order to do so. In other words, the presymplectic
formulation leads to the same relations between the vari-
ables (t, qi, pi) as the hamiltonian one, but without spec-
ifying which of these variables is to be recognized as the
time variable. The difference is the same as the differ-
ence between giving a function y(x) or its parametrized
form (y(s), x(s)): in the first case x is singled out as the
independent variable, in the second case it is not.

2. General covariant mechanics

Systems like general relativity, or a single free relativis-
tic particle, are defined in the covariant language by a
Lagrangian that leads to a vanishing canonical Hamilto-
nian. Equivalently, they are defined by equations of mo-
tion that are gauge invariant under a re-parametrization
of the evolution coordinate. The Legendre transform of
the Lagrangian of these systems defines a phase space
with constraints, and the dynamics is coded in the con-
straints. Let E denote this phase space (to distinguish
it from the phase space of a conventional system, since
it has a different physical interpretation) and let C de-
note the subspace of E where the constraints vanish. E
is a symplectic space with symplectic form ω. Its restric-
tion to C is a presymplectic two-form ω′ (the pull back
of ω under the embedding i of C in E), which is degen-
erate in the directions of the hamiltonian vector fields of
the constraints themselves. The space of the orbits Γ is
again a symplectic space carrying a symplectic two-form
σ, uniquely characterized by

i∗ω = ω′ = π∗σ. (36)

where

E i←− C π−→ Γ. (37)

The presymplectic constraint surface (C, ω′) defines the
dynamics precisely as in the presymplectic formulation of
the hamiltonian dynamics described above. Notice that
it defines all the physical correlations among dynamical
variables, without specifying one of these as the indepen-
dent time variable. The distinctive feature of the general
covariant systems is therefore to define dynamics as a
“democratic” correlation between variables instead of as
evolution with respect to a singled out independent vari-
able.
A simple example is provided by the dynamics of a

free relativistic particle. The extended phase space E is
8-dimensional, with coordinates (xµ, pµ) and ω = dxµ ∧
dpµ). The constraint surface C is given by p2 = m2. The
orbits are given by

xµ(τ) =
pµ

m
τ + xµo . (38)

And there is a six dimensional space of these. Each or-
bit determines a correlation between observables. For
instance it determines the relation between different co-
ordinates on Minkowski space. Notice that all this is
Lorentz invariant. Notice also that this canonical formu-
lation never specifies one particular Lorentz time as the
preferred one. To obtain a conventional Hamiltonian for-
mulation we have instead to select a Lorentz frame and
choose one variable, say x0 (as opposed to x̃0 = Λ0

µx
µ

where Λ is Lorentz matrix) as the time variable. Then

this determines a Hamiltonian H =
√

~p2 +m2, which
generates the same motions, but in a non-manifestly
Lorentz invariant language.
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Notice that any Gibbs state

ρ ∼ e−βH = e−β
√

~p2+m2

(39)

breaks Lorentz invariance and selects a preferred Lorentz
time. Physically, this is the specific Lorentz-time flow
with respect to which a given gas of relativistic particles
is in equilibrium.
Notice that it is somewhat misleading to state that the

full dynamics of a generally covariant system is entirely
captured by the physical phase space Γ and all functions
on Γ, because this would be like saying that the dynamics
of a harmonic oscillator is captured by writing down the
phase space coordinated by A and φ, and all functions
of A and φ. If we do so, we loose track of the fact that
the harmonic oscillator is characterized by the oscillat-
ing variable q(t)! The dynamics of a generally covariant
system is not just described by Γ and the family of all
functions on Γ. We also need to give explicitly the em-
bedding of each orbit in C or, equivalently, in E . In the
case of the relativistic particle, for instance, the dynamics
is not just the specification that the physical space is six
dimensional: it is also the information that each point of
this space determines a timelike line in Minkowski space,
namely a correlation between quantities on C. In this
context, such quantities are called “partial observables”
[48].

3. Statistical mechanics

The symplectic form defines a volume-form on Γ0, ob-
tained by taking N times the wedge product of ω with
itself. This defines an integral on Γ0, which we indicate
simply without measure notation. A statistical state is a
real non-negative function ρ on Γ0 normalized as

∫

ρ = 1. (40)

Its entropy is defined by the Shannon expression

S = −
∫

ρ ln ρ. (41)

The mean value of an observable A in the state ρ is de-
fined by

Ā =

∫

Aρ. (42)

The mean value of A(t) can be equally obtained as the
mean value of A on the state ρ(t) which satisfies

dρ(t)

dt
= {ρ,H}. (43)

An equilibrium Gibbs state, is a particular statistical
state of the form

ρ ∝ e−βH (44)

where β = 1/kT is a positive real number and T is the
temperature. It is immediately clear that a Gibbs state
is time independent and the mean value of all observables
in a Gibbs state are time independent. Nontrivial time
correlations can nevertheless be defined from quantities
like

fAB(t) =

∫

A(t)B(0)ρ. (45)

The proportionality factor in (44) is determined by the
normalization condition:

ρ =
1

Z(β)
e−βH (46)

where

Z(β) =

∫

e−βH = e−βF (47)

is called the partition function, and F is called the free
energy. It follow immediately from the definitions and a
short calculation that the mean value E of the energy is
given by

E = − 1

β

d lnZ

dβ
(48)

and

S = βE − βF. (49)

these are the basic thermodynamical relations for the
Gibbs states.

4. General Covariant Statistical Mechanics

Here a condense the results of this paper. A statistical
state is a normalized positive function on the physical
state space. It determines a thermal flow with generator
X defined by

ρ ω(X) = dρ. (50)

the generator of this flow is the (state dependent) thermal
hamiltonian h = − ln ρ and the thermal time τ is the
parameter of this flow. For a conventional Gibbs state
in a non-generally-covariant system, temperature is the
ratio between thermal time and geometrical time.
In a gravitational field theory, if h is local, then it

defines a flow in spacetime, and a preferred foliation of
the mean geometry. The local temperature, which satis-
fies the Tolmann relation, is the local ratio between the
spacetime flow and proper time.

B. Quantum theory

1. Quantum Mechanics

A conventional quantum system is defined by a Hilbert
space H and a family A of observables A, self-adjoint
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operators on H, which in particular includes a Hamilto-
nian H . The Hamiltonian generates a unitary flow on H
by the one-parameter group of unitary transformations
U(t) = e−iHt in the Schrödinger picture and a flow on
the observables by A(t) = U(−t)AU(t) in the Heisen-
berg picture. In the Schrödinger picture, the Hilbert
space H corresponds to the phase space Γ0 at a given
time; while in the Heisenberg picture the Hilbert space
H corresponds to the phase space Γ of the solutions of
the equations of motion. The expectation value of an
observable in the state ψ ∈ H is given by Ā = 〈ψAψ〉, or
equivalently by

Ā = tr[Aρ] (51)

where

ρ = |ψ〉〈ψ|. (52)

The eigenvalues of A determine the quantization, namely
the possible outcomes of a measurement, of A and tran-
sition probabilities between such measurement outcomes
are determined by the matrix elements of U(t) in the
observable’s eigenbasis.

2. Quantum Statistical Mechanics

A statistical state ρ is a trace-class operator on H nor-
malized by

tr[ρ] = 1. (53)

The mean value of an observable in such a state is still
given by (51). The states of the form (52) satisfy ρ2 = ρ,
are called “pure”, and their conventional physical inter-
pretation is that the probabilistic nature of the uncer-
tainty in the predictions derived from them is not due
to our ignorance, but to irreducible intrinsic quantum
uncertainty. The von Neumann entropy of the state ρ

S = −tr[ρ ln ρ] (54)

vanishes on pure states. A Gibbs state is a state of the
form ρ ∝ e−βH . The partition function is the inverse of
its normalization, namely

Z(β) = tr[−eβH ]. (55)

Again the basic thermodynamical relation (49) follows in
a few steps from these definitions.

3. General Covariant Quantum Mechanics

A generally covariant quantum system is defined by an
extended Hilbert space K, a (possibly generalized11) sub-
space H, the “space of solutions of the Wheeler-deWitt

11 Namely a subspace of S in a Gelfand triple S ⊃ K ⊃ S.

equation”, and a family of observables A,B on K called
“partial observables”.
The eigenvalues of the partial observables determine

the quantization, namely the possible outcomes of a mea-
surement [49–51], and transition probabilities between
such measurements’ outcomes are determined by the ma-
trix elements

〈q|P |q′〉 (56)

of the (generalized) projection

P : K → H, (57)

in the observables’ eigenbases |q〉 in K (see [25], Chapter
5 and [52]). A specific example of a definition of these
transition amplitudes, finite to all orders, is provided by
covariant loop quantum gravity [53]. The quantum me-
chanics of generally covariant systems can therefore be
well defined without the need of specifying a time vari-
able.

4. General Covariant Statistical Quantum Mechanics

The thermal-time flow of a generally covariant statis-
tical quantum state ρ is defined by its Tomita flow. This
can be constructed as follows. The expectation value of a
statistical state ρ on the algebra A of the gauge-invariant
observables a define a state on this algebra. Assuming
A to be a C∗-algebra, the GNS construction defines a
Hilbert space H where observables are represented by op-
erators and ψ is a vector (even if ψ is a statistical state).
Let then S be the operator defined by Saψ = a∗ψ. It is
always possible to write S in the form S = Jeh/2, where
J is antinunitary and eh is self-adjoint. The Tomita flow
on the algebra is then defined by

αta = e−itha eith (58)

and the Tomita theorem states that this is a one-
parameter group of automorphisms of the algebra.
To understand what is going one, start from a nor-

mal quantum field theory. Pure states are vectors in
Fock space. Mixed states are density matrices, namely
trace class operators ρ on Fock space. These form an
Hilbert space, which we can call H: notice that a sta-
tistical state ρ is now represented by a vector in this
Hilbert space, for which a convenient notation is |ρ〉. If
a is an observable on Fock space, we can represent it on
H as a|ρ〉 = |aρ〉, which is again trace class. If ρ is a
Gibbs state for a Hamitonian H at inverse temperature
β, namely ρ = e−βH , then a straightforward calculation
shows that J |k〉 = |k∗〉 and eh|k〉 = |e−βHke−βH〉 sat-
isfy the definition of S. Therefore the Tomita flow of
the Gibbs state is precisely the time flow scaled by the
temperature: αta = e−it(βH)aeit(βH). In other words,
the Tomita relation between a state and a flow is the
quantum field theoretical version of the classical relation
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between a state on phase space and its Hamiltonian flow.
The operator J flips creation and annihilation operators
of the quanta over the thermal state, and therefore codes
the split between positive and negative frequencies. For
a more detailed discussion, see [24]. Time flow is fully
coded into the statistical state. The local relation be-
tween thermal time dτ proper time dt and temperature

T is given by equation (24).

—

Thanks to Hal Haggard for a careful reading of the
manuscript and useful comments.
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