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We report on the singular shaping of light using closed loop subwavelength slits whose shape is homeomorphic 
to the circle. Various sets of optical phase singularities can be generated depending on the given closed path whose 
geometry tailors the spin orbit interaction for the light that passes through the curved slit. Here three families of 
closed loop curves are considered polygons, hypocycloids, and epicycloids. 

OCIS codes: (050.4865) Optical vortices; (050.2555) Form birefringence; (310.6628) Subwavelength structures,
nanostructures.

When light passes through a structured material en-
dowed with subwavelength features, its propagation con-
stant may depend on its polarization state even if all of its
constituents are optically isotropic. One usually refers to
form birefringence. It has often been used to realize vari-
ous types of optical elements, among which are birefrin-
gent waveplates able to manipulate the polarization state
of light, i.e., its spin angular momentum. The orbital an-
gular momentum of light of a light beam, which is related
to its spatial degrees of freedom, can also be controlled.
This can be achieved using appropriate spatial distribu-
tion of the effective optical axis from which an output
light field results with a space-variant optical phase [1].
A simple approach to the geometrical control of the

spatial distribution of the phase of a light field can be
grasped from Jones formalism. To this aim, let us con-
sider a curvilinear birefringent optical element defined
by a closed path C�ϕ� encircling the origin in the �x; y�
plane, parametrized by the azimuthal angle ϕ defined
as tan ϕ � y∕x, and characterized by a constant birefrin-
gent phase retardation Δ. Moreover, let us assume that
the azimuthal angle ψ�ϕ� of the tangent to C locally de-
fines the optical axis orientation. Then, we consider an
incident circularly polarized incident plane wave propa-
gating along the z axis associated with the Jones vector
Ein � E0cσ where cσ � �x� iσy�∕ 2

p
, σ � �1, refers to

the circular polarization basis. Just after the optical
element, the output light field expresses along C
as Eout�ϕ� � E0�cos�Δ∕2�cσ � i sin�Δ∕2�ei2σψ�ϕ�c

−σ �.
When C is a circle, ψ�ϕ� � ϕ � π∕2, and the contra-

circularly polarized output light field component has
an azimuthal dependence of the amplitude of the form
ei2σϕ, which is associated with an optical vortex field car-
rying on-axis optical phase singularity with topological
charge l � �2. In practice, this corresponds to the case
of a circular subwavelength slit, which locally behaves as
a birefringent retarder whose main axes are directed par-
allel and perpendicular to it [2], as recently reported ex-
perimentally [3]. In contrast, when the axial symmetry of
the circuit C is broken, the generation of a singular opti-
cal field carrying a charge-two vortex with a broad orbital
angular momentum spectrum has been predicted [3].
Here we show that the nature of the optical phase

singularities that result from the diffraction of light on
two-dimensional closed-loop slits homeomorphic to the

circle (i.e., obtained from continuous deformation of a
circle) can, in fact, differ from previous predictions
[3]. This is done by introducing three different kinds of
path C�ϕ�. The first one consists of regular convex
polygons (p) with mp sides, mp ≥ 3. The two others,
hypocycloids (h) and epicycloids (e), correspond to
the trajectory of a point attached to a given circle as it
rolls without slipping within and around another fixed
circle, respectively. By considering these curves to be
inscribed in the unit circle, the parametrization of the
hypocycloid expresses as

x�θ� � mh − 1
mh

cos θ� 1
mh

cos��mh − 1�θ�;

y�θ� � mh − 1
mh

sin θ −
1
mh

sin��mh − 1�θ�; (1)

with mh integer, mh ≥ 3 and 0 ≤ θ ≤ 2π, whereas
epicycloids are described by

x�θ� � me � 1
me � 2

cos θ −
1

me � 2
cos��me � 1�θ�;

y�θ� � me � 1
me � 2

sin θ −
1

me � 2
sin��me � 1�θ�; (2)

with me integer, me ≥ 1. The circle is referred to as the
special case me � 0. Note that inscription into the
unit circle of the epicycloid with me � 1 requires apply-
ing the transformation �x; y� → �2∕ 3

p
��x� 1∕6; y�, to

Eq. (2). Moreover, note that the variable θ should not
be confused with the azimuthal angle ϕ.

The proposed choice of geometries is motivated by the
following considerations. First we note that a polygon
tends to the circle as mp increases and the role of
discrete rotational symmetry on the generated phase
singularities at finite value of mp, if any, is an issue that
we aim at addressing. Second, hypocycloids and epicy-
cloids are purposely chosen regarding their topological
features. Indeed, following previous Jones considera-
tions, the output field component (just after the slit),
whose circular polarization state is orthogonal to the
incident one, acquires an azimuthal dependence of
the amplitude of the form ei2σψ j�ϕ�, with j � �h; e�, where
lj � �1∕2π� H dψ j, is an integer. This leads us to introduce
the topological charges
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lh � σ�2 −mh� (3)

and

le � σ�2�me� (4)

associated with the singular near-field emerging from
the hypocycloidal and cycloidal slits, respectively. That
is to say, controlled topological shaping of light from
closed-loop slits can be achieved in the near field.
How such singular shaping of light is transported into
the far field by mere propagation is another issue ad-
dressed hereafter.
The far-field electric field is calculated in the frame-

work of scalar Fraunhofer diffraction theory and the
aperture plane is assumed to be perfectly opaque outside
the slit. In addition, we restrict our analysis to the com-
ponent of the output light field whose polarization state is
c
−σ and whose amplitude is given, up to a constant multi-
plying factor that characterizes the polarization conver-
sion efficiency, by

E
−σ�ξ; η� ∝

ZZ
t�x; y�e−i2πRλ�ξx�ηy�dxdy; (5)

where t � exp�i2σψ j�, j � �p; h; e�, is the complex trans-
mittance that accounts for the particular geometry of the
closed-loop slit of width w, inscribed in a circle of radius
R, and λ is the wavelength. Here, x and y are the reduced
coordinates with respect to R, as they appear in Eqs. (1)
and (2), whereas ξ and η are the reduced reciprocal co-
ordinates, which vary between −1 and 1. More precisely,
the following expressions can be derived for the trans-
mittance phase Φj�ϕ� � 2σψ j�ϕ�∶Φ�n�

p � 2σπ��2n −

1�∕mp − 1∕2� for the nth side of the polygon,
(1 ≤ n ≤ mp), Φh�ϕ� � lhθh�ϕ� and Φe�ϕ� � leθe�ϕ�
[note that θh�ϕ� ≠ θe�ϕ�]. In what follows, results ob-
tained for the three families of geometries are discussed
by using σ � 1, w∕R � 0.05 and λ � 500 nm, with
R � 10 μm.
Polygonal slits. Far-field intensity and phase for the

first three polygons with mp � �3; 4; 5�, are shown in
Fig. 1. Although on-axis intensity is zero in all cases, it
is associated with a spiraling azimuthal profile of the
phase only for mp ≠ 4. Indeed, as shown in the third
row of Fig. 1, azimuthal phase profiles around the origin,
taken along a circle that passes by local intensity maxima
(see dashed curve on intensity profiles), have a spiraling
behavior associated with the topological charge −1 for
mp � 3 and�2 formp ≥ 5, whereas π phase dislocations
appear formp � 4. This demonstrates that polygonal slits
can be used to generate optical vortex beams with topo-
logical charges �1 and �2, whose sign is controlled by
the handedness of the incident circular polarization
state, σ � �1.
Hypocycloidal slits. A richer topological diversity is

obtained when using hypocycloidal slits rather than
polygonal ones. This is shown in Fig. 2 where spiraling
phase patterns around the origin are associated with
topological charges −1, −2, and −3 for mh � �3; 4; 5�, re-
spectively. Such a far-field behavior thus follows the
near-field topological features given by Eq. (3). This

illustrates quantitatively the topological shaping abilities
of closed-loop slits with appropriate design, which can-
not be achieved using circular slits [3]. However, despite
being quantized, we note that obtained helical phase pro-
files have a nonuniform azimuthal dependence, which is
reminiscent of the nonuniform near-field azimuthal phase
dependence Φh�ϕ�.

Epicycloidal slits. Although the behavior of epicycloi-
dal slits with me > 0 quantitatively departs from the
circular case me � 0, see Fig. 3, the circulation of the
phase around a circle path nearby the propagation direc-
tion always gives a topological charge of two (see white
dashed circles in Fig. 3) in contrast to the case of hypo-
cycloids. On-axis higher-order topological diversity in-
deed does not follow Eq. (4) for epicycloidal slits.
Nevertheless, the signature of the near-field topological
charge given by Eq. (4) is recovered by considering
closed circuits passing through the main maxima of
intensity, see black dashed circuits in Fig. 3 for me � 1
and me � 2. On this ground, the epicycloidal design ap-
pears less interesting than the hypocycloidal one.

Higher-order slits. One may argue that all structures
should eventually behave as a circular slit for large
enough indices mj , j � �p; h; e�, which is illustrated in
Fig. 4 where mj � 8. In that case, all designs tend to give
on-axis phase singularity with topological charge 2σ. Still,
we notice that the phase patterns have distinct fine

Fig. 1. First row: slit aperture for polygons with mp � 3
(triangle), 4 (square), and 5 (pentagon). Second and third
rows: Fraunhofer diffraction intensity and phase patterns in
the reciprocal coordinate system, here displayed in the range
0.1 ≤ �ξ; η� ≤ 0.1. Fourth row: azimuthal dependence of the

phase along the closed contours that appear as dashed curves
on phase plots.
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structures depending on the design of the slit at finite
values of mj . For instance, mh phase singularities with
topological charge −σ encircle the origin in the hypocy-
cloidal case (see circle markers in Fig. 4) whereas a
quasi-dislocation ring is observed for both the polygonal
and epicycloidal cases (see white circles in Fig. 4).

Finally, we note that the presence of a constellation of
unit charge optical phase singularities, regardless of the
geometry (see Fig. 4), is a consequence of the broken
axial symmetry when C differs from the circle. Vortex
splitting is indeed a general feature of higher-order sin-
gularities that are intrinsically unstable [4,5].

To conclude, appropriate designs of closed-loop slits
enable topological shaping of light via spin-orbit interac-
tion of light. Three kinds of geometries have been
proposed and analyzed: polygons, hypocycloids, and
epicycloids. The generation of various sets of optical
vortices have been shown and allow us to envision a
novel route to realize spin-orbit interfaces able to
manipulate the orbital angular momentum of light at a
small spatial scale.
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Fig. 3. Same as Fig. 1 for epicycloids with me � 0 (circle), 1
(cardiod), and 2. Bottom row: phase profiles refers to elliptical
path indicated by black dashed ellipse on corresponding upper
rows.

Fig. 2. Same as Fig. 1 for hypocycloids with mh � 3 (deltoid),
4 (astroid), and 5.

Fig. 4. Comparative analysis of higher order structures with
mi � 8 and i � �h; p; e�. Bottom row: see text for details.
Coordinate ranges are similar to those of Fig. 1.
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