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Abstract: This paper presents a first study on the application of interval analysis and consis-
tency techniques to state estimation of continuous-time systems described by nonlinear ordinary
differential equations. The approach is presented in a bounded-error context and the resulting

methodology is illustrated on an example.
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1 Introduction

The problem to be considered in this paper is the state estimation of a nonlinear continuous-time

system in a bounded-error context. The system is assumed to be described by

(1)

where ¢ € [t,t] C R is the time, x(¢) € R™ and y(¢) € R™ are the state and the output vectors
at time . When the evolution and the observation functions f and g are linear, many efficient
methods can be found in the literature (see, e.g., [19], [5]). To my knowledge, when f is nonlinear,
state estimation has never been studied in the bounded-error and continuous-time context. This
paper proposes a first attempt in that direction. The basic tools to be used are interval analysis

and consistency techniques.

In a bounded-error context, interval analysis [16] has often been used for parameter estimation
117], [12], 3], [15] and state estimation of discrete-time systems [4], [13]. Consistency techniques
have been proved to increase the efficiency of interval methods when the number of variables

is high (see [6], [8], [18]) and have recently been applied to parameter estimation [9] and state



estimation [11], [10]. Nevertheless, interval and consistency techniques have never been used to

estimate state variable of continuous-time systems.

Here, we shall only assume that f is continuous and differentiable. It is also assumed that for
all ¢, domains [2;] () and [y;] (t) containing the variables x;(t) and y;(t) are available. These
domains can be arbitrarily large, e.g., [x;] (t) =] — 00, oo[ if no information is available on x;(t).
If a measurement y;(ty) of y;(t9) has been collected at time ¢ = tg and if an upper bound e
on the absolute value for the error g;(ty) — y;(to) is known, then the domain for y,(ty) will be
;! (t) = [y;(to) — e,y;(to) + €]. For simplicity, these domains will be assumed to be intervals,

but union of intervals could also be considered.

Section 2 recalls the basic notions of interval analysis to be used. Section 3 introduces a basic
interval method to deal with ordinary differential equation. Section 4 presents an algorithm

based for noncausal state estimation. An illustrative example is given in Section 5.

2 Interval computation

An interval [z is a closed and connected subset of R. A boz [x] of R” is a Cartesian product of n
intervals. The set of all boxes of R” is denoted by IR". Note that R" =] —o00, 00[x - -+ X] —00, 00|
is an element of IR™. Basic operations on real numbers or vectors can be extended to intervals

in a natural way.
Example 1 If [t] = [t,t] is an interval and [X] = [x21,T1] X [Zy, T2 is a boz, then the product
t] x [x] is defined as follows

[]L ﬂ « [£1751} o [ﬁ/ ﬂ * [£1751} o [min(t_xl'/zfl'/ ££17£EI)7 maX(t_m17zfl7££17fjl)]
2y v - - _ _ _ —
[£27 TQ} [L ﬂ * [£27 TQ} [mln(t_[ﬂQ , 12, 1y, ti?)v max(t—xQ , 12, 1y, ti?)]

The function [f](.) : IR™ — IRP is an inclusion function of a function f :R™ — RP if

vix] €IR", £([x]) = {f(x) [x € [x]} < [£](x]).

Interval computation makes it possible to obtain inclusion functions of a large class of nonlinear

functions, as illustrated by the following example.
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Example 2 : If f(z1,22) = ((1 —0.01z2) 21 ; (=14 0.0221) z2), a methodology to obtain an
enclosure of the image set £([10,20], [40, 50]) is as follows:

3

0500\ [ (- 001x 40,50« 10,20 | (1 [0.4,0.5) 10,20
110, 20] (—1+0.02 # [10,20]) = [40, 50] (—1+1(0.2,0.4]) * [40,50]
- 05,06 %[10,200 \ [ (5.12)
~\ [08,-06 %4050 |\ ([~40,—24))

This methodology can easily be applied for any box [x1] X [x2] and the resulting algorithm corre-

sponds to an inclusion function for f. |

The interval union [x]UJy| of two boxes [x]| and [y] is the smallest box which contains the union
x| U[y]. The width w([x]) of a box [x] is the length of its largest side. The e-inflation of a box

x] = [z, %1] x -+ X [z, Tn] is defined by

inflate ([x],¢) £ [z — &, %1 +¢€] X -+ X [z, — &, Tn + €. (2)

3

An enclosure of the set [x] g~ ' ([y]) where g : R” — RP, [x] €IR" and [y] €IRP can be
obtained by the forward-backward propagation algorithm [1], [10]. Its principle, based on interval

3

computation, is illustrated by the following example.

Example 3 If g(x1,79) = 21 * 13 + exp (71), an enclosure of [x|Ng ! ([y]) is obtained by the

following algorithm.

Algorithm: ENCLOSE (in: [y], inout: [x])

1 [z1] == [aa]  [a] 5

2 [zo] r= exp([z1]);

g [l = ([a] + [z2]) N[yl

3 al =y = [z N[z];  [22] := (W] = [21]) N [22];
27 [a] = log([22]) N [w1];

1 [za] =[] [ [z2]) N [za] 5[] o= ([aa] / [21]) N 2]

The z;’s are used to decompose g into binary or ternary statements. Steps 1, 2 and 3, cor-
responding to the forward propagation, compute an interval evaluation of g([x]). Steps 3’, 2’

and 1’ correspond to the backward propagation of 1, 2 and 3, respectively. Backward statements



are obtained by rewriting the constraints of the forward statements in a different form and in
the reverse order. For instance, Step 3 corresponds to the constrainty = 2z + zo which can be

rewritten zy =y — 2o o1 29 =y — z1 to make Step 8. [ |

3 Picard theorem

Interval analysis for ordinary differential equations were introduced by Moore [16] (See [2] for
a description and a bibliography on this topic). These methods provide numerically reliable
enclosures of the exact solution at sample times ¢, 1, ... These techniques are based on Picard

Theorem.

Theorem 1 Let t; and ty be two real numbers. Assume that x(t1) is known to belong to the

box [x](t1). Let [w] be a box (that is expected to enclose the trajectory x(1), T € [t1,t2]). If
[x](t1) + [0, 82 — ta]  [£](IW]) C [W], (3)

where [f](.) is an inclusion function of £ and where [0,ty — t1] is the smallest interval which

contains O and ty — t1, then

(1) V7 € [t1, 1], x(7) € [x](t1) + (0,82 — ta] * [f]([w]),
(i) x(t2) € [x[(t1) + (b2 — t1) * [f]([W]).

(4)

From this theorem, one can build an algorithm computing an enclosure [x](t2) for x(t2) from an

enclosure [x]|(t1) for x(¢1).

Algorithm [¢] (in: 1,9, [x](t1), out [x](t2))

1 [®](t2) := X(t) + (t2 = t1) * [F]((x](11)));

2 [v] = X](t) U R](f2);

3 [w]:= inflate([v],a.w([v D + ).

4 if [x|(t1) + 0,82 — t1] * [£f]([W])) € [w := R"; return};
5 [X(t2) = X](t1) + (f2 — 1‘1) * [ﬂ([WD

Comments: Step 1 computes an estimation [X](¢2) for the domain of all x(¢2) consistent with

the fact that x(¢1) € [x](¢1). Note that, it is not certain that [X](¢2) contains x(t2). Step 2



computes the smallest box [v] containing [x](#1) and [X](t2). At Step 3, [v] is inflated (see (2)) to
provide a good candidate for [w]|. a and 3 are small positive numbers (in the examples treated
in paper they are chosen as @ = 0.1 and § = 0.0001). Step 4 checks the condition of Theorem
1. If the condition is not satisfied, no bounds can be computed for x(t2) and R" is returned.
Otherwise, Step 5 computes a box containing x(t2) using (4). Note that, if |to — ¢1] is small
enough, the Picard condition (1) holds true. |

A direct consequence of the Picard theorem is the following implication

x(t1) € [x](t1) = x(t2) € [@](t1, 12, [x](t1))- (5)

The operator [¢] can be used to compute guaranteed enclosures of the state vector at times
8,26, .. kb, where 6 is the sampling time and k is the largest integer smaller than /¢, from a
given box [x](0) containing x(0). This is performed by the following algorithm PICARD, where

x| (k) is a short notation for [x](kd).

Algorithm PICARD (in: t1,ty, [x](0), out: [x](1),..., [x](k))
1 fork:=0tok—1
2 x](k +1) := [@](kd, (k +1)6, [X](k))

This algorithm is known to provide very rough enclosures of the x(k)’s as illustrated by the

following example.

Example 4 Consider the Lotka- Volterra predator-prey model given by the following equations

1 = (1—0.0lz2) 21 (©)
.i'g = (—1 + 0.02.%1) )

For [x](0) = [49.5;50.5] x [49.5;50.5],6 = 0.005 and k = 400, PICARD generates a sequence of
bozes [x|(k), the superposition of which is depicted in Figure 1. For allk € {1,...,k}, we are
certain to have {x(k) | x(0) € [x](0)} C [x][(k). The x(k)’s in white in the picture are obtained
for x(0) = (50, 50).
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Figure 1: Set of all boxes generated by PTICARD; the frame box is [0, 100] x [0, 200]

Example 4 illustrates the major problem of interval methods in ordinary differential equations:
the explosion of the size of the [x](k)’s. There are mainly two reasons for this explosion. On the
one hand, step methods have a tendency to accumulate errors from point to point. On the other,
the approximation of an arbitrary region by a box, called the wrapping effect, may introduce

considerable imprecision after number of steps. This explosion can be reduced by using the

Lohner method [14].

4 Consistency algorithms for state estimation

Consider again the system (1), where domains [z;] (#) and [y;] (¢) for the variables x;(t) and
y;(t) are available. Recall that these domains may be equal to | — 0o, 00] is no information is
available on the associated variable. At sampling times ¢ = k§, the variables z;(t) and y;(t)
will be denoted by x;(k) and y;(k). The basic idea of consistency techniques is to contract the
domains for the variables by pruning parts that are inconsistent with (1) and the domains for
the other variables. Using consistency for ordinary differential equation has first been presented

in [7]. The contractions to be considered are based on the following implications.

(i) x(k) € [x](F) = x(k+1) € [@](ké, (k+1)6,[x[(F)) (see (5))
(ii)  x(k) € [x](k) — y(k) € g([x](k))

(i) y(k) € [y[(k) = x(k) € g ([x](k))

(iv) x(k+1)ex|(k+1) = x(k)e€[o|(k+1),kd,[x](E+1)) (see (5))

Each of these implications corresponds to a contracting statement of the following algorithm.

Note that no consistent values can be lost.



Algorithm ConTRACT (inout: [x/(0),...,[x](k), [y](0),...,[y](k))

—

for k:=0to k
() (k + 1) = [x](k + 1) 0[] (8, (k + 1)8, [x](k)): // see (i)
[y](k) == [y ](k) 1 [g] (1x](k)); // see (i)
endfor
for k:=kto 0
[x[(k) == [x](k) N [g~ ] ([y](k)); // see (iii)
[x] (k) := [x](k) N [@]((k + 1)6, k6, [x](k + 1)); /] see (iv)
endfor

At Step 3, [g](.) is an interval extension of g(.). The contraction of [x](k) at Step 6 is performed

as in Example 3. The procedure can be called several times until no more significant can be

observed. When the fixed point is reached, domains may still contains large parts of inconsistent

values. Bisections should thus be performed to eliminate them. The strategy to be followed is to

partition [x](ko), for a given ko, with smaller boxes in order to eliminate inconsistent values in

all the other domains. The resulting algorithm is described below. ¢ is a small positive number.

Algorithm STRANGLE(in: ko, ¢, inout: [x](0),...,[x]|(k),[y](0),...,[y](k))

1

NolENe I > G S VU N

—
)

partition [x](ko) into ¢ boxes [x,](ko), ..., [x,](ko) of width smaller than e;
fori:=1tod,
for & := 1 to F do {[x] (k) := [x](k); [y, (k) i= [y](k)}: endfor k
while a significant improvement is obtained do
CONTRACT ([ (0), - [x,](R), T3]0, . 1 (B)) :
endfor ¢

for k:=0to k

endfor k

Note that even for infinitely small e, the domains [x](k) and [y](k) may contain large part

of inconsistent values. The principle of the algorithm STATEBOUND to be now given is to



call STRANGLE for different kg and for decreasing values of ¢ in order to contract efficiently the
domains. Again, even when the fixed point is reached, the domains may still contain inconsistent

value, but no consistent values has been lost.

Algorithm STATEBOUND (in: &, inout: [x](0),...,[x](k), [y](0),...,[y](k))

1 do

2 do

3 chose a random integer ko in {0,1,... k};

4 STRANGLE(k:O, e, [x)(0), ..., [x|(k), [y](0),..., [y}(l;)) ;
5 while the improvement is significant;

6 decrease ¢;

7 while the improvement is significant.

Remark 1 For simplicity, in the example of Section 5, the external do-while loop is replaced
by the loop “for ny := 1 to ny”, where nq is chosen by the user. The internal do-while loop is

replaced by the loop "for ng :=1 to 30”. The statement “decrease €” is replaced by e :=¢/5. A

5 Example

Consider the system (1) where the evolution equation is given by (6) and the observation equation
is y = 1. The data §(t) have been obtained by simulating the system with x(0) = (50, 50) and
by adding to the noise-free output y(¢) a random white noise with a uniform distribution inside
the interval [—1, —1]. The domains [y](¢) for y(t) are taken as [y|(t) = [g(t) — 1.5,5(t) + 1.5, to
take into account that accurate bounds for the feasible errors is rarely available. The available
domains for the x(¢)’s are all taken equal to [0,100] x [0,200]. For 6 = 0.03; and k = 200,
STRANGLE(ko = 0,e = 4) generates the sequence [x|(k) depicted in Figure 2 (a), in 1.33 sec. on
a Pentium 300. Note that for small £’s, the domains [x](k) are much more accurate than for
large k’s. Let us now call STRANGLE (ko =k e= 4). For large k’s the domains have now been
considerably contracted (see Figure 2 (b)). For n; = 1 (i.e., the external loop is run once),

STATEBOUND(e = 4) generates the domains of Figure 2 (c¢) in 11.4 sec.



Figure 2: Superposition of all domains [x](k) contracted by

the algorithm STRANGLE; measurements for y(k) are available

Assume now that the measurements are no more available, i.e., all domains for the y(t)’s are
taken as | — 0o, 0o[. All domains for z(t) are taken as [0,100] x [0,200]. The only variable to be
approximately known is x¢, the domain of which is taken as [x](0) = [49.5,50.5] x [49.5,50.5].
For § = 0.005, k = 400, n1 = 1, STATEBOUND(e = 50) generates the domains [x](k) depicted
on Figure 3 (a). For i = 2, it generates the domains of Figure 3 (b) and for 7; = 3, those of
Figure 3 (c). These results are more accurate than those of Figure 1 obtained by the PICARD

algorithm.

To T2

[x](k) XI(R)~_

)

[x](k)

x](0) [x](0) [x](0)

~ ~ ~

(a) T (b) x1 (c) Z1

Figure 3 : Superposition of the domains [x](k) contracted by STATEBOUND;

no measurement is available and the initial state vector is approximately known

6 Conclusion

For the first time, this paper studies the application of interval analysis to state estimation
of nonlinear continuous-time systems. In a bounded-error and in a noncausal context, a new
algorithm to enclose efficiently all consistent values for the state vector inside a box has been

presented. This algorithm could be used to build a recursive and causal state estimator. Its



efficiency could be improved by using more efficient consistency techniques [7] and more accurate

interval simulation procedures [14].

The source code in C++ (which takes less that 100 lines) corresponding to the example is

available on request.

References

1]

7]

F. Benhamou, F. Goualard, L.. Granvilliers, and J. F. Puget. Revising hull and box consis-

tency. In International Conference on Logic Programming, 1999.

M. Berz, C. Bischof, G. Corliss, and G. A., editors. Computational Differentiation: Tech-
niques, Applications and Tools. STAM, Philadelphia, Penn., 1996.

M. Candev. Scientific Computation and Validated Numerics, chapter On the Application
of an Interval Algorithm for Set Inversion, pages 140-146. Akademie Verlag, 1996.

G. Chen, J. Wang, and L. S. Shieh. Interval Kalman filtering. IEEE Trans. on Aerospace
and Electronic Systems, 33(1):250-258, 1997.

F. L. Chernousko. State Estimation for Dynamic Systems. CRC Press, Boca Raton, 1994.

E. Davis. Constraint propagation with interval labels. Artificial Intelligence, 32:281-331,
1987.

Y. Deville, M. Janssen, and P. V. Hentenryck. Consistency techniques in ordinary differ-
ential equations. In Proceedings of the Fourth International Conference on Principles and
Practice of Constraint Programming, Lecture Notes in Computer Science. Springer Verlag,

1998.

E. Hyvonen. Constraint reasoning based on interval arithmetic; the tolerance propagation

approach. Artificial Intelligence, 58:71-112, 1992.

L. Jaulin. Interval constraint propagation with application to bounded-error estimation.

Automatica, 36:1547-1552, 2000.

10



[10]

1]

L. Jaulin, I. Braems, M. Kieffer, and E. Walter. Nonlinear state estimation using forward-

backward propagation of intervals. In SCAN 2000, 2000.

L. Jaulin, M. Kieffer, I. Braems, and E. Walter. Guaranteed nonlinear estimation using

constraint propagation on sets. International Journal of Control (accepted for publication),

2000.

L. Jaulin and E. Walter. Set inversion via interval analysis for nonlinear bounded-error

estimation. Automatica, 29(4):1053-1064, 1993.

M. Kieffer, L. Jaulin, E. Walter, and D. Meizel. Robust autonomous robot localization

using interval analysis. Reliable Computing, 6:337 362, 2000.

R. Lohner. Computer Arithmetic: Scientific Computation and Programming Languages,
chapter Enclosing the solutions of ordinary initial and boundary value problems, pages

255-286. E. Kaucher and U. Kulisch and Ch. Ullrich, 1987.

S. A. Malan, M. Milanese, and M. Taragna. Robust analysis and design of control systems
using interval arithmetics. In Proceedings of the IFAC' 13th Triennial World Congress, pages
25-30, San Francisco, 1996.

R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1966.

R. E. Moore. Parameter sets for bounded-error data. Mathematics and Computers in

Simulation, 34:113-119, 1992.

D. Sam-Haroud and B. Faltings. Consistency techniques for continuous constraints. Con-

straints, 1:85-118, 1996.

F. C. Schweppe. Recursive state estimation: unknown but bounded errors and system

inputs. IEEE Trans. on Automatic Control, 13(1):22-28, 1968.

11



