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Abstract

Global sensitivity analysis is used to quantify the influence of uncertain vari-
ables, and their interactions, on the response variability of a numerical model.
Variance-based importance measures (called Sobol’ indices) are now widely
used but their estimation requires a large number of model evaluations, es-
pecially when interaction effects are of interest. The derivative-based global
sensitivity measures (DGSM) have recently shown their relevance and ef-
ficiency for the identification of non-influential inputs. In this paper, we
extend previous works by studying the so-called crossed DGSM which are
based on second-order derivatives of model output. By using a L2-Poincaré
inequality, we provide a general inequality link between crossed DGSM and
superset importance (i.e. total Sobol’ indices of a set of inputs). It provides
a crossed-DGSM based maximal bound for the superset importance. In or-
der to apply this result, we discuss how to estimate the Poincaré constant
for various probability distributions. A particular emphasis is placed on the
detection of influential interactions between two inputs. Several analytical
and numerical tests show the performance of the bound and allow to develop
a generic strategy for interaction screening.
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1. Introduction

In engineering studies, computer models simulating physical phenomena
and industrial systems often take as inputs a high number of numerical and
physical variables. For the development, the analysis and the uses of such
computer models, the global sensitivity analysis methodology is an invaluable
tool [22]. Among quantitative methods, variance-based methods are used
most often [23]. The main idea of these methods is to evaluate, by the way of
so-called Sobol indices [24], how the variance of an input or a group of inputs
contributes to the model output variance. Sobol indices of first order measure
the effect of individual inputs, while second-order Sobol indices correspond
to the influence of the interaction between two inputs (by excluding their
individual effects). Moreover, the powerful total Sobol sensitivity index has
been introduced to express the overall contribution of one specified input,
including the effects of its interactions (second order, third order, . . . ) with
all the other inputs [11]. More generally, the so-called superset importance
of an input set I has been defined in [17] and [12] as the sum of all Sobol’
indices relative to the supersets of I.

However, obtaining all these Sobol sensitivity indices is rather costly in
terms of the number of necessary model evaluations [23]. This seriously limits
their use because industrial computer codes often require several minutes or
hours to perform one run. Moreover, non-costly alternative methods based
on metamodels or smoothing techniques are not applicable in high dimen-
sion, which typically arises when the number of inputs is larger than several
tens [28, 18]. To manage the problem of large numbers of inputs, [26] have
introduced the Derivative-based Global Sensitivity Measures (DGSM) which
have only been finely studied and applied recently [27, 21, 13]. The DGSM
consist, for each input, in integrating the square derivative of the model out-
put over the domain of the inputs. In some cases, DGSM has been proved to
be computationally more tractable than variance-based measures [15]. More-
over, these indices need the computation of the gradient of the model output
with respect to the model inputs, which can be at least estimated by a finite-
differences technique. However, if the computer model proposes the adjoint
code to compute output derivatives [5], DGSM computations will be inde-
pendent of the number of input parameters and sensitivity analysis can then
be performed for models including several hundreds of inputs. Automatic
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differentiation tools [9] can be helpful to that purpose.
Recently, in order to reinforce DGSM interpretation, some authors have

questioned the possible links between DGSM and variance-based sensitivity
indices. For an input following a uniform or normal probability distribution,
[27] has proved that the total Sobol’ index is bounded by a term involving a
constant and the DGSM. [16] has developed a generalization of this inequality
for a large class of continuous probability measures. Thus, it has been proved
that the DGSM can be used for robust variable screening. In engineering
applications, this inequality allows to develop a generic strategy to obtain
global sensitivity information from DGSM and first-order Sobol indices [13].

In this paper we extend this approach to interactions, by proving a gener-
alization of the inequality in the same large class of probability measures. We
also obtain results for the class of log-concave measures. Thus, the second-
order derivatives contained in the Hessian of the model output are useful to
investigate interactions. Such a link was investigated for instance by [7] in the
context of statistical learning, but the connection to superset indices gives
an original interpretation of it. While it is rare in practice that second-order
derivatives of the model output are directly available, they can be computed
by second-order finite differences or by automatic differentiation tools. In
the same vein of [16], we also investigate by numerical tests the utility of the
inequality in ranking the most influential interactions. While this ranking
may be useful at first sight for superset importances more than for second-
order interactions, we can argue that in practice it is very often the case that
second-order interactions are the only active ones.

The paper is organized as follows: Section 2 recalls some useful defini-
tions of sensitivity indices (Sobol indices, superset importances, DGSM) and
introduces the crossed DGSM. Section 3 establishes an inequality between
superset importance and crossed DGSM. Section 4 focuses on the determi-
nation of the Poincaré constant, which is used in the previous inequality.
Section 5 develops the link between superset importance and crossed DGSM
on classical analytical functions, while section 6 applies the inequality on
numerical simulations on two test models. It illustrates how crossed DGSM
can be used in practice. We conclude in Section 7.
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2. Global sensitivity measures

2.1. Variance-based sensitivity measures

We consider a model output Y = g(X) where X = (X1, . . . , Xd) is a
vector of independent random variables with distribution µ = µ1 ⊗ · · · ⊗ µd,
and g is a d-dimensional function ∆ ⊆ R

d → R such that g(X) ∈ L2(µ).
Then, we have the Sobol-Hoeffding decomposition [24, 6, 10]:

g(X) = g0 +
d

∑

i=1

gi(Xi) +
∑

1≤i<j≤d

gi,j(Xi, Xj) + · · · + g1,...,d(X1, . . . , Xd)

=
∑

I⊆{1,...,d}

gI(XI) (1)

where the summands are centered and orthogonal. The gi’s are called main
effects, and describe the parts of g that are influenced by only one variable.
The terms of higher order gi,j’s, gi,j,k’s, etc., are called interactions and in-
volve several variables at a time. The gi,j’s are the second-order interactions,
gi,j,k’s the third-order interactions and so on.

From orthogonality in Equation (1), the variance is decomposed:

var(g(X)) =
∑

I⊆{1,...,d}

var(gI(XI)). (2)

The overall variance is often denoted by D := var(g(X)), and the variance
terms DI := var(gI(XI)) are called partial variances. The Sobol sensitivity
indices SI are then defined as variance ratios [24]:

SI =
DI

D

Another global sensitivity measure of interest is the total partial vari-
ance, and its normalized version, the total sensitivity index [11] defined by
considering the supersets of sets of size 1:

DT
i =

∑

J⊇{i}

DJ , ST
i =

DT
i

D
. (3)
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The total indices allow to detect unessential variables: If DT
i = 0 then g(x)

does not depend on xi. An extension to general supersets was proposed by
[12, 17], who defined the superset importance:

Dsuper
I :=

∑

J⊇I

DJ , Ssuper
I =

Dsuper
I

D
, (4)

where I ⊆ {1, . . . , d}. In the case of a pair of variables {Xi, Xj}, we have:
Dsuper

i,j :=
∑

I⊇{i,j} DI .

2.2. DGSM and crossed DGSM

Motivated by the reduction of computational cost, [26] introduced the
derivative-based global sensitivity measure (DGSM):

νi =

∫ (

∂g(x)

∂xi

)2

dµ(x). (5)

The DGSM plays a similar role to total indices in detecting unessential vari-
ables: If νi = 0 then g(x) does not depend on xi.

Investigating interactions, [7] used the integral of squared crossed deriva-
tives. For second-order interactions, they introduced:

νi,j =

∫ (

∂2g(x)

∂xi∂xj

)2

dµ(x), (6)

and more generally, for I ⊆ {1, . . . , d}:

νI =

∫ (

∂|I|g(x)

∂xI

)2

dµ(x).

with ∂xI =
∏

i∈I ∂xi, and |I| is the size of I. By analogy to DGSM, when
|I| ≥ 2 we propose to call the quantities νI crossed DGSM.

2.3. Utilization of superset importance and crossed DGSM

Superset importance and crossed DGSM are both useful in order to in-
vestigate interactions, and discover additive structures in g. In practice, the
most useful case is for a pair of indices {i, j}. If either νi,j = 0 or Dsuper

i,j = 0,
then g can be written as a sum of two functions, one that does not depend
on xi and the other that does not depend on xj [12, 7]:

g(x) = g−i(x−i) + g−j(x−j)
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Equivalently, this means that Xi and Xj do not interact together, nor to-
gether with other variables: ∀I ⊇ {i, j} : DI = 0. In particular – and this is
weaker in general – it implies that Di,j = 0.

2.4. First-order analysis, second-order analysis. FANOVA graph.

In applications it is reasonable to perform sequentially so-called first-
order and second-order analysis. The first-order analysis considers single
inputs and aims at detecting the non-influential ones, i.e. the Xi’s for which
ST

i = 0. First-order sensitivity indices are computed, as well as total sensitiv-
ity indices or DGSMs. The second-order analysis considers pairs of inputs,
and aims at detecting the non-influential interactions, i.e. the pairs {i, j}
for which Ssuper

i,j = 0. This can be used to detect additive structures (see the
previous section). Superset importance or crossed DGSMs are computed.
The second-order analysis may generate a large amount of information cor-
responding to the number of input pairs p(p − 1)/2, where p is the problem
dimension or solely the number of influential variables. Indeed, if Xi is non-
influential, it does not contribute to the output, neither individually nor in
interaction with another input, and thus Ssuper

i,j = νi,j = 0 for all j. Such
information is conveniently visualized by the way of the so-called FANOVA
graph [19], where vertices represent inputs, and edges indicate the presence
of interactions involving two inputs simultaneously. The edges widths can
then be chosen proportionally to the quantity of interest.

3. A link between superset importance and crossed DGSM

In what follows, we consider a class of distributions that satisfy a Poincaré
inequality:

∫

g(x)2dµ(x) ≤ C(µ)

∫

‖∇g(x)‖2dµ(x) (7)

for all functions g in L2(µ) such that
∫

g(x)dµ(x) = 0, and ‖∇g‖ ∈ L2(µ).
In this paper, a constant C(µ) satisfying (7) is referred to as a Poincaré
constant of µ, and the best possible constant for a given µ will be called the
optimal Poincaré constant, and denoted Copt(µ). Poincaré inequalities (7)
are linked to isoperimetric inequalities in measure theory, and the Poincaré
constants are expressed as a function of so-called Cheeger constants [3].

A connection between total indices and DGSM has been established by
[27] for the uniform and normal distributions and [16] for general continuous
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distributions. It states that, under mild conditions:

DT
i ≤ C(µi)νi (8)

Our main result is that such an inequality can be extended to superset im-
portance and crossed DGSM. For the sake of simplicity, we present it for a
pair of variables, but it is true in general (see Remark 1).

Theorem 1. Let us consider n distributions µ1, . . . , µn on the real line R,
and µ = µ1 ⊗· · ·⊗µn. Assume that all µi (i = 1, . . . , n) satisfy the Poincaré
inequality (7). Let g : R

n → R be a function in L2(µ), such that all first-
order and crossed second-order partial derivatives are in L2(µ). Then for all
pairs {i, j} (1 ≤ i, j ≤ n),

Di,j ≤ Dsuper

i,j ≤ C(µi)C(µj)νi,j. (9)

Furthermore, Copt(µi)Copt(µj) is the best constant.

Proof. The first inequality is straightforward and true for all g in L2(µ).
For the second one, consider the Sobol-Hoeffding decomposition (1) of g
and denote gsuper

i,j (x) :=
∑

J⊇{i,j} gJ(xJ). Since the gJ ’s are centered and
orthogonal, we have:

Dsuper
i,j = var(gsuper

i,j (x)) =

∫

(

gsuper
i,j (x)

)2
dµ(x). (10)

Furthermore we have: ∂2g(x)
∂xi∂xj

=
∂2gsuper

i,j
(x)

∂xi∂xj
, since all terms in (1) that do not

contain simultaneously xi and xj vanish by cross derivation. This leads to:

νi,j =

∫ (

∂2gsuper
i,j (x)

∂xi∂xj

)2

dµ(x). (11)

The result then follows from a sequential application of 1-dimensional Poincaré
inequalities. Indeed, let us first fix all variables except xi. Then:

∫

(

gsuper
i,j (x)

)2
dµi(xi) ≤ C(µi)

∫ (

∂gsuper
i,j (x)

∂xi

)2

dµi(xi).
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Similarly, fixing all variables except xj and considering
∂gsuper

i,j
(x)

∂xi
, we have:

∫ (

∂gsuper
i,j (x)

∂xi

)2

dµj(xj) ≤ C(µj)

∫ (

∂

∂xj

∂gsuper
i,j (x)

∂xi

)2

dµj(xj).

Then, integrating and combining the two inequalities above gives, together
with (10) and (11), the announced inequality.
Finally, to see that Copt(µi)Copt(µj) is the best constant, suppose that for
each µk, (7) is saturated with a centered function gk

opt:

∫

gk
opt(t)

2dµk(t) = Copt(µk)

∫

[(gk
opt)

′(t)]2dµk(t).

Then it is easy to check that (9) is saturated with g(xi, xj) = gi
opt(xi)g

j
opt(xj):

Di,j = Dsuper
i,j = Copt(µi)Copt(µj)νi,j.

Remark also that g(x) =
∑

k,ℓ gk
opt(xk)g

ℓ
opt(xℓ) is saturating (9) simultane-

ously for all pairs {i, j}.
Remark 1. A similar proof can be used to show that for a general subset I,
we have: Dsuper

I ≤ ∏

i∈I C(µi)νI .

4. Computation of Poincaré constants on the real line

In Theorem 1, we can see that Inequality (9) involves only Poincaré con-
stants on the real line (namely the C(µi)’s). There exists an abundant liter-
ature on that topic, and some pointers are given in [1]. Here, following [16],
we assume that µ is continuous (absolutely continuous with respect to the
Lebesgue measure) and focus on some practical results to compute Poincaré
constants. We denote by f the probability density function, F its cumula-
tive density function, and q the quantile function. Finally m = q(0.5) is the
median.

First of all, there are at least two cases where optimal constants are
known: The uniform and normal distributions (see e.g. [27] or [1]). The
constants are given in Table 1.

In general, however, optimal constants are not available. Fortunately
useful Poincaré constants can be derived for some classes of distributions,
including in particular log-concave distributions [20]:
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Distribution Optimal Poincaré constant A case of equality

Uniform U [a, b] (b − a)2/π2 g(x) = cos
(

π(x−a)
b−a

)

Normal N (µ, σ2) σ2 g(x) = x − µ

Table 1: Optimal Poincaré constants for the uniform and normal distributions.

Definition 1. (log-concave distribution) A continuous distribution µ is called
log-concave if log(f) is concave.

Three main results are summarized in Table 2. The first one is common
to all continuous distributions, and can be found in [4, 3]. It gives a Poincaré
constant that can be computed numerically by maximizing a 1-dimensional
function. For log-concave distributions, this maximum has an analytical
expression [3], Section 4, and several examples are given in [16] including
exponential, Gumbel and Weibull distributions. The last result – useful in
applications – is derived for truncated distributions (for a proof see Appendix
A).

Properties of µ A Poincaré constant C(µ)

Continuous 4

[

sup
x∈R

min(F (x),1−F (x))
f(x)

]2

log-concave 1/f(m)2

log-concave, truncated on [a, b] (F (b) − F (a))2 /f
(

q
(

F (a)+F (b)
2

))2

Table 2: Example of (non-optimal) Poincaré constants for some classes of continuous
distributions.

Remark 2. (Isoperimetric, Cheeger and Poincaré constants). Due to the
interpretation of Poincaré inequalities as isoperimetric inequalities [3], there
are several constants that are closely linked to each other. The quantity
Is(µ) := inf

x∈R

f(x)
min(F (x),1−F (x))

is called isoperimetric constant [4]. Its inverse

1/Is(µ) is often called Cheeger constant [16]. Then C(µ) = 4/Is(µ)2 is a
Poincaré constant for the distribution µ (see [3]), as reported in Table 2.

Remark 3. (Boltzmann distributions and erratum in [16]). Continuous dis-
tributions dµ(x) = f(x)dx are sometimes expressed as Boltzmann distri-
butions: f(x) = c exp[−v(x)]1∆(x), where c is a (non-unique) normalizing
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constant and ∆ = {x ∈ R, f(x) 6= 0}. If f is log-concave, then the Poincaré
constant of Table 2 is equal to 1/f(m)2 = exp[2v(m)]/c2, and the corre-
sponding Cheeger constant (as defined in Remark 2) to exp[v(m)]/(2c). The
normalizing constant c is sometimes missing in the text of [16]: In Theo-
rem 3.2. (c was omitted in the denominator) and in Table 2, first line: One
should read σ/2 ×

√
2π.

5. Examples for usual analytical functions

5.1. Second order polynomials

Consider a second-order polynomial given by its ANOVA decomposition:

g(X) = β0 +
d

∑

i=1

βi(Xi − mi) +
∑

1≤i<j≤d

βi,j(Xi − mi)(Xj − mj),

where mi = E(Xi), 1 ≤ i ≤ d. Then we have immediately:

Dsuper
i,j = Di,j = (βi,j)

2var(Xi)var(Xj), νi,j = (βi,j)
2.

Thus, contrarily to superset importance, the crossed DGSMs do not depend
on the distribution of the Xk’s but only on the coefficients of the second-order
terms. Consequently, they can give only a rough indication of the interactions
importance, but that indication is sufficient to detect the unessential ones:
νi,j = 0 ⇔ Di,j = 0 (assuming that var(Xi) > 0, var(Xj) > 0).

5.2. Functions with separated variables

Following [27], let us consider

g(X) =
d

∏

i=1

ϕi(Xi),

where ϕi(Xi) and ϕ′
i(Xi) are in L2(µi). By denoting Ai =

∫

ϕi(t)dµi(t) and
introducing the centered function ϕi,0(.) = ϕi(.) − Ai, this is rewritten as:

g(X) =
d

∏

i=1

(Ai + ϕi,0(Xi)),
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and the ANOVA decomposition of g is obtained by expanding the product
(see [25]) and gI(XI) =

∏

j /∈I Aj

∏

i∈I ϕi,0(Xi). Then a direct computation
shows that:

Dsuper
i,j =

∏

k/∈{i,j}

(A2
k + Bk) BiBj νi,j =

∏

k/∈{i,j}

(A2
k + Bk) B′

iB
′
j

with Bi :=
∫

ϕ2
i,0(t)dµi(t) and B′

i :=
∫

[ϕ′
i,0(t)]

2dµi(t). In particular for a
non-zero interaction, we have:

νi,j

Dsuper
i,j

=
B′

i

Bi

B′
j

Bj

. (12)

This generalizes the formula given in [27] for first-order indices:

νi

Dtot
i

=
B′

i

Bi

.

Their examples with uniform distributions on [0, 1] are also immediately ex-
tended:

• For the g-function g(x) =
∏d

i=1(|4xi − 2| + ai)/(1 + ai), the ratio is
constant:

νi,j

Dsuper

i,j

= 482, and much larger than π2, the bound given by

the optimal Poincaré constant.

• Choosing ϕi(t) = tm, ϕj(t) = tn leads to
νi,j

Dsuper

i,j

≈ (m + 1)2(n + 1)2 for

large m and n, and the ratio can be arbitrary large.

6. Numerical examples and applications

The aim of this section is to illustrate how DGSM and crossed DGSM
can be used in practice. More precisely, the analysis should be based on their
upper bounds, denoted by Ui and Ui,j, obtained with Inequalities (8) and (9):

Ui := C(µi)
νi

D
≥ ST

i (13)

Ui,j := C(µi)C(µj)
νi,j

D
≥ Ssuper

i,j (14)

In the following, we consider analytical examples and a case study. We per-
form sequentially first-order analysis in order to detect influential inputs, and
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a second-order analysis in order to study interactions and discover additive
structures, as detailed in Section 2.4. These two analyses imply the estima-
tion of various sensitivity indices. The estimation of variance-based sensitiv-
ity indices has been intensively studied since Sobol’ formula for closed indices
[24]. For total indices and superset importance, two useful formulas can be
used, due to Jansen [14] and Liu and Owen [17]:

DT
i =

1

2

∫

[f(x) − f(zi,x−i)]
2 dµ(x)dµi(zi) (15)

Dsuper
i,j =

1

4

∫

[f(x) − f(xi, zj,x−i,j)

−f(zi, xj,x−i,j) + f(zi, zj,x−i,j)]
2 dµ(x)dµi(zi)dµj(zj) (16)

Accurate estimators are derived by using Monte Carlo estimates of the inte-
grals above. They share good properties, studied in [8]: They are positive,
unbiased and asymptotically efficient. Furthermore, they are identically zero
if the “true” index is zero.
For DGSM and crossed DGSM, estimations are obtained by using also Monte
Carlo estimates of the integrals in Equations (5) and (6). In addition, the
derivatives should be replaced by finite differences when the gradient and/or
Hessian are not supplied. In this section, we use finite differences. In both
cases, it is easy to see that the estimators share the same property as above:
They are identically zero if the true index is zero.
Finally, notice that all the integrals could be replaced by Quasi-Monte Carlo
estimates rather than Monte Carlo ones, but this is beyond the scope of the
present paper.

Remark 4. Formula (16) contains a crossed finite difference inside the
square. It is thus very similar to the crossed DGSM definition (6). This
can be used to prove Inequality (9) from (16).

6.1. Analytical examples

6.1.1. Ishigami function

The Ishigami function is a popular toy example in sensitivity analysis,
due to the presence of non-linearities and a strong (non-linear) interaction.
It is defined on ∆ = [−π, π]3 by:

f(x1, x2, x3) = sin(x1) + 7 sin(x2)
2 + 0.1x4

3 sin(x1).
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We consider f(X1, X2, X3), assuming that X1, X2, X3 are independent ran-
dom variables from the uniform distribution on [−π, π]. The results of the
sensitivity analysis are reported in Tables 3 and 4. The sample size for estima-
tion is 1000. The theoretical values, here calculable, are also indicated. We
observe that the upper bounds are quite large, though the optimal Poincaré
constant was used. No major conclusion is obtained from Table 3, since all
inputs are influential. We see, however, that the ranking of inputs is different
whether it is based on ŜT

i or Ûi. The second-order analysis (Table 4) shows
that the non-influential interactions {2, 1}, {2, 3} are correctly detected by
the Ûi,j’s. Notice that the estimation is exactly zero when the index is zero,
a property of the Liu and Owen’s estimator (see above). This implies that
there are no interactions (at any order) involving both X2 and X1, and no
interactions (at any order) involving both X3 and X1, revealing an additive
structure for f :

f(x1, x2, x3) = f1,3(x1, x3) + f2(x2)

Input Si ST
i ŜT

i sd Ui Ûi sd
X1 0.314 0.558 0.558 (0.047) 2.23 2.234 (0.146)
X2 0.442 0.442 0.442 (0.015) 7.079 7.048 (0.163)
X3 0 0.244 0.243 (0.016) 3.174 3.213 (0.221)

Table 3: First-order analysis for the Ishigami function (uniform inputs). Upper bounds
are computed with Copt(µ) = 4. Standard deviations are obtained with 100 replicates.

Inputs pair Si,j Ssuper
i,j Ŝsuper

i,j sd Ui,j Ûi,j sd

X1 : X2 0 0 0 (0) 0 0 (0)
X1 : X3 0.244 0.244 0.241 (0.02) 12.698 12.686 (0.828)
X2 : X3 0 0 0 (0) 0 0 (0)

Table 4: Second-order analysis for the Ishigami function (uniform inputs). Upper bounds
are computed with Copt(µ) = 4. Standard deviations are obtained with 100 replicates.

6.1.2. A 6-dimensional block-additive function

Following [19], we consider the 6-dimensional function in L2:

a(X1, . . . , X6) = cos([1, X1, X5, X3]φ) + sin([1, X4, X2, X6]γ)
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with φ = [−0.8,−1.1, 1.1, 1]T , γ = [0.5, 0.9, 1,−1.1]T , and where X1, . . . , X6

are assumed independent and uniformly distributed on ∆ = [−1, 1]6. The
results for sensitivity analysis are reported in Tables 5 and 6. The sample size
for estimation is 1000. Table 5 shows that all variables are influential, either
by looking at ST

i or Ui. Looking at interactions between pairs of inputs,
Table 6 clearly detects inactive interactions, either by looking at Ŝsuper

i,j or

Ûi,j. Again, the estimation is exactly zero when the index is zero. The
corresponding FANOVA graphs (see 2.4) are represented in Figure 1, which
are very similar here. Two groups are visible: {1, 3, 5} and {2, 4, 6}, meaning
that there are no interactions (at any order) between Xi and Xj when i
belongs to the first group, and j to the second one. Thus the Sobol-Hoeffding
decomposition (1) implies that the ‘a’ function has the block-additive form:

a(X1, . . . , X6) = a1,3,5(X1, X3, X5) + a2,4,6(X2, X4, X6)

which is the correct structure of the ‘a’ function.

Input Si ST
i ŜT

i sd Ui Ûi sd
X1 0.11 0.231 0.231 (0.012) 0.329 0.329 (0.007)
X2 0.143 0.214 0.215 (0.009) 0.272 0.285 (0.005)
X3 0.086 0.196 0.197 (0.01) 0.272 0.272 (0.006)
X4 0.112 0.176 0.176 (0.008) 0.22 0.231 (0.004)
X5 0.11 0.231 0.232 (0.011) 0.329 0.329 (0.007)
X6 0.18 0.256 0.256 (0.011) 0.329 0.345 (0.007)

Table 5: First-order analysis for the ‘a’ function (uniform inputs). Upper bounds are
computed with Copt(µ) = 4/π2. Standard deviations are obtained with 100 replicates.

6.2. A case study

We consider the flood model presented in [16]. The output is the maximal
annual overflow (in meters), denoted by S:

S = Zv + H − Hd − Cb with H =





Q

BKs

√

Zm−Zv

L





0.6

,

where H is the maximal annual height of the river (in meters). The 8 inputs
are assumed to be independent random variables, with distributions recalled
in Table 7.

14



Inputs pair Si,j Ssuper
i,j Ŝsuper

i,j sd Ui,j Ûi,j sd

X1 : X2 0 0 0 (0) 0 0 (0)
X1 : X3 0.043 0.067 0.067 (0.005) 0.133 0.132 (0.003)
X1 : X4 0 0 0 (0) 0 0 (0)
X1 : X5 0.055 0.078 0.08 (0.006) 0.161 0.16 (0.004)
X1 : X6 0 0 0 (0) 0 0 (0)
X2 : X3 0 0 0 (0) 0 0 (0)
X2 : X4 0.018 0.04 0.039 (0.004) 0.085 0.085 (0.002)
X2 : X5 0 0 0 (0) 0 0 (0)
X2 : X6 0.031 0.053 0.052 (0.005) 0.127 0.127 (0.003)
X3 : X4 0 0 0 (0) 0 0 (0)
X3 : X5 0.043 0.067 0.067 (0.005) 0.133 0.132 (0.003)
X3 : X6 0 0 0 (0) 0 0 (0)
X4 : X5 0 0 0 (0) 0 0 (0)
X4 : X6 0.024 0.046 0.045 (0.004) 0.103 0.103 (0.002)
X5 : X6 0 0 0 (0) 0 0 (0)

Table 6: Second-order analysis for the ‘a’ function (uniform inputs). Upper bounds are
computed with Copt(µ) = 4/π2. Standard deviations are obtained with 100 replicates.
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12
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Figure 1: FANOVA graphs of Ŝsuper

i,j (left) and Ûi,j (right) for the ‘a’ function.

The first-order analysis was performed in [16], and 3 nonessential inputs
were detected. We base the second-order analysis on the 5 remaining ones:
X1 = Q, X2 = Ks, X3 = Zv, X5 = Hd, X6 = Cb. We fix the non-influential
inputs at their mean value. The true amount of variance explained by in-
teractions is here very small, around 1%. The results are reported in Table
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Input Description Unit Probability distribution
Q Maximal annual flowrate m3/s Gumbel G(1013, 558),

truncated on [500, 3000]

Ks Strickler coefficient - Normal N (30, 8),
truncated on [15, +∞[

Zv River downstream level m Triangular T (49, 50, 51)

Zm River upstream level m Triangular T (54, 55, 56)

Hd Dyke height m Uniform U [7, 9]

Cb Bank level m Triangular T (55, 55.5, 56)

L Length of the river stretch m Triangular T (4990, 5000, 5010)

B River width m Triangular T (295, 300, 305)

Table 7: Input variables of the flood model and their probability distributions.

8 and visualized on Figure 2. Departures are visible between the results
obtained with variance-based sensitivity indices and derivative-based ones.
One reason is that the Poincaré constants used are not optimal, and do not
have the same order of magnitude. In particular one of them is very large
due to the fat tail of the Gumbel distribution. Consequently we see that the
upper bounds are rather rough. The second-order analysis based on crossed
DGSMs succeeds in detecting the nonessential interactions, after inspecting
Table 8. However this result must be considered with much care here, since
it also corresponds to low values of Poincaré constants products. Similarly
we are very lucky here to rank at first place the most influential interaction,
corresponding to the highest product C(µi)C(µj).

Finally, we consider the second output, a cost estimation, proposed in [16].
The same 5 inputs are influential. The true amount of variance explained
by the interactions is about 10%. The second-order analysis clearly shows a
difference in ranking, as shown in Figure 3. This may be due either to the
form of the function considered, or to the heterogeneity of distributions as
explained above. Notice however that crossed DGSM conclude correctly to
the absence of non-influential interactions.
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Ŝsuper
i,j Ûi,j C(µi)C(µj)

X1 : X2 0.008235 1.837809 819887392.342
X1 : X3 0.000178 0.011691 2165585.265
X1 : X5 0.000000 0.001947 877678.649
X1 : X6 0.000000 0.000000 541396.316
X2 : X3 0.000070 0.003758 378.599
X2 : X5 0.000000 0.000000 153.440
X2 : X6 0.000000 0.000000 94.650
X3 : X5 0.000000 0.000000 0.405
X3 : X6 0.000000 0.000000 0.250
X5 : X6 0.000000 0.000000 0.101

Table 8: Second-order analysis for the overflow output of the flood model, limited to the
influential inputs.
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Figure 2: FANOVA graphs of Ŝsuper

i,j (left) and Ûi,j (right) for the overflow output of the
flood model, limited to the influential inputs.

7. Conclusion

This paper focuses on the quantification of interactions in global sensi-
tivity analysis. We considered the integral of squared crossed derivatives
introduced in statistical learning [7], that we call crossed DGSM by analogy
to DGSM [26]. We show that there is a Poincaré-type inequality between
superset importance [17] and the crossed DGSM. This extends to interaction
the link between total effects and DGSM [27, 16].
This new inequality can be used to detect additive structures in black-box
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Figure 3: FANOVA graphs of Ŝsuper

i,j (left) and Ûi,j (right) for the cost output of the flood
model, limited to the influential inputs.

functions by detecting pairs of inputs that do not interact together (see
[12, 19, 8]). We investigated their practical utilization with two analytical
examples involving uniform inputs and one case study with several hetero-
geneous input distributions. For that purpose, we recalled some facts about
Poincaré inequalities, and gave a new expression of a Poincaré constant for
truncated log-concave distributions. The crossed DGSM performed well in
the examples, for which the optimal Poincaré constant is known. In particu-
lar, the additive structure of a 6-dimensional function was recovered. On the
other hand, the case study showed some limitations of the crossed DGSM,
also shared by the usual DGSM (see [27] for a discussion). In particular,
some Poincaré constants used are not optimal and sometimes very large, and
the inequality was not informative for several pairs of inputs. In such cases,
an idea for future research could be to investigate the use of transformation
of the inputs into uniformly or normally distributed ones, which simplifies
the input distributions but may introduce undesirable non-linearities in the
new function obtained by composition.

Acknowledgements

Parts of this work have been backed by French National Research Agency
(ANR) through COSINUS program (project COSTA BRAVA noANR-09-
COSI-015), or conducted within the frame of the ReDice Consortium, gath-
ering industrial (CEA, EDF, IFPEN, IRSN, Renault) and academic (Ecole

18



des Mines de Saint-Etienne, INRIA, and the University of Bern) partners
around advanced methods for Computer Experiments. The financial sup-
port of the DFG (SFB708: Project C3) is also gratefully acknowledged. We
thank Fabrice Gamboa and Franck Barthe for helpful discussions.

Appendix A. Poincaré constants for truncated log-concave distri-

butions.

Proposition 1. Let µ be a log-concave distribution. Let a, b be two real
numbers such that −∞ ≤ a < b ≤ +∞, and consider the truncated distri-
bution µa,b defined on [a, b] by its cdf Fa,b(x) = F (x)−F (a)

F (b)−F (a)
1[a,b](x), where 1[a,b]

denotes the indicator function. Then µa,b satisfies a Poincaré inequality with

C(µa,b) = (F (b) − F (a))2 /f
(

q
(

F (a)+F (b)
2

))2

.

Proof. As a truncation of a log-concave distribution, µa,b is log-concave (see
e.g. [2]), and thus satisfies a Poincaré inequality with C(µa,b) = 1/fa,b(ma,b)

2,
where fa,b and ma,b are respectively the pdf and the median of µa,b. Now,
a direct computation shows that fa,b(x) = f(x)/(F (b) − F (a))1[a,b](x) and

ma,b = q
(

F (a)+F (b)
2

)

.
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[20] A. Prékopa, Logarithmic concave measures with applications to stochas-
tic programming, Acta Scientiarium Mathematicarum 32 (1971) 301–
316.

[21] M. Rodriguez-Fernandez, J. Banga, F. Doyle, Novel global sensitivity
analysis methodology accounting for the crucial role of the distribution
of input parameters: application to systems biology models, Interna-
tional Journal of Robust Nonlinear Control 22 (2012) 1082–1102.

[22] A. Saltelli, K. Chan, E. Scott, Sensitivity analysis, Wiley series in prob-
ability and statistics, Wiley, Chichester, 2000.

[23] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,
M. Saisana, S. Tarantola, Global Sensitivity Analysis: The Primer,
Wiley-Interscience, 2008.

[24] I. Sobol, Sensitivity estimates for non linear mathematical models,
Mathematical Modelling and Computational Experiments 1 (1993) 407–
414.

[25] I. Sobol, Theorems and examples on high dimensional model represen-
tation, Reliability Engineering and System Safety 79 (2003) 187–193.

[26] I. Sobol, A. Gresham, On an alternative global sensitivity estimators,
in: Proceedings of SAMO 1995, Belgirate, pp. 40–42.

[27] I. Sobol, S. Kucherenko, Derivative-based global sensitivity measures
and the link with global sensitivity indices, Mathematics and Computers
in Simulation 79 (2009) 3009–3017.

[28] C. Storlie, J. Helton, Multiple predictor smoothing methods for sensi-
tivity analysis: Description of techniques, Reliability Engineering and
System Safety 93 (2008) 28–54.

21


