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Abstract

This paper deals with output feedback synthesis for
Timed Event Graphs (TEG) in dioid algebra. The
feedback synthesis is done in order to

e stabilize a TEG without decreasing its original
production rate,

e optimize the initial marking of the feedback,
e delay as much as possible the tokens input.

Keywords
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1 Introduction

We are interested here in the problem of Timed Event
Graphs (TEG) stabilization. We first recall that a
TEG is a Petri net whose each place has one upstream
transition and one downstream transition. This class
of Petri nets admits a linear representation on (max,
+) or (min, +) algebra [1] [4].

Property of stability is closely related to TEG
structure. A TEG is said to be structurally stable
if its marking (i.e., its number of tokens) remains lim-
ited for all firing sequence of input transitions (this
definition is introduced in [1, chap. 6]).

The problem of TEG stabilization has been consid-
ered by Cohen et al. in [3] and more recently by Com-
mault [5]. Commault obtains a sufficient condition of
stability for TEG. Such a condition is satisfied if TEG
is made strongly connected by adding paths (i.e., suc-
cessions of places and transitions) between the output
and the input of the TEG. Consequently, each place
of the resulting TEG necessarily belongs to a circuit
and its marking is then bounded.

In addition, it is shown in [1] that a controllable
and observable TEG can be made stable, by adding an
output feedback, without altering its own production
rate. Gaubert has shown in [9] that the number of
tokens that must be placed in the feedback, in order
to stabilize a TEG, is a resource optimization problem
which can be formulated as an integer linear program.

The approach presented here is based, on the one
hand, on Gaubert’s work [9] and, on the other hand,
on the work initiated in [7]. The objective is here to
synthesize a dynamic feedback which minimizes the
number of tokens required, under the constraint that
feedback keeps the original throughput.

In section 2, we will recall the algebraic tools nec-
essary to feedback synthesis. We will briefly recall, in
section 3, TEG modelization over dioid M$7[v, d] and
some periodic properties of TEG. In section 4, we will
present how an existing feedback in a TEG can be im-
proved and the way in which this can be applied to

the problem of TEG stabilization.

2 Algebraic tools

The reader is invited to consult [1] or [4] for a complete
presentation of the following theoretical recalls.

2.1 Dioid Theory

Definition 1 (Dioid, Complete Dioid) A dioid D
is a set endowed with two internal operations denoted
® (addition) and ® (multiplication), both associative
and both having a neutral element denoted € and e re-
spectively such that ® is commutative and idempotent
(Va € D,a® a = a), ® is distributive with respect to
@ and ¢ is absorbing for the product (Va € D,e ® a =
a®e=¢).

A dioid (D,®,®) is said to be complete if it
is closed for infinite sums and if multiplication dis-
tributes over infinite sums too. The sum of all its ele-
ments is generally denoted T'.

Definition 2 (Order relation) A dioid is endowed
with a partial order denoted < and defined by the fol-
lowing equivalence: a > b <= a=a P b.

Definition 3 (Subdioid) Let (D, ®,®) a dioid and
CCD. (C,®,®) is said subdioid of D if e,e € C, and
C is closed for @ and ®.

Theorem 1 (Kleene star theorem) The implicit
equation © = ax B b defined over a complete dioid ad-
mits x = a*®b as least solution with a* = @, a’. The
star operator x is usually called Kleene star.



2.2 Residuation Theory

In ordered set, equations f(x) = b may have either
no solution, one solution, or multiple solutions. In or-
der to give always a unique answer to this problem of
mapping inversion, residuation theory [2] provides, un-
der some assumptions, either the greatest solution (in
accordance with the partial order) to the inequation
f(x) < b or the least solution to f(z) > b.

Definition 4 (Isotone mapping) A mapping f de-
fined over ordered sets is said to be isotone if a < b =

fla) 2 (D).

Definition 5 (Residuation) Let f : £ — F, with
(€,X) and (F,=R) ordered sets. Mapping f is said
residuated if for all y € F, the least upper bound of
the subset {z € E|f(x) <y} exists and lies in this sub-
set. It is then denoted f*(y). Mapping f* is called the
residual of f . When f is residuated , f* is the unique
isotone mapping such that

foff=<Idand ffo f>Id.

Theorem 2 ([1]) Let f : (D,®,®) — (C,®,Q) a
mapping defined over complete dioids. Mapping f is
residuated if, and only if, f(¢) = ¢ and, VA C D,

f(@rea®) = DBrea f(2)-

Corollary 1 Let L, :z =~ a®x and R, : ¢ — . ®
a defined on a complete dioid. Mappings L, and R,
are both residuated. Their residuals will be denoted
respectively LY (z) = aXz and Ri(z) = zfa

Proof: by definition, ¢ is absorbing for ® and product
distributes over sums in complete dioids. ]

2.3 Mapping restriction

Definition 6 Let f : E — F a mapping and A C E
a subset. We will denote fi4 : A — F the mapping
defined by equality fl4 = fold 4 whereld 4, : A = E
is the canonical injection. Identically, let B C F with
Imf C B. Mapping g f will be defined by equality
f =1Idig o g|f where |dp : B — F is the canonical
injection.

Proposition 1 Let D a complete dioid and Dgyp a
complete subdioid of D. Then, the canonical injection
Idjsup : Dsup — D,z = x is residuated. Its residual
will be denoted Prgyp.

Proof: since Dy, is a subdioid of D and is complete,
the result is immediate according to theorem 2. m

3 TEG description in dioid M{*[v,d]
Dioid M[y, 4]

n

3.1

The input-output behavior of a TEG may be repre-
sented by a transfer relation in some particular dioids.
Hereafter, we will essentially represent TEG behavior
on dioid M&*[y, 0]. Let us recall that dioid M&*[~, 4]
is formally the quotient dioid of B[y, d], set of formal
power series in two variables (v, d) with Boolean coef-
ficients and with exponents in Z, by the equivalence
relation 2Ry <= 7*(6~Y)*z = y*(671)*y (see [1],[4]
for an exhaustive presentation). Dioid M%*[v,d] is
complete with a bottom element € = y7™°§~>° and a
top element T = y~°°67>°, Let us consider a repre-
sentative s = @,y f(n4, t)y™ 0" in B[y,d] of an ele-
ment belonging to M%*[v, §]. The support of s is then
defined as {(n;,t;)|f(ni,t;) # €} and the valuation
(resp. degree) of this element, denoted val,(s) (resp.
degs(s)) as the lower bound (resp. upper bound) of
its support. A series of M%7y, d] is said polynomial
if its support is finite. When an element of M2y, §]
is used to code a set of informations concerning a tran-
sition of a TEG, then a monomial v*§* may be inter-
preted as : the k" event occurs at least at date t.

3.2 Realizability, Periodicity and Rationality

Definition 7 (Causality) Let h € M?[vy,d]. h is
causal either if (h = ¢€) or (valy(h) > 0 and h >
yvet () The set of causal elements of My, d] has
a complete dioid structure. This dioid will be denoted
M2 [v,8]. A matriz is said causal if each of its
entries is causal.

Definition 8 (Periodicity) Let h € M[v,0]. h
is periodic if it exists two polynomials p and q, and a
monomial r = ¥¥ 87 such that h = p ® qr*. The ratio
A =v/7 is called the production rate of the series. The
set of periodic series of M%*[~,d] has a dioid structure
denoted M3*P'[v,08]. A matrizc H € M [, §]P*™ is
said periodic if all its entries are periodic. The pro-
duction rate of this periodic matriz is then defined as

A= min )\l]
1<i<p,1<j<m

Definition 9 (Realizability) H € M& [y, d]P*™ is
said realizable if it exists four matrices Al, A2, B
and C with entries in {e,e} such that H = C(yAl &
§A2)*B.

Remark 1 In other words, there is a TEG whose
transfer is H.

Definition 10 (Rational) Let h € M [v,d]. h is
rational if it may be written as a finite composition of
sums, products and Kleene stars of element belonging
to the set {e,e,v,0}. A matriz is said rational if all
its entries are rational.



The following theorem recalls that the input-output
transfer of a TEG is characterized by periodic proper-
ties.

Theorem 3 ([4]) Let H € M [y,0]P*™. Are
equivalent

e H is periodic and causal

e H is rational

e H is realizable.
Proposition 2 The canonical injection 1d||

My, 8] = M&[y,d],z = =z is residuated. Its
residual will be denoted Pry (x).

Proof: according to theorem 2 , it suffices to
remark that canonical injection verifies VA C

MEZH ], 4], ld; (D,ca®) = Drea u

Practically, for all z € M?7[v, d], the computation of
Pry(z) is obtained by :

Pry (D f(ni,ti)y™0%) = @ g(ni, t;)y™ 6% where
i€EN 1eN

{ f(ng,ts) if (ni,t;) > (0,0) ‘

€ otherwise

g(ni,t;)

Theorem 4 ([8],[10]) Let sl,s2 €
Then, s1§s2 € MZP [y, d].

n

M, 6]

Proposition 3 Let s € M*P¥[~,8] a periodic se-

ries. Pri(s) € M9 [v,d] is the greatest rational
element less than or equal to s.

Proof: (sketch of proof) see [6] for further de-
tails. The proof consists in remarking that Vs €
MeEP Ty 8], Pri(s) belongs to M&P[,4] too.
Moreover, Pri(s) € M%2%[y,6]. According to the-
orem 3, such an element is then rational. [ ]

Proposition 4 Let a,b € M2 [v,8]. The ele-
ment Pri(ab) is the greatest rational solution of
a®x < b, In that sense, we can consider that
Lrot s M3z [y, 8] = M2y, 6],z = a®@x is resid-
uated.

Proof: since a and b are rational, they are periodic too
(cf. theorem 3) . Therefore, according to theorem 4,
a}b is a periodic element but not necessarily causal®.
Furthermore, according to proposition 3, Pri(a}b) is
then the greatest rational solution of a ® < b. ]

Lfor instance, ¥ and 262 are periodic and causal series,

nevertheless v262¢yd = y~16~! is not causal.

4 Feedback Synthesis for TEG

4.1 Greatest feedback

In previous section, we have recalled that a TEG can
be represented by its input-output transfer. For in-
stance, considering a TEG with m inputs and p out-
puts, its input-output behavior may be simply written
Y = HU, with H € M7 [y,6]P*™ a rational ma-
trix. Figure 1 represents the block diagram of a system

U \'% Y

— H

Figure 1: System H with an output feedback F'

denoted H on which has been added an output feed-
back F. By applying theorem 1, closed-loop transfer
of fig. 1is

Y =H(FH)'U
where H € M%*"™"[v,8]P*™ is the open-loop trans-
fer and F € M [v,5]™*? is the output feedback
transfer.

Later on, we will denote Mg the following mapping

Mg : My, 0™ —

n

X —

My, o]
H(XH)*.

The mapping My clearly represents the way in which
a feedback F' modifies the closed-loop transfer of a
system H. In particular, My is isotone since it is a
composition of isotone mappings.

may also be written (HX)*H

Remark 2 Mg (X)
= Ho HXH ® HXHXH ® --- =

since H(XH)*
(HX)*H.

Thanks to theorem 2, one can check that Mg, de-
fined over complete dioids, is not residuated. Indeed,
Mp(a®b) # Mp(a) ® Mg(b). Nevertheless, the fol-
lowing result shows that there exists a restriction of
My that is residuated.

Proposition 5 Let us consider mapping

M?ﬁﬂ776]]mxp - MH(M‘;:H’%&]]mxp)
X s H(XH)"

imMy | Mu

imMy | Mmu is residuated and its residual is

(matgr | Ma)? o Mu(METTy, 6]™7F)  — M [y, 6177

X — HY\X4H.

Proof: this result rests on L, and R, residuation (cf.
corollary 1). Tt suffices to show that inequality

H(XH)* < H(aH)* (1)



admits a greatest solution Ya € M{7[v,d]"*P. By
considering the Kleene star operator, (1) amounts to
satisfying the infinite sequence of inequalities

HXH < H(aH)*, H(XH)? < H(aH)*, etc.

Indeed, once the first one is satisfied, the second one
follows since

H(XH)? (HXH)(XH)
H(aH)*(XH)

(Ha)*HXH

since (Ha)*H = H(aH)*
(Ha)*H(aH)*
H(aH)*(aH)*

H(aH)*

since (aH)*(aH)* = (aH)*.

1PNl

PN

The same holds true recursively for the next inequal-
ities. Hence we can concentrate on the first one only,
and clearly H §(H (aH)*)¢ H provides the answer. m

Proposition 6 Let us consider a TEG whose transfer
is H € My, 8]P*™ endowed with an output feed-
back whose transfer is F € M3 [v,8]™*P. Then,
F, = Pry(H\My(F)¢§H) is the greatest realizable
feedback such that My (F) = My (F,).

Proof: clearly, My (F) € ImMg. So, according to
proposition 5, since s, | M is residuated, inequation

Mp(X) 2 Mu(F) (2)

admits F = HXMpg(F)§H as greatest solution. In
particular, since for X = F the equality of (2) is
verified, F is then the greatest solution to equation
Mpg(X) = Mg (F). In other hand, My (F) is realiz-
able, then periodic (cf. theorem 3), since it represents
the closed-loop transfer. Therefore, according to the-
orem 4, HXMy(F)¢H is a periodic matrix but not
necessarily causal matrix. According to proposition
3, Fy = Pr(H\Mg(F)§H) is the greatest rational
solution of My (X) = My (F). ]

Remark 3 Another interpretation consists in saying
that for any realizable system H closed by a realiz-
able feedback F', there is an optimal realizable feedback
preserving the transfer of closed-loop system. Since
13'+ > F, the system ﬁ‘+ delays the input of tokens in
system H, compared to the feedback F', while ensuring
the same output. So, compared to the system F', the
feedback F.,. decreases the number of tokens, or their
sejourn times, in the system H.

4.2 Stabilization of TEG

For TEG, stability property essentially means that to-
kens do not accumulate indefinitely inside the graph

or differently that, for all inputs, marking remains
bounded. This property is obtained when all tran-
sitions fire with the same average frequency.

A TEG is said structurally controllable (resp. ob-
servable) if every internal transition can be reached by
a direct path from at least one input transition (resp.
is the origin of at least one direct path to some output
transition)(see [1]). It has been showed that a struc-
turally controllable and observable TEG can be made
stable by adding an output feedback [3] [10]. Indeed,
as soon as all transitions belongs to a single strongly
connected component, the TEG is stable. Therefore, it
suffices that output feedback makes the TEG strongly
connected to enforce stability. Moreover, stability may
be obtained in order to preserve initial TEG produc-
tion rate. The following theorem, coming from [1],
formalizes this result.

Theorem 5 Any structurally controllable and observ-
able event graph can be made internally stable by out-
put feedback without altering its original throughput.

4.2.1 Resource optimization in feedback

According to theorem 5, a TEG can be made stable
while preserving its intrinsic throughput. Obviously,
this feedback stabilization requires some amount of ini-
tial tokens in feedback arcs. In manufacturing context,
for instance when a TEG describes a production sys-
tem, the initial feedback marking can represent some
resources like transport means (used to convey parts)
or recyclable machines. Consequently, it is partic-
ularly significant to limit as much as possible their
number. Here, we consider the problem of feedback
marking minimization under both constraints of TEG
stabilization and production rate preserving. This re-
source optimization problem, described more precisely
thereafter, is tackled?, and solved, by Gaubert in [9].

Let us consider a TEG made up of m inputs and p
outputs. Arcs provided with a place are added be-
tween outputs and inputs so as the TEG becomes
strongly connected®. When strongly connectedness is
reached, the problem consists in calculating the mini-
mal number of tokens to be placed in each of these arcs
in order to preserve the throughput of the open-loop
system.

The transfer of feedback system can be represented
by a matrix F' = (Fj;) € M%2™ [y, §]P*™ where Fj; =
~%i if g;; tokens are initially allocated to place located
between output j and input i, and Fj; = € if there is
no arc.

The problem lies in the computation and mini-
mization of ¢ = {¢;;} in order that closed-loop sys-
tem keeps the same production rate as the open-loop

2other authors have solved such a problem but not necessarily
with (max,+) approaches.

3Practically, it is not always necessary to connect all outputs
to all inputs to obtain strongly connectedness.



one. Gaubert [9] has shown that such a problem may
be solved as an integer linear programming problem
where the linear cost function is

i=m,j=p

J(q) = Z Qijdij,

i=1,j=1
with a;; a price associated to each resource, and the
constraint is

Ag) > A,

where X is the production rate of the open-loop system
and A(q) is the production rate with feedback.

If we denote wy,(q) (resp. wr.) the (classical) sum
of tokens (resp. holding times) in a circuit ¢, then

Ag) = min 2N-\9) (9)

c ’uJT

c

)

i.e., for each circuit the following constraint will be
satisfied _
wn.(q) > A X wr,.

The solution of this integer linear program yields to g;;
tokens that must be placed in each feedback arc. We
denote Fr o this feedback. Then, Fr» ensures closed-
loop stability, preserves the same production rate and
minimizes the cost function.

4.2.2 Synthesis of a greater stabilizing
feedback

We propose here to improve the feedback obtained
above by computing the greatest dynamic feedback
which preserves My (Fro).

Proposition 7 Let us denote Fro a feedback loop
obtained by solving a resource optimization problem.
The feedback loop FRO+ = Pry(HN\Mp(Fro)¢H) is
the greatest realizable feedback such that My (Fro) =
MH(FRO+)'

Proof: direct from proposition 6. [ ]

This feedback can be seen as a refinement to the
solution brought by Gaubert in [9]. Indeed, as we

have explained in remark 3, feedback Fro 4, verifies

Fro, = Fro. Therefore, feedback 13'72@ , releases in-
put firings latter than with feedback Fr» while en-
suring the same output and the same resource number
in each feedback. Indeed, since the initial marking
(i.e., the resource number) of a path described by a
periodic series s is equal to val,(s), we obtain

FRoJr > Fro <<= Vi,j FROJ”,J, = Fro,;

= Vi,joal, (FROJ“,],) <waly(Fro,;).

The last statement means that the resource number of
each path of feedback Fro 4 is less than or equal to
the ones of Frp. In the other hand, MH(FR@+) =
Mg (Fro), and val, (Fro,;) is the minimal number of
tokens which allows to minimize .J(g) while preserving
the production rate. This latest statement leads to
equality valV(FRoﬂj) =valy(Fro,;).

4.2.3 Illustrative example

We present here how the preceding results can be im-
plemented. Let us consider the structurally control-
lable and observable TEG drawn in solid lines in fig.2.
Its transfer matrix in M%2[y, §]**? is

- <59(v5)* 0% (v0)*

= c 515 (726°)
From this transfer matrix, we deduce that the TEG
production rate is A = 2/5 (see definition 8). This
TEG represents a production unit with 4 machines
denoted M1 to M4. Because of the difference of pro-
duction rates of machines constituting this workshop,
one notices that TEG model is not stable. Indeed,
by firing all inputs an infinity times at a given date
we can observe an accumulation of tokens upstream
machine M4. Therefore, stability of that system can
be obtained by adding an output feedback. It is suf-
ficient to make the TEG strongly connected to ensure
its stability. In that particular case, the TEG becomes
strongly connected by adding a feedback of the form :

_ 7’111 €
F= <,y'121 7'122 :
We consider here the resource optimization problem in
order to minimize the following cost function J(q) =
¢i1 + @21 + ¢22 (i.e., a;; = 1). This problem can be
solved by considering the sum of tokens and tempo-

rization of each elementary circuit* which yields to the
TEG production rate denoted A(q) :

. 2 qi1 g21 G22
A —min [ 2 1= 2= 2122}
(q) ! (5’9’5’15

Therefore, for ¢ = (4,2, 6), cost J(g) is minimum, i.e.,

4
vt e
F = .
RO <72 76)

This stabilizing feedback that keeps original through-
put and minimizes resources number (tokens) is drawn
in dotted lines in fig. 2. On the basis of this solution
Fro (obtained by linear programming approach) and
according to proposition 7, we can refine this result
by computing FRoJr = Pry(H§Fro¢H). We do not
detail calculus here. The result obtained is :

Fro, = (e ®78)(126%)") (7;5 ﬁ) |

A realization of that system is drawn in fig.3.

Remark 4 We can notice that feedback FRO+ has an
arc y1 — u2 that does not exist in feedback Fro.

4the naive enumeration of elementary circuits is simpler than
writing the linear program. But, for large graphs, such an enu-
meration becomes practically impossible (for a complete graph
with n vertices, the enumeration complexity is O((n — 1)!))).
Gaubert’s approach [9] allows to consider only n? inequalities.
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Figure 3: System H with feedback FR@ +

Figure 4 represents the v1 firing sequence with FRoJr
(dotted line) and the vl firing sequence with Freo
(solid line) for the same input ul (dashed line).
Clearly, feedback Fro . delays tokens entrance in sys-
tem H. For lack of place, we have not described firing
sequences v2, y; nor y, for that simulation. We can
only assert that outputs are identical in both cases
and that sequence v2 is not improved by the feedback
FR@Jr .
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