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ON TIMED EVENT GRAPH STABILIZATION BY OUTPUT FEEDBACK IN DIOIDBertrand Cottenceau, Laurent Hardouin, Jean-Louis Boimond 11 Laboratoire d'Ing�enierie des Syst�emes Automatis�es, 62, avenue Notre-Dame du lac, 49000 ANGERS,FRANCE, Tel: (33) 2 41 36 57 33, Fax: (33) 2 41 36 57 35. E-mail: [bertrand.cottenceau, laurent.hardouin,jean-louis.boimond]@istia.univ-angers.frAbstractThis paper deals with output feedback synthesis forTimed Event Graphs (TEG) in dioid algebra. Thefeedback synthesis is done in order to� stabilize a TEG without decreasing its originalproduction rate,� optimize the initial marking of the feedback,� delay as much as possible the tokens input.KeywordsTimed Event Graphs, (max,+) algebra, Residuation,Stability, Feedback Synthesis.1 IntroductionWe are interested here in the problem of Timed EventGraphs (TEG) stabilization. We �rst recall that aTEG is a Petri net whose each place has one upstreamtransition and one downstream transition. This classof Petri nets admits a linear representation on (max,+) or (min, +) algebra [1] [4].Property of stability is closely related to TEGstructure. A TEG is said to be structurally stableif its marking (i.e., its number of tokens) remains lim-ited for all �ring sequence of input transitions (thisde�nition is introduced in [1, chap. 6]).The problem of TEG stabilization has been consid-ered by Cohen et al. in [3] and more recently by Com-mault [5]. Commault obtains a su�cient condition ofstability for TEG. Such a condition is satis�ed if TEGis made strongly connected by adding paths (i.e., suc-cessions of places and transitions) between the outputand the input of the TEG. Consequently, each placeof the resulting TEG necessarily belongs to a circuitand its marking is then bounded.In addition, it is shown in [1] that a controllableand observable TEG can be made stable, by adding anoutput feedback, without altering its own productionrate. Gaubert has shown in [9] that the number oftokens that must be placed in the feedback, in orderto stabilize a TEG, is a resource optimization problemwhich can be formulated as an integer linear program.

The approach presented here is based, on the onehand, on Gaubert's work [9] and, on the other hand,on the work initiated in [7]. The objective is here tosynthesize a dynamic feedback which minimizes thenumber of tokens required, under the constraint thatfeedback keeps the original throughput.In section 2, we will recall the algebraic tools nec-essary to feedback synthesis. We will brie
y recall, insection 3, TEG modelization over dioidMaxin J
; �K andsome periodic properties of TEG. In section 4, we willpresent how an existing feedback in a TEG can be im-proved and the way in which this can be applied tothe problem of TEG stabilization.2 Algebraic toolsThe reader is invited to consult [1] or [4] for a completepresentation of the following theoretical recalls.2.1 Dioid TheoryDe�nition 1 (Dioid, Complete Dioid) A dioid Dis a set endowed with two internal operations denoted� (addition) and 
 (multiplication), both associativeand both having a neutral element denoted " and e re-spectively such that � is commutative and idempotent(8a 2 D; a � a = a), 
 is distributive with respect to� and " is absorbing for the product (8a 2 D; "
 a =a
 " = ").A dioid (D;�;
) is said to be complete if itis closed for in�nite sums and if multiplication dis-tributes over in�nite sums too. The sum of all its ele-ments is generally denoted T .De�nition 2 (Order relation) A dioid is endowedwith a partial order denoted � and de�ned by the fol-lowing equivalence: a � b () a = a� b.De�nition 3 (Subdioid) Let (D;�;
) a dioid andC � D. (C;�;
) is said subdioid of D if "; e 2 C, andC is closed for � and 
.Theorem 1 (Kleene star theorem) The implicitequation x = ax� b de�ned over a complete dioid ad-mits x = a�
b as least solution with a� =Li�0 ai.Thestar operator � is usually called Kleene star.



2.2 Residuation TheoryIn ordered set, equations f(x) = b may have eitherno solution, one solution, or multiple solutions. In or-der to give always a unique answer to this problem ofmapping inversion, residuation theory [2] provides, un-der some assumptions, either the greatest solution (inaccordance with the partial order) to the inequationf(x) � b or the least solution to f(x) � b.De�nition 4 (Isotone mapping) A mapping f de-�ned over ordered sets is said to be isotone if a � b)f(a) � f(b).De�nition 5 (Residuation) Let f : E ! F , with(E ;�) and (F ;�) ordered sets. Mapping f is saidresiduated if for all y 2 F , the least upper bound ofthe subset fx 2 Ejf(x) � yg exists and lies in this sub-set. It is then denoted f ](y). Mapping f ] is called theresidual of f . When f is residuated , f ] is the uniqueisotone mapping such thatf � f ] � Id and f ] � f � Id:Theorem 2 ([1]) Let f : (D;�;
) ! (C;�;
) amapping de�ned over complete dioids. Mapping f isresiduated if, and only if, f(") = " and, 8A � D,f(Lx2A x) =Lx2A f(x).Corollary 1 Let La : x 7! a 
 x and Ra : x 7! x 
a de�ned on a complete dioid. Mappings La and Raare both residuated. Their residuals will be denotedrespectively L]a(x) = a �nx and R]a(x) = x�=aProof: by de�nition, " is absorbing for 
 and productdistributes over sums in complete dioids.2.3 Mapping restrictionDe�nition 6 Let f : E ! F a mapping and A � Ea subset. We will denote fjA : A ! F the mappingde�ned by equality fjA = f � IdjA where IdjA : A ! Eis the canonical injection. Identically, let B � F withImf � B. Mapping Bjf will be de�ned by equalityf = IdjB � Bjf where IdjB : B ! F is the canonicalinjection.Proposition 1 Let D a complete dioid and Dsub acomplete subdioid of D. Then, the canonical injectionIdjsub : Dsub ! D; x 7! x is residuated. Its residualwill be denoted Prsub.Proof: since Dsub is a subdioid of D and is complete,the result is immediate according to theorem 2 .

3 TEG description in dioidMaxin J
; �K3.1 Dioid Maxin J
; �K.The input-output behavior of a TEG may be repre-sented by a transfer relation in some particular dioids.Hereafter, we will essentially represent TEG behavioron dioidMaxin J
; �K. Let us recall that dioidMaxin J
; �Kis formally the quotient dioid of B J
; �K, set of formalpower series in two variables (
; �) with Boolean coef-�cients and with exponents in Z, by the equivalencerelation xRy () 
�(��1)�x = 
�(��1)�y (see [1],[4]for an exhaustive presentation). Dioid Maxin J
; �K iscomplete with a bottom element " = 
+1��1 and atop element T = 
�1�+1. Let us consider a repre-sentative s =Li2N f(ni; ti)
ni�ti in B J
; �K of an ele-ment belonging toMaxin J
; �K. The support of s is thende�ned as f(ni; ti)jf(ni; ti) 6= "g and the valuation(resp. degree) of this element, denoted val
(s) (resp.deg�(s)) as the lower bound (resp. upper bound) ofits support. A series of Maxin J
; �K is said polynomialif its support is �nite. When an element of Maxin J
; �Kis used to code a set of informations concerning a tran-sition of a TEG, then a monomial 
k�t may be inter-preted as : the kth event occurs at least at date t.3.2 Realizability, Periodicity and RationalityDe�nition 7 (Causality) Let h 2 Maxin J
; �K. h iscausal either if (h = ") or (val
(h) � 0 and h �
val
(h)). The set of causal elements of Maxin J
; �K hasa complete dioid structure. This dioid will be denotedMaxin+J
; �K. A matrix is said causal if each of itsentries is causal.De�nition 8 (Periodicity) Let h 2 Maxin J
; �K. his periodic if it exists two polynomials p and q, and amonomial r = 
��� such that h = p� qr�. The ratio� = �=� is called the production rate of the series. Theset of periodic series ofMaxin J
; �K has a dioid structuredenoted Maxin perJ
; �K. A matrix H 2 Maxin J
; �Kp�m issaid periodic if all its entries are periodic. The pro-duction rate of this periodic matrix is then de�ned as� = min1�i�p;1�j�m�ij .De�nition 9 (Realizability) H 2 Maxin J
; �Kp�m issaid realizable if it exists four matrices A1, A2, Band C with entries in f"; eg such that H = C(
A1 ��A2)�B.Remark 1 In other words, there is a TEG whosetransfer is H.De�nition 10 (Rational) Let h 2 Maxin J
; �K. h isrational if it may be written as a �nite composition ofsums, products and Kleene stars of element belongingto the set f"; e; 
; �g. A matrix is said rational if allits entries are rational.



The following theorem recalls that the input-outputtransfer of a TEG is characterized by periodic proper-ties.Theorem 3 ([4]) Let H 2 Maxin J
; �Kp�m. Areequivalent� H is periodic and causal� H is rational� H is realizable.Proposition 2 The canonical injection Idj+ :Maxin+J
; �K ! Maxin J
; �K; x 7! x is residuated. Itsresidual will be denoted Pr+(x).Proof: according to theorem 2 , it su�ces toremark that canonical injection veri�es 8A �Maxin+J
; �K; Idj+(Lx2A x) =Lx2A x.Practically, for all x 2 Maxin J
; �K, the computation ofPr+(x) is obtained by :Pr+(Li2N f(ni; ti)
ni�ti) = Li2N g(ni; ti)
ni�ti whereg(ni; ti) = � f(ni; ti) if (ni; ti) � (0; 0)" otherwise .Theorem 4 ([8],[10]) Let s1; s2 2 Maxin perJ
; �K.Then, s1 �ns2 2Maxin perJ
; �K.Proposition 3 Let s 2 Maxin perJ
; �K a periodic se-ries. Pr+(s) 2 Maxin ratJ
; �K is the greatest rationalelement less than or equal to s.Proof: (sketch of proof) see [6] for further de-tails. The proof consists in remarking that 8s 2Maxin perJ
; �K, Pr+(s) belongs to Maxin perJ
; �K too.Moreover, Pr+(s) 2 Maxin+J
; �K. According to the-orem 3, such an element is then rational.Proposition 4 Let a; b 2 Maxin ratJ
; �K. The ele-ment Pr+(a �nb) is the greatest rational solution ofa 
 x � b. In that sense, we can consider thatLrata :Maxin ratJ
; �K!Maxin ratJ
; �K; x 7! a
x is resid-uated.Proof: since a and b are rational, they are periodic too(cf. theorem 3) . Therefore, according to theorem 4,a �nb is a periodic element but not necessarily causal1.Furthermore, according to proposition 3, Pr+(a �nb) isthen the greatest rational solution of a
 x � b.1for instance, 
� and 
2�2 are periodic and causal series,nevertheless 
2�2�=
� = 
�1��1 is not causal.

4 Feedback Synthesis for TEG4.1 Greatest feedbackIn previous section, we have recalled that a TEG canbe represented by its input-output transfer. For in-stance, considering a TEG with m inputs and p out-puts, its input-output behavior may be simply writtenY = HU , with H 2 Maxin ratJ
; �Kp�m a rational ma-trix. Figure 1 represents the block diagram of a system
H

F

U V Y

Figure 1: System H with an output feedback Fdenoted H on which has been added an output feed-back F . By applying theorem 1, closed-loop transferof �g. 1 is Y = H(FH)�Uwhere H 2 Maxin ratJ
; �Kp�m is the open-loop trans-fer and F 2 Maxin ratJ
; �Km�p is the output feedbacktransfer.Later on, we will denoteMH the following mappingMH : Maxin J
; �Km�p ! Maxin J
; �Kp�mX 7! H(XH)�:The mapping MH clearly represents the way in whicha feedback F modi�es the closed-loop transfer of asystem H . In particular, MH is isotone since it is acomposition of isotone mappings.Remark 2 MH(X) may also be written (HX)�Hsince H(XH)� = H � HXH � HXHXH � � � � =(HX)�H.Thanks to theorem 2, one can check that MH , de-�ned over complete dioids, is not residuated. Indeed,MH(a � b) 6= MH(a) �MH(b). Nevertheless, the fol-lowing result shows that there exists a restriction ofMH that is residuated.Proposition 5 Let us consider mappingImMH jMH : Maxin J
; �Km�p !MH(Maxin J
; �Km�p):X 7! H(XH)�ImMH jMH is residuated and its residual is(ImMH jMH)] : MH(Maxin J
; �Km�p) !Maxin J
; �Km�pX 7! H �nX�=H:Proof: this result rests on La and Ra residuation (cf.corollary 1). It su�ces to show that inequalityH(XH)� � H(aH)� (1)



admits a greatest solution 8a 2 Maxin J
; �Km�p. Byconsidering the Kleene star operator, (1) amounts tosatisfying the in�nite sequence of inequalitiesHXH � H(aH)�; H(XH)2 � H(aH)�; etc.Indeed, once the �rst one is satis�ed, the second onefollows sinceH(XH)2 = (HXH)(XH)� H(aH)�(XH)= (Ha)�HXHsince (Ha)�H = H(aH)�� (Ha)�H(aH)�= H(aH)�(aH)�= H(aH)�since (aH)�(aH)� = (aH)�:The same holds true recursively for the next inequal-ities. Hence we can concentrate on the �rst one only,and clearly H �n(H(aH)�)�=H provides the answer.Proposition 6 Let us consider a TEG whose transferis H 2 Maxin ratJ
; �Kp�m endowed with an output feed-back whose transfer is F 2 Maxin ratJ
; �Km�p. Then,F̂+ = Pr+(H �nMH(F )�=H) is the greatest realizablefeedback such that MH(F ) = MH(F̂+).Proof: clearly, MH(F ) 2 ImMH . So, according toproposition 5, since ImMH jMH is residuated, inequationMH(X) �MH(F ) (2)admits F̂ = H �nMH(F )�=H as greatest solution. Inparticular, since for X = F the equality of (2) isveri�ed, F̂ is then the greatest solution to equationMH(X) = MH(F ). In other hand, MH(F ) is realiz-able, then periodic (cf. theorem 3), since it representsthe closed-loop transfer. Therefore, according to the-orem 4, H �nMH(F )�=H is a periodic matrix but notnecessarily causal matrix. According to proposition3, F̂+ = Pr+(H �nMH(F )�=H) is the greatest rationalsolution of MH(X) =MH(F ).Remark 3 Another interpretation consists in sayingthat for any realizable system H closed by a realiz-able feedback F , there is an optimal realizable feedbackpreserving the transfer of closed-loop system. SinceF̂+ � F , the system F̂+ delays the input of tokens insystem H, compared to the feedback F , while ensuringthe same output. So, compared to the system F , thefeedback F̂+ decreases the number of tokens, or theirsejourn times, in the system H.4.2 Stabilization of TEGFor TEG, stability property essentially means that to-kens do not accumulate inde�nitely inside the graph

or di�erently that, for all inputs, marking remainsbounded. This property is obtained when all tran-sitions �re with the same average frequency.A TEG is said structurally controllable (resp. ob-servable) if every internal transition can be reached bya direct path from at least one input transition (resp.is the origin of at least one direct path to some outputtransition)(see [1]). It has been showed that a struc-turally controllable and observable TEG can be madestable by adding an output feedback [3] [10]. Indeed,as soon as all transitions belongs to a single stronglyconnected component, the TEG is stable. Therefore, itsu�ces that output feedback makes the TEG stronglyconnected to enforce stability. Moreover, stability maybe obtained in order to preserve initial TEG produc-tion rate. The following theorem, coming from [1],formalizes this result.Theorem 5 Any structurally controllable and observ-able event graph can be made internally stable by out-put feedback without altering its original throughput.4.2.1 Resource optimization in feedbackAccording to theorem 5, a TEG can be made stablewhile preserving its intrinsic throughput. Obviously,this feedback stabilization requires some amount of ini-tial tokens in feedback arcs. In manufacturing context,for instance when a TEG describes a production sys-tem, the initial feedback marking can represent someresources like transport means (used to convey parts)or recyclable machines. Consequently, it is partic-ularly signi�cant to limit as much as possible theirnumber. Here, we consider the problem of feedbackmarking minimization under both constraints of TEGstabilization and production rate preserving. This re-source optimization problem, described more preciselythereafter, is tackled2, and solved, by Gaubert in [9].Let us consider a TEG made up of m inputs and poutputs. Arcs provided with a place are added be-tween outputs and inputs so as the TEG becomesstrongly connected3. When strongly connectedness isreached, the problem consists in calculating the mini-mal number of tokens to be placed in each of these arcsin order to preserve the throughput of the open-loopsystem.The transfer of feedback system can be representedby a matrix F = �Fij� 2Maxin ratJ
; �Kp�m where Fij =
qij if qij tokens are initially allocated to place locatedbetween output j and input i, and Fij = " if there isno arc.The problem lies in the computation and mini-mization of q = fqijg in order that closed-loop sys-tem keeps the same production rate as the open-loop2other authors have solved such a problem but not necessarilywith (max,+) approaches.3Practically, it is not always necessary to connect all outputsto all inputs to obtain strongly connectedness.



one. Gaubert [9] has shown that such a problem maybe solved as an integer linear programming problemwhere the linear cost function isJ(q) = i=m;j=pXi=1;j=1 �ijqij ;with �ij a price associated to each resource, and theconstraint is �(q) � �;where � is the production rate of the open-loop systemand �(q) is the production rate with feedback.If we denote wNc(q) (resp. wTc) the (classical) sumof tokens (resp. holding times) in a circuit c, then�(q) = minc wNc(q)wTc ;i.e., for each circuit the following constraint will besatis�ed wNc(q) � �� wTc :The solution of this integer linear program yields to qijtokens that must be placed in each feedback arc. Wedenote FRO this feedback. Then, FRO ensures closed-loop stability, preserves the same production rate andminimizes the cost function.4.2.2 Synthesis of a greater stabilizingfeedbackWe propose here to improve the feedback obtainedabove by computing the greatest dynamic feedbackwhich preserves MH(FRO).Proposition 7 Let us denote FRO a feedback loopobtained by solving a resource optimization problem.The feedback loop F̂RO+ = Pr+(H �nMH(FRO)�=H) isthe greatest realizable feedback such that MH(FRO) =MH(F̂RO+).Proof: direct from proposition 6.This feedback can be seen as a re�nement to thesolution brought by Gaubert in [9]. Indeed, as wehave explained in remark 3, feedback F̂RO+ veri�esF̂RO+ � FRO. Therefore, feedback F̂RO+ releases in-put �rings latter than with feedback FRO while en-suring the same output and the same resource numberin each feedback. Indeed, since the initial marking(i.e., the resource number) of a path described by aperiodic series s is equal to val
(s), we obtainF̂RO+ � FRO () 8i; j F̂RO+ij � FROij) 8i; j val
(F̂RO+ij ) � val
(FROij ):The last statement means that the resource number ofeach path of feedback F̂RO+ is less than or equal tothe ones of FRO. In the other hand, MH(F̂RO+) =MH(FRO), and val
(FROij ) is the minimal number oftokens which allows to minimize J(q) while preservingthe production rate. This latest statement leads toequality val
(F̂RO+ij ) = val
(FROij ).

4.2.3 Illustrative exampleWe present here how the preceding results can be im-plemented. Let us consider the structurally control-lable and observable TEG drawn in solid lines in �g.2.Its transfer matrix inMaxin J
; �K2�2 isH = ��9(
�)� �5(
�)�" �15(
2�5)�� :From this transfer matrix, we deduce that the TEGproduction rate is � = 2=5 (see de�nition 8). ThisTEG represents a production unit with 4 machinesdenoted M1 to M4. Because of the di�erence of pro-duction rates of machines constituting this workshop,one notices that TEG model is not stable. Indeed,by �ring all inputs an in�nity times at a given datewe can observe an accumulation of tokens upstreammachine M4. Therefore, stability of that system canbe obtained by adding an output feedback. It is suf-�cient to make the TEG strongly connected to ensureits stability. In that particular case, the TEG becomesstrongly connected by adding a feedback of the form :F = �
q11 "
q21 
q22� :We consider here the resource optimization problem inorder to minimize the following cost function J(q) =q11 + q21 + q22 (i.e., �ij = 1). This problem can besolved by considering the sum of tokens and tempo-rization of each elementary circuit4 which yields to theTEG production rate denoted �(q) :�(q) = min�25 ; q119 ; q215 ; q2215 � :Therefore, for q = (4; 2; 6), cost J(q) is minimum, i.e.,FRO = �
4 "
2 
6� :This stabilizing feedback that keeps original through-put and minimizes resources number (tokens) is drawnin dotted lines in �g. 2. On the basis of this solutionFRO (obtained by linear programming approach) andaccording to proposition 7, we can re�ne this resultby computing F̂RO+ = Pr+(H �nFRO�=H). We do notdetail calculus here. The result obtained is :F̂RO+ = �(e� 
�)(
2�5)���
4� 
8
2 
6� :A realization of that system is drawn in �g.3.Remark 4 We can notice that feedback F̂RO+ has anarc y1! u2 that does not exist in feedback FRO.4the naive enumeration of elementary circuits is simpler thanwriting the linear program. But, for large graphs, such an enu-meration becomes practically impossible (for a complete graphwith n vertices, the enumeration complexity is O((n � 1)!))).Gaubert's approach [9] allows to consider only n2 inequalities.
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Figure 2: System H with feedback FRO
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