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This paper deals with output feedback synthesis for Timed Event Graphs (TEG) in dioid algebra. The feedback synthesis is done in order to stabilize a TEG without decreasing its original production rate, optimize the initial marking of the feedback, delay as much as possible the tokens input.

Introduction

We are interested here in the problem of Timed Event Graphs (TEG) stabilization. We rst recall that a TEG is a Petri net whose each place has one upstream transition and one downstream transition. This class of Petri nets admits a linear representation on (max, +) or (min, +) algebra 1] 4].

Property of stability is closely related to TEG structure. A TEG is said to be structurally stable if its marking (i.e., its number of tokens) remains limited for all ring sequence of input transitions (this de nition is introduced in 1, chap. 6]).

The problem of TEG stabilization has been considered by Cohen et al. in 3] and more recently by Commault 5]. Commault obtains a su cient condition of stability for TEG. Such a condition is satis ed if TEG is made strongly connected by adding paths (i.e., successions of places and transitions) between the output and the input of the TEG. Consequently, each place of the resulting TEG necessarily belongs to a circuit and its marking is then bounded.

In addition, it is shown in 1] that a controllable and observable TEG can be made stable, by adding an output feedback, without altering its own production rate. Gaubert has shown in 9] that the number of tokens that must be placed in the feedback, in order to stabilize a TEG, is a resource optimization problem which can be formulated as an integer linear program.

The approach presented here is based, on the one hand, on Gaubert's work 9] and, on the other hand, on the work initiated in 7]. The objective is here to synthesize a dynamic feedback which minimizes the number of tokens required, under the constraint that feedback keeps the original throughput.

In section 2, we will recall the algebraic tools necessary to feedback synthesis. We will brie y recall, in section 3, TEG modelization over dioid M ax in J ; K and some periodic properties of TEG. In section 4, we will present how an existing feedback in a TEG can be improved and the way in which this can be applied to the problem of TEG stabilization.

Algebraic tools

The reader is invited to consult 1] or 4] for a complete presentation of the following theoretical recalls.

Dioid Theory

De nition 1 (Dioid, Complete Dioid) A dioid D is a set endowed with two internal operations denoted (addition) and (multiplication), both associative and both having a neutral element denoted " and e respectively such that is commutative and idempotent (8a 2 D; a a = a), is distributive with respect to and " is absorbing for the product (8a 2 D; " a = a " = ").

A dioid (D; ; ) is said to be complete if it is closed for in nite sums and if multiplication distributes over in nite sums too. The sum of all its elements is generally denoted T . Theorem 1 (Kleene star theorem) The implicit equation x = ax b de ned over a complete dioid admits x = a b as least solution with a = L i 0 a i .The star operator is usually called Kleene star.

De nition 2 (Order relation)

Residuation Theory

In ordered set, equations f(x) = b may have either no solution, one solution, or multiple solutions. In order to give always a unique answer to this problem of mapping inversion, residuation theory 2] provides, under some assumptions, either the greatest solution (in accordance with the partial order) to the inequation f(x) b or the least solution to f(x) b.

De nition 4 (Isotone mapping) A mapping f dened over ordered sets is said to be isotone if a b ) f(a) f(b).

De nition 5 (Residuation) Let f : E ! F, with (E; ) and (F; ) ordered sets. Mapping f is said residuated if for all y 2 F, the least upper bound of the subset fx 2 Ejf(x) yg exists and lies in this subset. It is then denoted f ] (y). Mapping f ] is called the residual of f . When f is residuated , f ] is the unique isotone mapping such that f f ] Id and f ] f Id:

Theorem 2 ( 1]) Let f : (D; ; ) ! (C; ; ) a mapping de ned over complete dioids. Mapping f is residuated if, and only if, f(") = " and, 8A D,

f( L x2A x) = L x2A f(x).
Corollary 1 Let L a : x 7 ! a x and R a : x 7 ! x a de ned on a complete dioid. Mappings L a and R a are both residuated. Their residuals will be denoted respectively L ] a (x) = a nx and R ] a (x) = x =a Proof: by de nition, " is absorbing for and product distributes over sums in complete dioids.

Mapping restriction

De nition 6 Let f : E ! F a mapping and A E a subset. We will denote f jA : A ! F the mapping de ned by equality f jA = f Id jA where Id jA : A ! E is the canonical injection. Identically, let B F with Imf B. Mapping Bj f will be de ned by equality f = Id jB Bj f where Id jB : B ! F is the canonical injection.

Proposition 1 Let D a complete dioid and D sub a complete subdioid of D. Then, the canonical injection Id jsub : D sub ! D; x 7 ! x is residuated. Its residual will be denoted Pr sub .

Proof: since D sub is a subdioid of D and is complete, the result is immediate according to theorem 2 .

3 TEG description in dioid M ax in J ; K 3.1 Dioid M ax in J ; K.

The input-output behavior of a TEG may be represented by a transfer relation in some particular dioids.

Hereafter, we will essentially represent TEG behavior on dioid M ax in J ; K. Let us recall that dioid M ax in J ; K is formally the quotient dioid of B J ; K, set of formal power series in two variables ( ; ) with Boolean coefcients and with exponents in Z, by the equivalence relation xRy () ( 1 ) x = ( 1 ) y (see 1], 4] for an exhaustive presentation). Dioid M ax in J ; K is complete with a bottom element " = +1 1 and a top element T = 1 +1 . Let us consider a representative s = L i2N f(n i ; t i ) ni ti in B J ; K of an element belonging to M ax in J ; K. The support of s is then de ned as f(n i ; t i )jf(n i ; t i ) 6 = "g and the valuation (resp. degree) of this element, denoted val (s) (resp. deg (s)) as the lower bound (resp. upper bound) of its support. A series of M ax in J ; K is said polynomial if its support is nite. When an element of M ax in J ; K is used to code a set of informations concerning a transition of a TEG, then a monomial k t may be interpreted as : the k th event occurs at least at date t.

3.2 Realizability, Periodicity and Rationality De nition 7 (Causality) Let h 2 M ax in J ; K. h is causal either if (h = ") or (val (h) 0 and h val (h) ). The set of causal elements of M ax in J ; K has a complete dioid structure. This dioid will be denoted M ax in + J ; K. A matrix is said causal if each of its entries is causal.

De nition 8 (Periodicity) Let h 2 M ax in J ; K. h is periodic if it exists two polynomials p and q, and a monomial r = such that h = p qr . The ratio = = is called the production rate of the series. The set of periodic series of M ax in J ; K has a dioid structure denoted M ax in per J ; K. A matrix H 2 M ax in J ; K p m is said periodic if all its entries are periodic. The production rate of this periodic matrix is then de ned as = min 1 i p;1 j m ij .

De nition 9 (Realizability) H 2 M ax in J ; K p m is said realizable if it exists four matrices A1, A2, B and C with entries in f"; eg such that H = C( A1 A2) B.

Remark 1 In other words, there is a TEG whose transfer is H.

De nition 10 (Rational) Let h 2 M ax in J ; K. h is rational if it may be written as a nite composition of sums, products and Kleene stars of element belonging to the set f"; e; ; g. A matrix is said rational if all its entries are rational.

The following theorem recalls that the input-output transfer of a TEG is characterized by periodic properties. Then, s1 ns2 2 M ax in per J ; K. Proposition 3 Let s 2 M ax in per J ; K a periodic se- ries. Pr + (s) 2 M ax in rat J ; K is the greatest rational element less than or equal to s.

Proof: (sketch of proof) see 6] for further details. The proof consists in remarking that 8s 2 M ax in per J ; K, Pr + (s) belongs to M ax in per J ; K too.

Moreover, Pr + (s) 2 M ax in + J ; K. According to theorem 3, such an element is then rational.

Proposition 4 Let a; b 2 M ax in rat J ; K. The ele- ment Pr + (a nb) is the greatest rational solution of a x b. In that sense, we can consider that L rat a : M ax in rat J ; K ! M ax in rat J ; K; x 7 ! a x is residuated.

Proof: since a and b are rational, they are periodic too (cf. theorem 3) . Therefore, according to theorem 4, a nb is a periodic element but not necessarily causal 1 .

Furthermore, according to proposition 3, Pr + (a nb) is then the greatest rational solution of a x b.

1 for instance, and 2 2 are periodic and causal series, nevertheless 2 2 = = 1 1 is not causal.

4 Feedback Synthesis for TEG

Greatest feedback

In previous section, we have recalled that a TEG can be represented by its input-output transfer. For instance, considering a TEG with m inputs and p outputs, its input-output behavior may be simply written Y = HU, with H 2 M ax in rat J ; K p m a rational matrix. Figure 1 represents the block diagram of a system

H F U V Y
Figure 1: System H with an output feedback F denoted H on which has been added an output feedback F. By applying theorem 1, closed-loop transfer of g. 1 is Y = H(FH) U where H 2 M ax in rat J ; K p m is the open-loop transfer and F 2 M ax in rat J ; K m p is the output feedback transfer.

Later on, we will denote M H the following mapping M H : M ax in J ; K m p ! M ax in J ; K p m X 7 !

H(XH) :

The mapping M H clearly represents the way in which a feedback F modi es the closed-loop transfer of a system H. In particular, M H is isotone since it is a composition of isotone mappings.

Remark 2 M H (X) may also be written (HX) H since H(XH) = H HXH HXHXH = (HX) H. Thanks to theorem 2, one can check that M H , dened over complete dioids, is not residuated. Indeed, M H (a b) 6 = M H (a) M H (b). Nevertheless, the following result shows that there exists a restriction of M H that is residuated.

Proposition 5 Let us consider mapping

ImM H j MH : M ax in J ; K m p ! MH (M ax in J ; K m p ): X

! H(XH)

ImMHj M H is residuated and its residual is ( ImM H j MH ) ] : MH(M ax in J ; K m p ) ! M ax in J ; K m p X 7 ! H nX =H:

Proof: this result rests on L a and R a residuation (cf. corollary 1). It su ces to show that inequality

H(XH) H(aH)

(1) admits a greatest solution 8a 2 M ax in J ; K m p . By considering the Kleene star operator, (1) amounts to satisfying the in nite sequence of inequalities HXH H(aH) ; H(XH)2 H(aH) ; etc. Indeed, once the rst one is satis ed, the second one follows since

H(XH) 2 = (HXH)(XH) H(aH) (XH) = (Ha) HXH since (Ha) H = H(aH) (Ha) H(aH) = H(aH) (aH) = H(aH) since (aH) (aH) = (aH) :
The same holds true recursively for the next inequalities. Hence we can concentrate on the rst one only, and clearly H n(H(aH) ) =H provides the answer.

Proposition 6 Let us consider a TEG whose transfer is H 2 M ax in rat J ; K p m endowed with an output feed- back whose transfer is F 2 M ax in rat J ; K m p . Then, F+ = Pr + (H nM H (F ) =H) is the greatest realizable feedback such that M H (F ) = M H ( F+ ).

Proof: clearly, M H (F ) 2 ImM H . So, according to

proposition 5, since ImMHj M H is residuated, inequation M H (X) M H (F ) (2) 
admits F = H nM H (F ) =H as greatest solution. In particular, since for X = F the equality of (2) is veri ed, F is then the greatest solution to equation M H (X) = M H (F ). In other hand, M H (F ) is realizable, then periodic (cf. theorem 3), since it represents the closed-loop transfer. Therefore, according to theorem 4, H nM H (F ) =H is a periodic matrix but not necessarily causal matrix. According to proposition3, F+ = Pr + (H nM H (F ) =H) is the greatest rational solution of M H (X) = M H (F ).

Remark 3 Another interpretation consists in saying that for any realizable system H closed by a realizable feedback F, there is an optimal realizable feedback preserving the transfer of closed-loop system. Since F+ F, the system F+ delays the input of tokens in system H, compared to the feedback F, while ensuring the same output. So, compared to the system F, the feedback F+ decreases the number of tokens, or their sejourn times, in the system H.

Stabilization of TEG

For TEG, stability property essentially means that tokens do not accumulate inde nitely inside the graph or di erently that, for all inputs, marking remains bounded. This property is obtained when all transitions re with the same average frequency. A TEG is said structurally controllable (resp. observable) if every internal transition can be reached by a direct path from at least one input transition (resp. is the origin of at least one direct path to some output transition)(see 1]). It has been showed that a structurally controllable and observable TEG can be made stable by adding an output feedback 3] 10]. Indeed, as soon as all transitions belongs to a single strongly connected component, the TEG is stable. Therefore, it su ces that output feedback makes the TEG strongly connected to enforce stability. Moreover, stability may be obtained in order to preserve initial TEG production rate. The following theorem, coming from 1], formalizes this result.

Theorem 5 Any structurally controllable and observable event graph can be made internally stable by output feedback without altering its original throughput.

Resource optimization in feedback

According to theorem 5, a TEG can be made stable while preserving its intrinsic throughput. Obviously, this feedback stabilization requires some amount of initial tokens in feedback arcs. In manufacturing context, for instance when a TEG describes a production system, the initial feedback marking can represent some resources like transport means (used to convey parts) or recyclable machines. Consequently, it is particularly signi cant to limit as much as possible their number. Here, we consider the problem of feedback marking minimization under both constraints of TEG stabilization and production rate preserving. This resource optimization problem, described more precisely thereafter, is tackled 2 , and solved, by Gaubert in 9].

Let us consider a TEG made up of m inputs and p outputs. Arcs provided with a place are added between outputs and inputs so as the TEG becomes strongly connected 3 . When strongly connectedness is reached, the problem consists in calculating the minimal number of tokens to be placed in each of these arcs in order to preserve the throughput of the open-loop system.

The transfer of feedback system can be represented by a matrix F = F ij 2 M ax in rat J ; K p m where F ij = qij if q ij tokens are initially allocated to place located between output j and input i, and F ij = " if there is no arc.

The problem lies in the computation and minimization of q = fq ij g in order that closed-loop system keeps the same production rate as the open-loop with n vertices, the enumeration complexity is O((n 1)!))). Gaubert's approach 9] allows to consider only n 2 inequalities. Clearly, feedback FRO + delays tokens entrance in system H. For lack of place, we have not described ring sequences v2, y 1 nor y 2 for that simulation. We can only assert that outputs are identical in both cases and that sequence v2 is not improved by the feedback FRO + . 
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 4 Figure4: v1 with FRO + (dotted lines), v1 with F RO (solid lines) and u1 for both systems (dashed lines).
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Theorem 4 ( 8], 10]) Let s1; s2 2 M ax in per J ; K.

other authors have solved such a problem but not necessarily with (max,+) approaches.

Practically, it is not always necessary to connect all outputs to all inputs to obtain strongly connectedness.

the naive enumeration of elementary circuits is simpler than writing the linear program. But, for large graphs, such an enumeration becomes practically impossible (for a complete graph

one. Gaubert 9] has shown that such a problem may be solved as an integer linear programming problem where the linear cost function is J(q) = i=m;j=p X i=1;j=1 ij q ij ; with ij a price associated to each resource, and the constraint is (q) ; where is the production rate of the open-loop system and (q) is the production rate with feedback.

If we denote w Nc (q) (resp. w Tc ) the (classical) sum of tokens (resp. holding times) in a circuit c, then (q) = min c w Nc (q)

w Tc ;

i.e., for each circuit the following constraint will be satis ed w Nc (q)

w Tc :

The solution of this integer linear program yields to q ij tokens that must be placed in each feedback arc. We denote F RO this feedback. Then, F RO ensures closedloop stability, preserves the same production rate and minimizes the cost function.

Synthesis of a greater stabilizing feedback

We propose here to improve the feedback obtained above by computing the greatest dynamic feedback which preserves M H (F RO ). Proof: direct from proposition 6.

This feedback can be seen as a re nement to the solution brought by Gaubert in 9]. Indeed, as we have explained in remark 3, feedback FRO+ veri es FRO + F RO . Therefore, feedback FRO + releases input rings latter than with feedback F RO while ensuring the same output and the same resource number in each feedback. Indeed, since the initial marking (i.e., the resource number) of a path described by a periodic series s is equal to val (s), we obtain FRO + FRO () 8i; j FRO + ij FRO ij ) 8i; j val ( FRO + ij ) val (FRO ij ): The last statement means that the resource number of each path of feedback FRO + is less than or equal to the ones of F RO . In the other hand, M H ( FRO + ) = M H (F RO ), and val (F RO ij ) is the minimal number of tokens which allows to minimize J(q) while preserving the production rate. This latest statement leads to equality val ( FRO + ij ) = val (F RO ij ).

Illustrative example

We present here how the preceding results can be implemented. Let us consider the structurally controllable and observable TEG drawn in solid lines in g.2.

Its transfer matrix in M ax in J ; K 2 2 is H = 9 ( ) 5 ( ) " 15 ( 2 5 ) :

From this transfer matrix, we deduce that the TEG production rate is = 2=5 (see de nition 8). This TEG represents a production unit with 4 machines denoted M1 to M4. Because of the di erence of production rates of machines constituting this workshop, one notices that TEG model is not stable. Indeed, by ring all inputs an in nity times at a given date we can observe an accumulation of tokens upstream machine M4. Therefore, stability of that system can be obtained by adding an output feedback. It is sufcient to make the TEG strongly connected to ensure its stability. In that particular case, the TEG becomes strongly connected by adding a feedback of the form :

We consider here the resource optimization problem in order to minimize the following cost function J(q) = q 11 + q 21 + q 22 (i.e., ij = 1). This problem can be solved by considering the sum of tokens and temporization of each elementary circuit 4 which yields to the TEG production rate denoted (q) : (q) = min 2 5 ; q 11 9 ; q 21 5 ; q 22 15 : Therefore, for q = (4; 2; 6), cost J(q) is minimum, i.e., F RO = 4 " 2 6 : This stabilizing feedback that keeps original throughput and minimizes resources number (tokens) is drawn in dotted lines in g. 2. On the basis of this solution F RO (obtained by linear programming approach) and according to proposition 7, we can re ne this result by computing FRO + = Pr + (H nF RO =H). We do not detail calculus here. The result obtained is : A realization of that system is drawn in g.3.

Remark 4 We can notice that feedback FRO+ has an arc y1 ! u2 that does not exist in feedback F RO .