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Abstract: Parameter or state estimation should take into account the fact that the
model is an approximation of reality and that the data are corrupted by noise. In this
paper, each uncertain quantity is assumed to belong to a known set. The problem,
known as parameter or state bounding, is then to characterize the set of all parameter
or state vectors that are consistent with the model structure, data and error bounds.
A description of how interval analysis can be used to find guaranteed estimates in a
nonlinear context is provided. The main notions of interval analysis are first recalled
very briefly. The simpler problem of parameter estimation is then considered. State
estimation, which contains parameter tracking as a special case, is treated next. A
simple illustrative example is finally presented.
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1. INTRODUCTION

Parameter or state estimation should take into
account the fact that the model is an approxima-
tion of reality and that the data are corrupted by
noise. Two main approaches are available for this
purpose. One is based on the minimization of a
cost function, which may be deduced from a prob-
abilistic description of uncertainty, for instance by
a maximum-likelihood or Bayesian approach, see,
e.g., (Walter and Pronzato 1997). The problem is
then to characterize the set S of all global mini-
mizers of this cost function. The other approach
assumes that each uncertain quantity belongs to a
known set, which leads to set-membership estima-
tion, also known as parameter or state bounding.
The problem is then to characterize the set S of all
parameter or state vectors that are consistent with

the model structure, data and error bounds, see,
e.g., (Chernousko 1994), (Milanese et al. 1996)
and (Kurzhanski and Valyi 1997).

In both approaches, the algorithms used to per-
form these tasks differ radically depending on
whether the model output is linear in the un-
known parameters or state variables to be es-
timated. The linear case is much simpler and
well documented. In the nonlinear case considered
here, difficulties accumulate. Iterative optimiza-
tion algorithms may get trapped and converge to
local minimizers of the cost function associated
with maximume-likelihood estimation. Moreover,
the propagation of a Gaussian state perturbation
in a nonlinear model results in a loss of normality
which makes a probabilistic interpretation of the
results questionable. In set-membership estima-



tion S is the set of all unfalsified vector estimates,
with no other probabilistic interpretation, so this
difficulty is avoided, but S may be nonconvex or
even nonconnected and thus particularly difficult
to characterize in a guaranteed way.

This paper describes how interval analysis (TA)
can be used to find guaranteed estimates in this
difficult nonlinear context. The main notions of
interval analysis are first recalled very briefly. The
simpler problem of parameter estimation is then
considered, and the reason why set-membership
estimation is particularly suitable for treatment
by TA is explained. State estimation, which con-
tains parameter tracking as a special case, is then
treated in the bounding context. A simple illustra-
tive example is finally presented, which is solved
using software downloadable from our web site at
www.lss.supelec.fr/books/interval.

2. INTERVAL ANALYSIS

Let TR" be the set of all the vector intervals or
boxes of R™ and let S be a set of R™. IA allows
guaranteed conclusions to be reached about the
properties of S after a finite number of floating-
point computations, although the vectors in S may
not, even be denumerable. This is made possible
by replacing calculation on S by computation on
boxes. Three basic tasks are (i) computing a box
guaranteed to contain the image of a box [x] by
a function f(.), (#) testing whether [x] C S or
whether [x] N'S = @, (#i4) contracting [x] with
respect to S, i.e., replacing [x] by a smaller box
[z], such that [x] NS = [z] NS.

The key to Task (i) is the notion of inclusion
function. Let £(.) be a function from R™ to R™ .
The function [f](.) from TR" to IR” is an in-
clusion function for f(.) if for any [x] in TR",
f([x]) C [f]([x]). Various methods can be em-
ployed to build inclusion functions for a huge
class of functions, which may be defined by an-
alytic expressions, by algorithms or by differen-
tial equations, see (Moore 1979), (Ratschek and
Rokne 1984), (Berz and Makino 1998). At least
in principle, Task (1) is trivial when an inclusion
function is available. Important tools to perform
Task (4i4) are the interval Newton method (for the
case n' = n) and interval constraint propagation
(ICP) for the general case, see (Davis 1987), (Sam-
Haroud and Faltings 1996) and (Jaulin 2000).

Based on (i) to (1), it becomes possible to obtain
guaranteed solutions to problems such as finding
all the global minimizers X of a cost function in a
given search box X, or the set S of all vectors x
in X satisfying a set of equality and inequality
constraints. Guaranteed means here that outer
(and sometimes inner) approximations of the so-
lution set are being built, and the quality of these

approximations can be improved at the cost of
increasing the computational effort. Solving sets
of equations or inequalities and optimizing cost
functions are, of course, at the core of many prob-
lems in engineering and control (Jaulin et al. (to
appear)); we shall concentrate here on parameter
and state estimation.

3. PARAMETER ESTIMATION

To estimate the vector x of the parameters of a
mathematical model from a numerically known
vector y of experimental data, the usual approach
is to define a cost function c¢(x,y) to be mini-
mized with respect to x. This cost function may
be deduced by a maximum-likelihood approach
from prior information or hypotheses about the
noise corrupting the data, but other approaches
may also be employed. Except in some very spe-
cial cases, there is no explicit solution to this
minimization problem, and no guarantee that an
estimate obtained by iterative local techniques is
indeed a global minimizer of ¢(.,y). There may
even be several values of x that lead to exactly
the same value of the cost. Random search may
avoid being trapped around local minimizers but
again no guarantee can usually be provided about
results obtained in finite time. On the other hand,
optimization algorithms based on TA compute a
list £ of boxes in parameter space that are guaran-
teed to contain all the global minimizers. Hansen’s
algorithm for unconstrained optimization, for in-
stance, uses inclusion functions for the cost, its
gradient and the diagonal entries of its Hessian
matrix to eliminate boxes and the interval Newton
method to contract boxes that resist elimination.
The surviving contracted boxes are then split into
subboxes before being put back in the list of
boxes still to be studied, and the algorithm stops
when all remaining boxes are deemed too small to
be worth further bisection. For more details, see
(Hansen 1992), entirely devoted to the subject.

Very often, ¢(x,y) is a possibly weighted sum of
the squares of the differences between the com-
ponents of y and a corresponding model output
n(x), which means that there are many occur-
rences of x in the formal expression for ¢(x,y).
This situation is not favorable to interval analysis,
because in interval computation the fact that x
takes the same value in all of these occurrences
is forgotten, and each occurrence of [x] is treated
as if it were independent of the others. This is an
additional incentive to considering the alternative
approach known as set-membership estimation or
parameter bounding. In this approach, it is as-
sumed that the set S to be estimated is defined
by a set of inequalities, for instance,
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where X is some (possibly very large) prior feasible
set also defined by inequalities and €; is some
bound on the acceptable absolute error between
the ¢th datum and the corresponding model out-

put. It is then assumed that an inclusion function
[e] (.) is available for the function e(.) defined by

e(x) =y — n(x). (2)
Note that the number of occurrences of x in
each component of e(x) is much lower than in
¢(x,y), so more efficient inclusion functions can
be obtained. S can now be defined as

S={xe X CR"|ex) €k}
=e”'(B) NX, (3)

where X is some prior search domain included in
R™ and E is the prior feasible set for the error e.
Characterizing S can then be viewed as a problem
of set inversion.

The algorithm S1viA (for set inversion via inter-
val analysis) partitions X into three subpavings
(unions of nonoverlapping boxes). These sub-
pavings are S;, contained in S, S,y such that its
intersection with S is empty and Syounq for which
no conclusion could be reached (Jaulin and Wal-
ter 1993a), (Jaulin and Walter 1993b). S is thus
bracketed (in the sense of inclusion) between S;,
and Sj; U Spound- The volume of the uncertainty
subpaving Spouna may be reduced at the cost of
increasing the computational effort. The results
are global within X as illustrated by the example
in (Braems et al. 2001), where the parameters of
a nonuniquely identifiable model were estimated.

4. STATE ESTIMATION

Consider now a nonlinear and possibly time-
varying system described by the state equation

Xe+1 :fg (Xg,Wg), E:O,l,... (4)

and the observation equation

Yo =h, (Xg) + vy, ZZO,I,... (5)

where x;, € R” is the state vector and y, € RP the
output vector. Assume that the state perturbation
w; belongs to the known box [w],, and that
the measurement noise v, belongs to the known
box [v],. The noise-free output y, — v, is then
guaranteed to belong to

Y=y, —[v], (6)

The functions f; and h, are known, and may be
defined by finite algorithms. Two problems are
considered in this section. The first one is the

causal estimation of a set guaranteed to contain
x¢ based on the information available up to the
time indexed by /¢, and the second one is the
noncausal estimation of x; using all the informa-
tion available, including measurements posterior
to the time indexed by £. Of course, in real time,
only causal estimation can be employed, but when
the data are to be processed off-line, there is no
reason for not using the entire set of available
measurements to estimate the state at any given
time.

Remark 1. The function f; may of course depend
on a vector of inputs u, € R™, omitted in (4) for
the sake of simplicity. ]

Remark 2. The more general problem of joint
state and parameter estimation can easily be
treated in this context. It suffices to replace x; by
an extended state x¢ = (x;,p; )" incorporating
the unknown parameter vector p, € R?I. An
evolution equation for the parameters is then
needed; it may, for instance, be pgy1 = pg + W,
with w} in some known box [w?],. [ ]

4.1 Causal state estimation

Figure 1 illustrates the principle of one iteration
of the recursive causal state estimator (RCSE)
described by Table 1. At ¢, the state is known
to belong to X,;. The predicted set X4y =
f,(X¢,[w],) thus contains all possible values of
Xs+1. When a measurement becomes available at
{+1, h;jl (Y¢41) contains all state vectors that
could have led to a noise-free output belonging to
Y¢41. Thus, the state belongs to the corrected set
Xep1 = Xey Nh L (Vo).

Table 1. Recursive causal
state estimator

Algorithm RCSE(in: Xo; out: Xy, ... ’XZ)
1 forl:=0tof—1,
Xt = £o(Xe, [W]p)s
wait for Y, 1;

// prediction

W N

Xpp1 =X N h;ﬁl(Y[+1); // correction

To estimate x,, it suffices to supplement a cor-
rection step based on the algorithm Sivia for
parameter estimation presented in Section 3 with
a prediction step. This prediction step is imple-
mented using the algorithm IMAGESP (Kieffer et
al. 2001a). IMAGESP encloses the direct image of
a set by a given function in a subpaving, with a
precision that can be chosen by the user. Alternat-
ing prediction with IMAGESP and correction with
S1VIA, one gets a guaranteed nonlinear counter-
part to Kalman filtering (Kieffer et al. 1998).

Remark 3. It is not required that each of the
estimated sets consist of a single connected com-
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Fig. 1. Principle of recursive state estimation

ponent. Because of the global nature of the results
provided, it thus becomes possible to estimate the
state of an unobservable model, as illustrated by
some problems in robotics (Kieffer et al. 2000),
(Kieffer et al. 20010). |

4.2 Noncausal estimation

The noncausal case is treated in two phases.
The forward phase computes the set X, of all
the state vectors x; that are consistent with
the past measurements and the initial domain
X, for £ = 1,2,.... This corresponds to the
algorithm RCSE of Table 1. The backward phase
eliminates all parts of X, that are not consistent
with the set estimates obtained for k& > ¢. The
resulting procedure is described in Table 2. For
more details, see (Jaulin et al. (to appear)).

Table 2. Noncausal set state estimator

Algorithm NCSE(inout Xg ; in: Yq,... Y
out Xq,... ’XZ)
// forward phase

for £:=0to€—1,
Xpq = 1(Xy);
Xpp1 =X N hZ_:I(YH_l); // correction

for £ :={¢ down to 1, // backward phase
Xg_ = f[Jl (Xp); // postdiction
X1 =X 1N Xy // correction

// prediction

S O R W N

Remark 4. In the presentation of NCSE, the in-
fluence of the state perturbation w, has been
neglected for the sake of brevity. Actually, f; is
a function from A to B, with A the Cartesian
product of the state and perturbation spaces, and
B the state space. For f[_ll, the roles of A and B are
interchanged. To compute X;_1, instead of going
through Steps 5 and 6, one should therefore first
compute an approximation of the image of X; by
fgill in the A space, then intersect it with X, x
[w¢_1] and finally project the result onto the state

space. Note that intersection and projection are
not commutative. |

5. EXAMPLE

The following example will show how the ap-
proach of Section 4 can be used to estimate the
state of a linear uncertain or nonlinear discrete-
time model under the hypothesis that all the
uncertain quantities belong to known intervals or
boxes. Consider a discrete-time model described
by

X1 = A(we)xy, (7)
with x; = (z1 (£) =2 (£))T and

Alwy) = (wg cosm/4 —wy sinw/4> C®)

wesinm/4  wycosT/4

The initial state vector xg is only known to
belong to Xg = [4,5] x [-1,1]. When w; is
treated as a state perturbation, (7) describes an
uncertain linear system. If wy is included in an
extended state vector x§, then the model becomes
nonlinear.

In what follows, all computing times are given for
a Pentium 233 MHz personal computer. In each
algorithm, the precision of set description is con-
trolled by the value given to a tuning parameter
€, which, roughly speaking, corresponds to the
width of the smallest box that can be used. Of
course, the smaller ¢ is and the more complicated
the computation becomes, so a compromise must
be struck between accuracy and complexity.

5.1 Long-range state prediction

The parameter wy in (8) is uncertain and only
known to belong to the interval [w,] = [0.8,0.9].
With the help of IMAGESP, one can evaluate a
subpaving X, guaranteed to contain X, for any
¢ > 0. The evolution of X, for ¢ = 0.1 and
£ =20,...,10 is represented on Figure 2. Table 3
shows the influence of € on the computing time
and on the quality of description, as quantified by
the volume of Xjg.

Table 3. Influence of € on computing
time and pessimism

e 02 0.1 005 0.025
time (s) 1.8 10 76 750
volume of X;o  4.91 2.71 2.05  1.79

For ¢ = 0.05, Xjgg0 is computed in 180 s, and
included in the box [—0.23,0.20] x [-0.22,0.19].
Note that prediction over 1000 steps requires less
than three times the time needed for prediction
over 10 steps. This is due to the fact that the sets
to be characterized become smaller as time goes
by.
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Fig. 2. Evolution of X, for £ = 0,...,10; w; €
[0.8,0.9],e=0.1

5.2 Causal state estimation

Assume now that the first component of the state
vector is observed, according to

yz=(1 0)xl+w, 9)

where v, is a realization of some additive mea-
surement noise belonging to [-0.1,0.1]. A state
estimator is implemented for this system, alter-
nating prediction and correction as explained in
Section 4.1. The data yy used in this example
are generated by simulating (7) and (9) with w,
picked at random in [0.8,0.9], v, picked at random
in [-0.1,0.1], starting from the (unknown) initial
state xo = (4.5,0)".

Figure 3 presents the results computed by the
state estimator with £ = 0.1. The predicted sets
Xy are in light grey, and the corrected sets Xy
in dark grey. Computing all these sets from £ =0
to £ = 10 takes about 1.3 s. Estimation at £ = 0
and £ = 1 takes most of this time, because the sets
manipulated are larger. After £ = 1, each iteration
of RCSE takes less than 0.03 s. Much less time is
needed than in Section 5.1, because the sets to be
manipulated are smaller.

5.3 Causal joint parameter and state estimation

The unknown parameter wy is now assumed to be
constant, and should be estimated jointly with the
state vector. For this purpose, wy is appended to
the state vector to form the extended state vector

x§ = (xF,w) - (10)

The discrete-time equation satisfied by the ex-
tended state is

X4 = (A(wE))q) =f°(x7). (11)

wy

-5

-4 0 6

Fig. 3. Causal state estimation; the predicted sets
are in light grey, the corrected sets are in dark

grey

The observation equation is still assumed to be
(9). The (unknown) initial extended state is x§ =
(4.5,0,0.85)T. It is only assumed to belong to
X& = [4,5] x [-1,1] x [0.5,1.5]. Figure 4 depicts
the projection of the sets X; onto the x-plane,
as obtained with RCSE, with ¢ = 0.1 and £ =
0,...,10. The computation takes 34 s in total.
Again, the first three iterations take most of this
time. After £ = 2, each iteration takes less than
0.25 s.

E

-5 0 7

Fig. 4. Causal extended state estimation; projec-
tion onto the x-plane of X, (dark grey) and

X‘Z + (light grey)

The last component of the extended state corre-
sponds to the parameter wy. The projection of
X; onto the wy-axis is an interval corresponding
to a guaranteed estimate of wy, represented on
Figure 5 as a function of /.
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Fig. 5. Intervals enclosing the actual value of wy

5.4 Noncausal estimation

Assume now that all measurements are available
at the outset. The projections onto the x-plane of
the sets X, obtained by NCSE are depicted on
Figure 6. Note that the improvement is particu-
larly significant when £ is small.

9

-5

o

7

Fig. 6. Noncausal extended state estimation; pro-
jection onto the x-plane of the sets Xz; the
corrected sets obtained with the causal es-
timator are in light grey, and the corrected
sets obtained with the noncausal estimator
in dark grey
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