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Solving Composed First-Order Constraints fromDiscrete-Time Robust ControlStefan Ratschan1? and Luc Jaulin21 Research Institute for Symbolic Computation, A-4040 Linz, Austria,e-mail: stefan.ratschan@risc.uni-linz.ac.at2 Luc Jaulin, LISA, 62 avenue Notre Dame du Lac, 49 000 Angers, France,e-mail: jaulin@univ-angers.frAbstract. This paper deals with a problem from discrete-time robustcontrol which requires the solution of constraints over the reals that con-tain both universal and existential quanti�ers. For solving this problemwe formulate it as a program in a (�ctitious) constraint logic program-ming language with explicit quanti�er notation. This allows us to clarifythe special structure of the problem, and to extend an algorithm forcomputing approximate solution sets of �rst-order constraints over thereals to exploit this structure. As a result we can deal with inputs thatare clearly out of reach for current symbolic solvers.1 IntroductionA discrete time system can be described by state-space equations of the formxk+1 = f(xk;uk;wk), where k is the discrete time, f is a non-linear real func-tion, xk is the state vector at time k, uk is the control vector which can bechosen arbitrarily in a set Uk, and wk is the perturbation vector which cannotbe in
uenced by us but remains inside a known set Wk. In this paper we dealwith the problem of computing the set of state vectors x0 for which we can setthe controls in such a way that future state vectors x1; : : : ;xn will belong tocertain sets X1; : : : ; Xn chosen by us.This problem is closely related to the problem of characterization of viabilitysets involved when studying the evolution of macro-systems arising in biology,economics, cognitive sciences, games, and similar areas, as well as in nonlinearsystems of control theory. A good reference is the book of Aubin [4].When trying to solve this problem one immediately runs into constraintsthat contain a large number of universally and existentially quanti�ed variables.In this paper we report on ongoing research on a method for solving such con-straints. This method is already able to compute (approximate) solutions thatare far too hard to compute for current symbolic solvers (e.g., QEPCAD [12]).We proceed by giving a recursive formulation of the problem which can beread as a program in a constraint logic programming language with explicitquanti�er notation. This formulation will allow us to clarify the special structure? Supported by the Austrian Science Fund FWF in the frame of the project SFB F1303



of the resulting �rst-order constraint (i.e., formula in the �rst-order predicatelanguage with predicate symbols = and �, function symbols + and �, andrational constants, all of them with their usual interpretation). We exploit thisstructure by breaking the constraint into parts, where each part corresponds toone stage of the system, and these parts are glued together by a syntactic entitycalled \function inversion quanti�er". We show how to extend the method ofapproximate quanti�ed constraint solving (AQCS [32,30]), as developed by oneof the authors, to deal with such function inversion quanti�ers. This will allowus to solve non-trivial instances of the mentioned problem from discrete-timerobust control.The resulting approach is also applicable to several other problems fromdiscrete-time control, and even to the general case of �rst-order constraintswith composition structure, that is, �rst-order constraints that have the formC(fn(: : : f1(x) : : : )). Since de�ning objects in hierarchies is ubiquitous in thehuman modeling and problem-solving process, and since such a compositionstructure very often is (implicitly) encoded in programs in CLP languages, webelieve that according support in constraint solvers will become more and moreimportant.2 Problem De�nitionA discrete-time system with control and perturbation (or short a system) is atuple (f; n;X; U;W ), where{ f : IRa+u+w ! IRa,{ n 2 IN,{ A � f1; : : : ; ng � IRa,{ U � f1; : : : ; ng � IRu, and{ W � f1; : : : ; ng � IRw.The function f is called transition function, the predicate A allowed state, thepredicate U allowed control, the predicate W possible perturbation. Intuitively(see Figure 1), such a system models a process which starts with some valuex0 (the initial state) and then applies the function f n-times to x0, where ateach application additional user-de�nable input (control) uk s.t. U (k;uk), andperturbationwk s.t.W (k;wk) in
uence the function f | resulting in the state atstage k. In this paper we solve the problem of computing the robust feasible initialset : Given a discrete-time system with control and perturbation �nd an initialstate such that for all following stages the state is allowed (i.e., the predicate Aholds).Given a system S = (f; n;A; U;W ) we can formalize this using the followingpredicate, which models the states x at stage k for which we can apply input



f f: : :x0 un�1u0 w0 u1 w1 wn�1fx1 xnFig. 1. Discrete Time Systemsuch that for all possible perturbations the state at all future stages is allowed:CS(x; k) : ! A(x; k) ^k < n!9u U (u; k) ^8w W (w; k)! CS(f(x;u;w); k + 1) (1)Our problem is to compute the robust feasible initial set CS(x0; 0). Afterexpanding this query and writing the predicates U and W as sets, we get:A0(x0) ^ 9u0 2 U0 8w0 2 W0A1(f(x0;u0;w0)) ^ 9u1 2 U1 8w1 2W1A2(f(f(x0;u0;w0);u1;w1)) ^ 9u2 2 U2 8w2 2W2: : : An(f(f(: : : f(x0;u0;w0);u1;w1);u2;w2)) (2)This is an expression that is de�nitely too hard to solve for current symbolicsolvers like QEPCAD [12] (for which the border between solvable and unsolvableproblems is around 3-5 variables), and in its raw form also for the approximatesolver developed by one of the authors [32,30]. Thus we have to exploit thespecial structure of such a constraint in order to be able to solve it.3 Main IdeaObserve that in the recursive de�nition of CS in Expression 1, we only have a�xed number of variables in each recursion step. When expanding the de�nition,each step maps the newly introduced variables into a variable vector of lowerdimension by applying the function f . In the other direction, when collectingresults, we can �rst compute the solution set of step n, plug the result into stepn� 1, compute this solution set, and so on.Here we have to solve a �rst-order constraint in a+ u+w variables for eachstep. But even if we could compute the solution set of step n by a symbolicsolver, the size of the result will blow up when plugging it into the precedingsteps n�1, n�2, and so on. The reason is that the complexity of real quanti�erelimination results from the size of its quanti�er-free output [40,13]. So we usethe same idea to compute approximate solutions instead.



For this we abstract from our concrete example and assume a constraint C forwhich we want to compute the solution set of C(f(x)), where the dimension ofx is higher than the dimension of f(x). However, we want to avoid substitutingf(x) into the constraint because that would blow up the complexity by forcingus to solve a constraint with the additional variables x.Thus we try to deal with such a situation in a special, more e�cient way.For this we write it by using function inversion quanti�ers, that is, syntacticalentities of the form [f(x) = z] C(z). Semantically such a constraint is equivalentto C(f(x)). Operationally it will be handled in a di�erent, more e�cient way.Now our problem reads as follows:A0(x0) ^ 9u0 2 U0 8w0 2W0 [f(x0;u0;w0) = x1]A1(x1) ^ 9u1 2 U1 8w1 2W1 [f(x1;u1;w1) = x2]A2(x2) ^ 9u2 2 U2 8w2 2W2 [f(x2;u2;w2) = x3]: : : An(xn) (3)Observe that in this constraint each sub-constraint beginning at a certainline has exactly one free-variable vector xi. Now we can view our problem ofcomputing the robust feasible initial set as the problem of solving n constraintsthat are glued together by function inversion quanti�ers. For 1 � i � n, the i-thof these constraints only contains the variable vectors xi, ui, and wi.For solving these constraints we use the method for approximate quanti�edconstraint solving (AQCS) as developed by the �rst author [32,30]. In the restof the paper we will describe how to glue together several instances of this solverby implementing function inversion quanti�ers. However, the scope of this paperwill only allow us to explain these details of AQCS that are absolutely necessaryfor understanding how we deal with function inversion quanti�ers.4 Function Inversion in Quanti�ed Constraint SolvingIn approximate quanti�ed constraint solving we approximate solution sets byfunctions that assign \true" to elements that are guaranteed to be in the solutionset, \false" to elements that are guaranteed to be out of the solution set, andthat assign \unknown" otherwise:De�nition 1. An approximate set on B � IRn is a function in B ! fT;F;Ug.The error err( ~S) of an approximate set ~S on B is the volume of the x such that~S(x) = U. An approximate set ~S on B is an approximation of a set S � B i�for all x 2 B, ~S(x) = T implies that x 2 S, and ~S(x) = F implies x 62 S.We delay the description of a concrete computer representation of approximatesets to the end of this section.The basic idea of the algorithm for approximate quanti�ed constraint solv-ing [32], is to de�ne for every syntactic element p (e.g., ^, 8) a propagationfunction propp that computes an approximation of the solution set of a con-straint of the form p(C1; : : : ; Cn) from approximations of the solution set of each



sub-constraint C1; : : : ; Cn [31]. For example, for the constraint 9x x2 + y2 � 1the propagation function prop9 takes an approximation of the solution set ofx2+ y2 � 1 and returns an approximation of the solution set of 9x x2 + y2 � 1.We follow this approach by simply de�ning such a propagation function alsofor function inversion quanti�ers. This means that we show how to compute anapproximation of the solution set of [f(x) = z]C(z) (i.e., C(f(x))) from anapproximation of the solution set of C(z). In a �rst attempt we de�ne for anapproximate set ~S on B, prop[f(x)=z]( ~S) to be �x 2 B: ~S(f(x))1. We will seelater how to implement this in detail.Now a naive approach would apply the idea from Section 3 by computing anapproximate solution set of stage n, then using this information to compute anapproximate solution set of stage n�1, and so on (this corresponds to a compu-tation that follows the arrows in reverse order in Figure 1). The problem is thathere we do not know how small we have to make the error of these approximatesolution sets in order to reach a certain desired output error. Furthermore we donot know which parts of these approximate solution sets are needed for the endresult. Thus we compute all of them on demand.This is also how approximate solution sets are computed within AQCS. Forthis it uses a function re�ne that takes a constraint C and a set B, and returnsan approximation of the solution set of C on B (an exact discussion of howlarge the error of this approximation is allowed to be is beyond the scope ofthis paper). The argument B is chosen on demand within the algorithm | itis usually just a small part of the solution set we want to compute, and duringthe algorithm execution the limit of its volume goes to zero. So we have toextend this re�nement function for the case when the outermost symbol of C isa function inversion quanti�er:re�ne([f(x) = z]C;B) :=prop[f(x)=z](re�ne(C; f(B)))The resulting overall function is recursive, the base case is reached whencalled with an atomic constraint (i.e., an equality or inequality). We will dealwith the problem of how to compute f(B) (i.e., the range of f on B) later.However, this solution does not yet su�ce to solve the complexity problem.The reason is that for each input set B it computes an approximate solutionset of C on f(B). In other words, it substitutes f(x) into C at the level ofsolving instead of at the syntactic level, and we do not gain anything in termsof complexity.This problem comes up because we never represent the approximate solutionset of the sub-constraint C of [f(x) = z]C explicitly. This means that, even iffor many di�erent x the value of f(x) is the same, we recompute the solution setof C for di�erent x that result in the same f(x) by new calls to the re�nementfunction. We solve this problem by remembering already computed parts of the1 The notation �x 2B:f(x) denotes a function that takes an argument x 2 B andreturns f(x) [5].



solution set of C. We do this by wrapping the above call to the re�nement func-tion into the following memoization function which keeps the current knowledgeabout the solution set of C by caching it in the global variable ~S, which weinitialize by the everywhere unknown approximate solution set �x2 IR:U:re�neMemo(C;B) :=if err(restr( ~S;B)) > " then~S  embed( ~S; re�ne(C; choose( ~S;B)))return restr( ~S;B)Here " is a pre-de�ned real constant, restr( ~S;B) returns the restriction of theapproximate set ~S (as a function) to B, choose( ~S;B) returns a subset of B forwhich ~S is U, and embed( ~S; ~S0) is an approximate set that is equal to ~S exceptthat it is equal to ~S0 on its domain of de�nition.Up to now we have allowed approximate sets to be arbitrary functions inB ! fT;F;Ug. For computer representation we restrict this class to functionsthat are constant on �nitely many 
oating-point boxes. We can represent theseby a set of boxes for which the approximate set is T, a set of boxes for whichthe approximate set is F, and a set of boxes for which the approximate set isU. Now we can easily implement the above functions using this representation.Especially, we can implement the computation of f(B) in the re�nement functionby interval methods for computing an overestimation of the range of the functionf on a box B [29].The only problem lies in the implementation of the propagation function forfunction inversion quanti�ers: First, the resulting approximate solution set canhave an extremely complicated structure, which can be hard or even impossibleto represent by �nitely many 
oating point boxes. Second, all the approximatesolution sets occurring in the algorithm have to ful�ll the additional propertyof cylindricity [32,3] (the clari�cation of this notion is beyond the scope of thispaper). To solve these problems remember that the second argument to there�nement function is a set B (i.e., a box), whose volume goes to zero duringthe algorithm execution. The smaller this box B is, the more probable it isthat the argument to the propagation function in the re�nement function is anapproximate solution set that returns the same truth value everywhere. So wecan remove both problems easily by just returning approximate solution sets thatreturn the same truth value everywhere. This means that, given an approximateset ~S on a set B, we de�ne:prop[f(x)=z]( ~S) :=if for all x2f(B); ~S(x) = T then return �x2B:Telse if for all x 2 f(B); ~S(x) = F then return �x2B:Felse return �x2B:UThis propagation function always computes constant approximate sets whichmeans that it returns the everywhere unknown function very often. In this caseAQCS will bisect the resulting box and do further calls to the re�nement function



on the single pieces. This need for bisection instead of more intelligent boxpruning methods is one of the weaknesses of the current approach.5 ExampleWe did timings on the following example:{ f(x1; x2; u; w) = (3x1x2 +wu; 2x2 + x1){ A(x1; x2; t) :$�1 � x1 � 1, �1 � x2 � 1{ U (u; t) :$�0:5 � u � 0:5{ W (w; t) :$�0:1 � w � 0:1For n = 0 we simply need to solve �1 � x1 � 1,�1 � x2 � 1. For example forn = 3, the total number of involved variables is 12. We list timings for n > 0 inthe table below. All numbers denote seconds needed on a 500MhZ Intel CeleronPC running Linux, where1 denotes that the run either needed more than 64MBof memory or more than 20min of time. The column with the title \err=0.2"shows the time for computing an approximate solution set of error 0:2 on the box[�1; 1]� [�1; 1], the column with the title \single" the time for computing onesingle true box. The last column lists the time for computing an exact symbolicsolution with the solver QEPCAD [12]. For the latter we did not simply feedthe input into the program | this would be de�nitely too hard to solve | butwe applied the idea of Section 3 also to this case, by computing a solution ofstage n, and then recursively back-substituting the result for computing earlierstages. The �gure shows the computed approximate solution set for n = 2 witherror 0:2 again on the box [�1; 1]� [�1; 1] (green=T, red=F, white=U).n err=0.2 single QEPCAD1 0.7 0.0 18.32 19.8 0.3 13 1 11.9 14 1 1 1



6 Related WorkThe behavior of various algebraic objects, such as Gr�obner bases [19] or subre-sultants [18], under composition is becoming an important topic in computer al-gebra. The composition structure of constraints has also been exploited for reuseof certain shared interval function evaluation in global optimization [25,21], andfor computing good range overestimations of functions [11,37].Inversion of functions on sets is done implicitly by every algorithm for solvingsystems of equations [29] | in this case the input set just contains one zerovector. It is mentioned explicitly mostly for computing the solution set of systemsof inequalities [9,39].First-order constraints occur frequently in control, and especially robust con-trol. Up to now they either have been solved by specialized methods [1,41,6] orby applying general solvers like QEPCAD [12]. In the �rst case one is usuallyrestricted to conditions like linearity, and in the second case one su�ers from thehigh run-time complexity of computing exact solutions [40,34]. We know of onlyone case where general solvers for �rst-order constraints have been applied todiscrete-time systems [28], but they have been frequently applied to continuoussystems [24,15,14]. For non-linear discrete-time systems without perturbationsor control, interval methods have also proved to be an important tool [23,26].Apart from the method used in this paper [32], there there have been severalsuccessful attempts at solving special cases of �rst-order constraints, for exampleusing classical interval techniques [35,36] or constraint satisfaction [7], and veryoften in the context of robust control [16,22,27,38].7 ConclusionWe have designed a method for solving composed �rst-order constraints arisingin discrete-time robust control by extending a solver (AQCS) developed by one ofthe authors. The result can solve problems that are far too hard to compute forstate-of-the-art symbolic solvers. However it is still too slow for solving problemsof practical interest. We believe that the method is promising also in othersituations where composed �rst-order constraints occur.In problems without function inversion quanti�ers, AQCS spends most ofthe time on computing information for atomic constraints, using tightening [20]and range computation. However, for inputs containing function inversion quan-ti�ers, this is not the case. Usually more than 90 percent of the time is spenton propagating (usually unknown) boxes in tasks like memo lookup or choosingboxes for further processing. We envision two basic approaches for dealing withthis situation:{ Try to produce less unknown boxes.{ Try to handle the produced boxes more e�ciently.For producing less unknown boxes, the following approaches seem promising:



{ Instead of bisection, develop a method similar to tightening [20] or to boxconsistency methods [17,8] on the level of function inversion quanti�ers, forexample by implementing the following speci�cation: Given a box B, com-pute a box B0 such that f(B0) � B. Then the fact that B is in the solutionset of a constraint C(z) implies that B0 is in C(f(x)).{ Pruning boxes that do not contribute to the overall results (in a similar wayas the monotonicity test in global optimization).For handling the produced boxes more e�ciently we can:{ Devise strategies for choosing boxes in the context of function inversionquanti�ers [33].{ Design e�cient algorithms for the memo lookup.{ Parallelize the method by putting each stage on a di�erent processor.References1. J. Ackermann. Robust Control. Springer, 1993.2. G. Alefeld, A. Frommer, and B. Lang, editors. Scienti�c Computing and ValidatedNumerics | SCAN'95, volume 90 of Mathematical Research. Akademie Verlag,1996.3. D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic decompositionI: The basic algorithm. SIAM Journal of Computing, 13(4):865{877, 1984. Alsoin [10].4. J.-P. Aubin. Viability Theory. Birkh�auser, 1991.5. H. P. Barendregt. The Lambda Calculus. North-Holland, 1981.6. B. R. Barmish and H. I. Kang. A survey of extreme point results for robustnessof control systems. Automatica, 29(1):13{35, 1993.7. F. Benhamou and F. Goualard. Universally quanti�ed interval constraints. In Proc.of the Sixth Intl. Conf. on Principles and Practice of Constraint Programming(CP'2000), LNCS, Singapore, 2000. Springer Verlag.8. F. Benhamou, F. Goualard, L. Granvilliers, and J. F. Puget. Revising hull andbox consistency. In Int. Conf. on Logic Programming, pages 230{244, 1999.9. M. Candev. On the application of an interval algorithm to set inversion. In Alefeldet al. [2], pages 140{146.10. B. F. Caviness and J. R. Johnson, editors. Quanti�er Elimination and CylindricalAlgebraic Decomposition. Springer, 1998.11. M. Ceberio and L. Granvilliers. Solving nonlinear systems by constraint inversionand interval arithmetic. In 5th Int. Conf. on Arti�cial Intelligence and SymbolicComputation, 2000.12. G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quanti-�er elimination. Journal of Symbolic Computation, 12:299{328, 1991. Also in [10].13. J. H. Davenport and J. Heintz. Real quanti�er elimination is doubly exponential.Journal of Symbolic Computation, 5:29{35, 1988.14. P. Dorato. Quanti�ed multivariate polynomial inequalities. IEEE Control SystemsMagazine, pages 48{58, October 2000.15. P. Dorato, W. Yang, and C. Abdallah. Robust multi-objective feedback design byquanti�er elimination. Journal of Symbolic Computation, 24:153{159, 1997.
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